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Geophysical assessment of migration and storage
conditions of fluids in subduction zones
Anne Pommier
Abstract

By enhancing mass transfer and energy release, the cycle of volatiles and melt is a major component of subduction.
Investigating this fluid cycle is therefore critical to understand the past and current activity of subduction zones. Fluids
can significantly affect rock electrical conductivity and elastic parameters that are measured using electromagnetic and
seismic methods, respectively. This letter emphasizes how these geophysical methods complement each other to
provide information about the storage of fluids in subduction systems. By compiling electromagnetic and seismic results
from various subduction zones, a possible correlation between electrical conductivity and seismic wave attenuation
anomalies in the mantle wedge is observed, consistent with fluid accumulation. A possible relationship between
geophysical properties and the slab age is also suggested, whereas no significant trend is observed between electrical
conductivity or seismic wave attenuation and estimates of water flux in the mantle wedge. These field-based relationships
require further constrains, emphasizing the need for new measurements in the laboratory.
Findings
Introduction
The dynamics and time-evolution of subduction are
driven by mechanical and chemical processes that influ-
ence buoyancy forces, slab motion, contrasting thermal
fields, phase equilibria, and volatile transport. By enhan-
cing mass transfer and energy release, the cycle of fluids
in subduction zones is a critical component of slab recyc-
ling and continental building processes. A better under-
standing of the role of melt and volatiles in subduction
zones is therefore key to improving our knowledge of
the geodynamic processes at work. It can also help us
better assess volcanic and earthquake hazards in these
contexts.
The cycle of fluids is expected to differ significantly

between subduction zones. For instance, varying temper-
atures cause dehydration reactions to occur at shallower
depths in the slabs of warm subduction zones (e.g.,
Southwest Japan, Cascades) compared to slabs of cold sub-
duction zones (e.g., Tonga, Java) (Peacock and Wang 1999).
Fluid migration was found to be faster than subduction
velocity in warm subduction systems (e.g., approximately 7
cm/year versus approximately 4 cm/year, respectively, in
Correspondence: apommier@asu.edu
School of Earth and Space Exploration, Arizona State University, Tempe, AZ
85287, USA

© 2014 Pommier; licensee Springer. This is an O
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
Southwest Japan, Kawano et al. 2011), suggesting a con-
tinuous hydration of the mantle wedge due to upward
fluid migration along the subduction interface. In colder
environments, comparable fluid and subduction velocities
(e.g., approximately 10 cm/year in Northeast Japan,
Kawano et al. 2011) imply that a non-negligible amount of
water reaches the lower mantle and triggers melting, as
evidenced by geochemical signatures of island arc magmas
(e.g., Stolper and Newman 1994; Wallace 2005). Signifi-
cant water contents in the mantle are suggested by model-
ing studies. For instance, van Keken et al. (2011) estimated
that the global H2O flux to the deep mantle corresponds
roughly to one ocean mass over the Earth's history.
Fluids influence electrical conductivity and seismic

velocity in different ways (see Unsworth and Rondenay
2013). These physical properties are measured using
electromagnetic and seismic methods, respectively, offer-
ing a unique way to map in situ fluid distributions in real
time. When interpreted together with petrological results,
geophysical data can be used to constrain fluid chemistry,
temperature, fraction, and connectivity. Though some
important findings have been obtained to relate electrical
and seismic data to fluid distribution, thermal structure,
and mineralogy (e.g., Kazatchenko et al. 2004; Hacker and
Abers 2004; ten Grotenhuis et al. 2005), further work is
required to understand the possible relationships between
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geophysical parameters sensitive to fluids and subduction
dynamics.
This letter addresses how electromagnetic and seismic

methods complement each other to help define the storage
conditions of fluid processes in subduction. It aims to
stimulate laboratory investigations that use a joint elec
trical-seismic approach and combine geophysical data with
subduction settings.

Geophysical structure of subduction zones and fluid detection
Electrical conductivity structure of subduction zones
Because it is sensitive to temperature, composition, and in-
terconnectivity changes, the electrical conductivity of geo-
materials provides information about their chemistry and
structure (see Pommier 2013). Most electrical images of
the subduction zones present two anomalies unnecessarily
connected along or above the slab: a backarc conductor
and a near-trench conductor (Table 1). These conductive
areas are usually interpreted as zones of fluid accumula-
tion, in agreement with petrological modeling (e.g.,
Schmidt and Poli 1998). The upward migration of fluids
from the slab may explain backarc and forearc anomalies.
In some subduction zones, the forearc conductor extends
Table 1 Location and average electrical conductivity (EC) of m
subduction zones

Subduction zone Backarc conductor

Depth (km) EC (S/m) Distance from
trench (km)

Depth (

1. Chile-Bolivia
(19.5°S-21°S)

20 0.04.-0.10 220

2. Chile-Bolivia
(17°S-19°S)

100 0.10-1 300

3. Costa Rica 30 0.03-0.13 150 10

4. Mexico 40 0.03-0.20 330 20

5. Philippine Sea 85 0.50 320 40

6. South Chile 25 0.10-0.30 140 15

7. Central Argentina 200 0.03-1 800 30

8. Cascadia, British
Columbia

50 0.02-0.05 120 25

9. Cascadia, Oregon 80 0.03-1 120 25

10. Greece 40 0.002-
0.006

170 -

11. Mariana 40 0.01 300 <30?

12. Taiwan 35 0.0590.10 100 10

13. Kyushu, Japan 50 1 300

14. Hokkaido, Japan 40 0.01-0.10 400 40

15. North Honshu,
Japan

170 0.15-0.30 260 15

16. Central New
Zealand

35 0.01-0.04 200 20

n.c, zone close to trench not covered by the electromagnetic survey.
from the slab upward and can relate to the arc volcanoes'
plumbing system (e.g., Brasse and Eydam 2008), whereas
in other subduction contexts, conductivity images suggest
a connection between the volcanic plumbing system and
the backarc reservoir (e.g., Evans et al. 2013). The fluid
fraction is usually estimated from the bulk electrical
conductivity value of the anomaly by using two-phase
formalisms (e.g., ten Grotenhuis et al. 2005) and by assum-
ing a conductivity value for the liquid phase (preferentially
based on laboratory results and in agreement with petro-
logical constraints (Pommier and Garnero 2014)). It is
interesting to note that these possible fluid sinks are not
vertically aligned with the arc volcanoes at the surface
(e.g., Worzewski et al. 2011), though they may be rela
ted to the volcanic plumbing system. In case these con-
ductive reservoirs contribute to the volcanic activity,
the shift in their location may be due to mantle flow and
buoyancy processes in the mantle wedge, as suggested by
some numerical experiments (e.g., Gerya and Yuen 2003).
The detection of these reservoirs using electromagnetic
measurements highlights the fact that electrical studies
can be a powerful tool to investigate volcanic plumbing
systems in subduction.
ain conductors detected in electromagnetic studies of

Forearc or trench-close conductor References

km) EC (S/m) Distance from
trench (km)

n.c. Brasse et al. (2002)

n.c. Brasse and Eydam (2008)

0.10-0.20 65 Worzewski et al. (2011)

0.10-0.20 40 Joedicke et al. (2006)

0.50 140 Shimakawa and
Honkura (1991)

0.03-1 45 Brasse et al.(2009)

0.02 300 or less Booker et al. (2004)

0.02 50 Soyer and Unsworth (2006)

0.03-1 80 Evans et al. (2013)

- - Galanopoulos et al. (2005)

0.006? 50-150? Matsuno et al. (2012)

0.05-0.12 30 Bertrand et al. (2012)

n.c. Ichiki et al. (2000)

0.01-0.10 100 Ichiki et al. (2009)

0.10 210 Toh et al. (2006)

0.10 150 Wannamaker et al. (2009)
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Although conductive anomalies in subduction zones are
almost systematically interpreted as interconnected fluids,
other materials may present high electrical conductivity. In
Figure 1, the electrical conductivity of fluids and other ma-
terials at conditions relevant to subduction is compared in
a synthetic conductivity profile based on laboratory results.
Petrological properties are from Schmidt and Poli (1998)
for the slab and mantle wedge, and the thermal profile is
derived from Furukawa (1993) and Poli and Schmidt
(2002). Melt fraction estimates are from Grove et al. (2012).
The electrical conductivity of these materials is calculated
using the results by Kristinsdóttir et al. (2010) (chlorite),
Wang et al. (2012) (amphibole), Zhu et al. (1999), Xie et al.
(2002) and Guo et al. (2011) (serpentinite), Constable
(2006) (olivine), and Ni et al. (2011) and Yoshino et al.
(2010) (silicate melt). Because some of these electrical
measurements were performed at lower pressure than
subduction conditions, the effect of increasing pressure
on conductivity was accounted for by applying a cor-
rection of −0.15 log unit in electrical conductivity per
gigapascal, in agreement with observations from experi-
mental studies (e.g., Tyburczy and Waff 1983). Tempe
rature corrections were applied to measurements of elec-
trical conductivities of chlorite. Those were made at tem-
peratures <250°C, while petrology studies suggest that
chlorite may be stable in the mantle wedge at significantly
higher temperatures (up to 1,000°C) (Schmidt and Poli
1998). The electrical conductivity of chlorite at higher
temperatures is predicted by extrapolation assuming a
constant Arrhenian dependence to temperature over the
temperature range of interest.
This synthetic model suggests that the contrast in

electrical conductivity between stable hydrous minerals
in the slab and the mantle can be less than 1 log unit.
This observation is consistent with the results from
magnetotelluric studies that can hardly distinguish the
slab from the surrounding mantle and, therefore, often
resort to seismic studies to locate the slab (Brasse and
Eydam 2008; Naif et al. 2013). Figure 1B also predicts
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Figure 1 Laboratory-based electrical conductivity model of a subductio
and Poli (1998) and Grove et al. (2012). (B) Corresponding electrical response
underlines that the distinction between hydrous minerals and partially molten
these phases have similar electrical conductivity values at conditions relevant
that the electrical response of hydrous minerals (chlorite,
amphibole) may be similar to that of partial melt at
conditions relevant to subduction, therefore hampering
the identification of a free fluid phase. Improving our
understanding of fluid distribution in subduction zones
requires the integration of results from electromagnetic
surveys with those from petrology and seismology.

Input from seismic studies
Different seismic techniques are used to probe subduction
zones (see Unsworth and Rondenay 2013). Among the
different seismic observables, a reduction in seismic vel-
ocities and quality factor Q can be used to infer fluid-
bearing regions at depth and define fluid pathways (e.g.,
Syracuse et al. 2008; Rychert et al. 2008). In particular,
seismic wave attenuation (Q−1) and Poisson's ratio (Vp/Vs)
are sensitive to the presence of fluid and high temperature
(Takei 2002), and some models showed that seismic
velocities can be related to the fluid content within the
mantle wedge (e.g., Carlson and Miller 2003). Estimates of
volume fraction of fluids have been proposed based on
these seismic parameters, and further work is needed to
place stronger quantitative constraints (Aizawa et al.
2008). Low seismic velocity zones are commonly detected
at shallow depths in relatively warm subduction contexts
(Hirose et al. 2008) and at higher depths in the mantle
wedge of cold subduction environments (Tsuji et al. 2008).
Seismic attenuation can be caused by mechanisms that are
not all related to the presence of fluid, such as grain defect
microdynamics, viscosity, and scattering (e.g., Johnston et al.
1979; Karato and Spetzler 1990). Therefore, the interpret-
ation of seismic attenuation in terms of fluid requires its
coupling with other fluid-dependent geophysical parameters.
Examples of seismic results in subduction are presented

in Figure 2 and Table 2. In the Tonga/Lau system (Wiens
et al. 2008; Pozgay et al. 2009), a low-attenuation slab and
large-extent high attenuation regions have been observed
in the forearc and backarc areas (Figure 2A). Attenuation
studies possibly indicate the presence of free fluids or
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Figure 2 Examples of geophysical subduction profiles. (A) P wave attenuation tomography in the Tonga/Lau system (after Pozgay et al.
2009). Circles are earthquakes. (B) Seismic velocity contrast profile created using teleseisms. (C) Electromagnetic profiles of the Cascades
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See text for details.
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serpentinization, but it is important to keep in mind that
the effect of fluid processes on attenuation is still poorly
constrained.
The inversion of converted and scattered teleseismic

waves method does not clearly identify the zones of fluid
accumulation (e.g., Rondenay et al. 2010), but rather
fronts of serpentinization (Bostock et al. 2002), whose lo-
cation is consistent with thermal and petrological subduc-
tion models at shallow depth (<~70 km). Serpentinization
of the slab and mantle wedge is ascribed to a series of
dehydration reactions that lead to permanent changes in
the mineralogy and represents a major component of the
fluid cycle at shallow depth (e.g., Reynard 2013).
Beneath the Cascades (Figure 2B), several small low

seismic velocity zones are present, but no pronounced
low-velocity zone can be distinctly observed in the mantle
wedge where partial melt is expected (Rondenay et al.
2008), whereas electrical data clearly identified conductive
zones interpreted as fluid accumulation areas, noted as
A, B, C (Figure 2C; Evans et al. 2013). Region A is con-
sistent with the presence of fluids from slab dehydra-
tion at shallow depth, B with a zone of fluid
accumulation possibly related to the volcanic plumbing
system, and C is in agreement with the presence of
deeper partial melting. These conductive anomalies
correspond to zones of seismic velocity reduction in
Figure 2B, but they could not be clearly identified on
the seismic profile without additional constraints from
the electromagnetic study.

Relating electrical and seismic parameters to map
fluid distribution
Electrical conductivity-seismic velocity relationships in
fluid-bearing materials
Attempts to relate electrical and seismic properties of
fluid-bearing materials are scarce (Kazatchenko et al. 2004;
Pommier and Garnero 2014). These petrophysical models
are based on theoretical approaches and laboratory mea-
surements and aim to improve the interpretation of
geophysical data. Another approach would consist of ex-
ploring electrical conductivity-seismic velocity relation-
ships by considering their values from field measurements.
Figure 3 compares attenuation values for seismic P and

S waves for both forearc/trench-close and backarc anom-
alies and highest electrical conductivities in similar areas.
These values are directly from the studies listed in Tables 1
and 2, and possible issues of resolution of the geophysical
data are not considered here. A simple correlation
between electrical conductivity (EC) and Q−1 values is
observed:

ForP waves : EC S=mð Þ ¼ 1:50:10−3Qp
−1–0:104 ð1Þ

ForS waves : EC S=mð Þ ¼ 1:20:10−3Qs
−1–0:059 ð2Þ



Table 2 Location, highest seismic wave attenuation values, and wave velocity ratios of mantle wedge seismic anomalies

Subduction zone Backarc anomaly Forearc or trench-close anomaly References

Depth (km) Attenuation Vp/Vs Depth (km) Attenuation Vp/Vs

f range (Hz) P wave S wave f range (Hz) P wave S wave

1. Mariana 50-75 0.10-9.5 93-132 63-76 - 25-50 0.10-9.5 63-93 42-56 - Pozgay et al. (2009); Wiens et al. (2006)

2. Tonga-Lau 50-70 0.10-3.5 47-60 15-30 1.70 <20 - - - ? Wiens et al. (2008)

3. NE Japan 30-100 1.0-8.0 - 70-120 1.85 <25 - - - 1.85 Zhao et al. (2007); Takanami et al. (2000)

4. Honshu, Japan 80-100 1.0-20? 150 - - 30-60 1.0-20? 150-180 - - Tsumura et al. (2000)

5. Taiwan 60-80 0.15-8.0 100 - - - - - - - Ko et al. (2012)

6. Central Java,
Indonesia

70-120 1.0-20 100 - - 30-50 1.0-20 <100 - - Bohm et al. (2013)

7. North New
Zealand

40-100 2.0-40 50-120 - - <25 2.0-40 120-200 - - Eberhart-Phillips et al. (2008)

8. Mexico 40 and 80-120 1.0-30 130 - - 20 1.0-30 160 - - Chen and Clayton (2009)

9. Nicaragua-Costa
Rica

40-75 0.50-7.0 90-140 120-160 1.90 <50 0.50-7.0 125-200 125-200 1.90 Rychert et al. (2008); Dinc et al. (2011)

10. Central Andes
−21, −22.1°S

50-150 1.0-7.0; 1.0-30 117 - 1.83 <60 1.0-7.0; 1.0-30 117 - - Myers et al. (1998); Schurr et al. (2003)

11. Central Andes
−24.2°S

150-200 1.0-7.0; 1.0-30 105 - - 30-100 1.0-7.0; 1.0-30 95 - - Schurr et al. (2003)

12. Alaska 80-100 1-19; 0.3-9 537 283 - 50-60 1-19; 0.3-9 <537 <283 - Stachnik et al. (2004)
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with a correlation coefficient R of 0.78 for P waves and
0.96 for S waves. These relationships suggest that the
higher the electrical conductivity of the anomaly, the
higher its seismic attenuation, suggesting a plausible link
in their cause.
Several and possibly combined causes can explain in-

creases in electrical conductivity, Qp
−1, and Qs

−1. Because
temperature affects both electrical and elastic parameters
of fluid-bearing materials (e.g., Faul et al. 2004; ten Gro-
tenhuis et al. 2005), thermal contrasts could explain the
trend observed in Figure 3. For instance, the increase in
EC between the Mariana electrical anomaly and the more
conductive one in Honshu (difference of approximately
0.30 S/m, Table 1) can be explained by an increase from
1,200°C to 1,300°C, considering a hydrous basalt (6.3 wt.%
H2O) as the fluid phase (Ni et al. 2011), a melt fraction of
5%, and using the Hashin-Shtrikman upper bound
(Hashin and Shtrikman 1962). The difference in seismic
wave attenuation (Qp

−1 = 93 to 132 in Mariana, 150 in
Honshu, Table 2) can be caused by a temperature change
of 50°C (1,200°C to 1,250°C) or less on the corresponding
frequency range according to the model by Faul et al.
(2004) for a dunite containing 5% melt.
The geometry of the interconnected fluid phase in solid

matrix can also explain the relationship between electrical
conductivity and P wave and S wave attenuations. At de-
fined fluid fraction, a change in fluid interconnectivity and
geometry is likely to influence seismic velocities (S wave
velocities more than P wave velocities, Watt et al. 1976),
which will affect Poisson's ratio and increase seismic at-
tenuation (e.g., Jackson et al. 2004). Fluid interconnectivity
can also affect electrical conductivity significantly enough
to explain the variations observed in Figure 3 (several
tenths of S/m) (e.g., ten Grotenhuis et al. 2005). The spatial
distribution of fluid can also be responsible for seismic and
electrical anisotropy observed in the field (e.g., Kawakatsu
et al. 2009; Caricchi et al. 2011), which is not considered in
the present study.
Fluid composition affects electrical conductivity and may

affect seismic velocities, though the effect of fluids (in par-
ticular, water) on seismic observables is poorly constrained
and calibrated (Aizawa et al. 2008). The difference in
electrical conductivity between the backarc anomaly in
Honshu (>0.15 S/m) and in Mariana (approximately 0.01
S/m) (Table 1) is comparable to the conductivity increase
caused by the addition of 7 wt.% H2O to a basalt at 1,200°C,
using the conductivity model by Ni et al. (2011). This
would be consistent with the fact that the Mariana slab
may have released most of its aqueous fluids, whereas
the younger Honshu slab can still be expelling them,
enriching partial melt accumulation zones with aqueous
phase and leading to higher conductivity values.
An increase in the fluid content increases electrical con-

ductivity (e.g., Nesbitt 1993), increases seismic wave at-
tenuation (e.g., Jackson et al. 2004), and decreases seismic
velocities (e.g., Mainprice 1997). Laboratory studies
showed that electrical conductivity is very sensitive to fluid
fraction (e.g., Caricchi et al. 2011; Yoshino et al. 2012),
suggesting that a small change in fluid fraction can explain
the differences in electrical conductivity between the dif-
ferent anomalies plotted in Figure 3 (assuming a similar
temperature).
The relationship between electrical conductivity and

seismic wave attenuation presented in Figure 3 suggests
that the fluid conditions affect electrical conductivity and
seismic wave attenuation in a similar manner, assuming
that fluids are responsible for the electric and seismic
signals. Further electrical and seismic investigations are
needed to demonstrate if the slope (or intercept) of this
empirical relationship depends on the amount of fluids
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and their storage conditions and therefore place quantitative
constraints on the nature of zones of fluid accumulation.

Relating electrical conductivity and seismic velocities to
subduction settings
Using Tables 1 and 2, possible relationships between the
values of geophysical parameters (electrical conductivity,
Q−1,Vp/Vs) of anomalies can be considered through their
dependence on structural subduction characteristics
(from Jarrard 1986 and van Keken et al. 2011). No signifi-
cant correlation between electrical or seismic parameters
and the distance from trench or the dip angle was
observed. However, a correlation is possible between elec-
trical conductivity (or its inverse, resistivity) and P wave
attenuation of the backarc anomaly and the age of the slab
(Figure 4), suggesting that the backarc anomaly is more
conductive and the seismic waves are more attenuated
when it is related to a young slab (<100 Myr) than to an
older slab. This correlation seems more pronounced for
electrical resistivity than for seismic wave attenuation. A
low conductivity (or high resistivity) can correspond to a
‘cooling’ fluid and/or a small fluid fraction, possibly mean-
ing a small extent of melting and accumulation.
Subduction settings can also be expressed through the

slab thermal parameter (slab age × convergence speed)
(Kirby et al. 1991). Its value is small for slow subduction
of young lithosphere (e.g., Mexico, Cascades) and high
for fast subduction of old lithosphere (e.g., Tonga, Java).
No distinct relationship is observed between electrical con-
ductivity of mantle wedge anomalies (forearc and backarc)
and the slab thermal parameter. However, as underlined in
Figure 4C, seismic wave attenuation tends to be higher for
low slab thermal parameter values. This would be consist-
ent with an abundant release of fluids related to the
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dehydration process of a young crust, whereas the fast sub-
duction of an old lithosphere does not promote fluid accu-
mulation, leading to low seismic attenuation.

Geophysical parameters and global slab water flux
Geochemical studies proposed to estimate the fluxes of
fluids (particularly water) in subduction, and models
have been developed to estimate the amount of water
expelled under compaction at shallow depth, as well as
the amount of water reaching the deep mantle (e.g.,
Carlson and Miller 2003; van Keken et al. 2011).
Van Keken et al. (2011) estimated the H2O flux at 100

km depth with and without serpentinization for the con-
sidered subduction zones. These fluxes are compared to
the electrical and seismic properties of both trench-close
and backarc anomalies (Figure 5). No significant trend is
observed with high electrical conductivity in the mantle
wedge (Figure 5A), and the same observation can be made
about seismic wave attenuation (Figure 5B). The large
uncertainties on fluid flux estimates do not allow the in-
vestigation of a possible relationship between the intensity
of water fluxes in the mantle wedge and the geophysical
properties of fluid reservoirs, highlighting the need for fur-
ther laboratory and field investigations.

Concluding remarks: potential for improving the
understanding of subduction settings using a joint
electrical-seismic approach
Although thermo-mechanical models of subduction do not
necessarily agree on the time-evolution, they all point out
extreme temperature gradients across the slab-mantle
interface (e.g., Syracuse et al. 2010). As underlined by Poli
and Schmidt (2002), this suggests that a wide pressure-
temperature-composition space has to be characterized to
predict the evolution of subducting slabs. Because of the
sensitivity of geophysical parameters to temperature and
composition, electrical and seismic field studies, when
combined with thermo-mechanical models, can be a useful
tool to understand the pathways that led to the current
state of a subduction system and may help define plausible
scenarios for its evolution.
A few attempts combined the P-T paths of slabs from

thermal models and phase equilibria on hydrous basalt
or peridotite compositions (e.g., Poli and Schmidt 2002;
Syracuse et al. 2010). Recently, Unsworth and Rondenay
(2013) compared possible P-T paths of the slab with
seismic velocity attenuation for a basaltic melt after
Hacker (2008), attempting to relate dynamic models of
subduction to the seismic properties of melt. Our know-
ledge of subduction would benefit from further joint
investigations that promote the interpretation of seismic
velocity and electrical conductivity in terms of compos-
ition and subduction dynamics. The recent expansion of
geophysical experiments such as the EarthScope USArray
seismic-magnetotelluric network offers the potential to
improve significantly the relationships between electrical
and elastic parameters.

Competing interests
The author declares that she has no competing interest.

Acknowledgements
This manuscript benefitted from discussions with and informal reviews by
Stéphane Rondenay and Ed Garnero. Discussions with Kurt Leinenweber
were also appreciated. The author thanks two anonymous reviewers for their
comments.

Received: 3 February 2014 Accepted: 14 May 2014
Published: 23 May 2014

References
Aizawa Y, Barnhoorn A, Faul UH, Gerald JDF, Jackson I, Kovács I (2008) Seismic

properties of Anita Bay dunite: an exploratory study of the influence of
water. J Petrol 49(4):841–855, doi:10.1093/petrology/egn007

Bertrand EA, Bertrand EA, Unsworth MJ, Chiang CW, Chen CS, Chen CC, Wu FT,
Türkoğlu E, Hsu HL, Hill GJ (2012) Magnetotelluric imaging beneath the
Taiwan orogen: an arc-continent collision. J Geophys Res 117:B01402,
doi:10.1029/2011JB008688

Bohm M, Haberland C, Asch G (2013) Imaging fluid-related subduction processes
beneath Central Java (Indonesia) using seismic attenuation tomography.
Tectonophys 590:175–188

Booker JR, Favetto A, Pomposiello MC (2004) Low electrical resistivity associated
with plunging of the Nazca flat slab beneath Argentina. Nature 429:399–403

Bostock MG, Hyndman RD, Rondenay S, Peacock SM (2002) An inverted
continental Moho and serpentinization of the forearc mantle. Nature
417:536–538

Brasse H, Eydam D (2008) Electrical conductivity beneath the Bolivian Orocline
and its relation to subduction processes at the South American continental
margin. J Geophys Res 113:B07109, doi:10.1029/ 2007JB005142

Brasse H, Lezaeta P, Rath V, Schwalenberg K, Soyer W, Haak V (2002) The Bolivian
Altiplano conductivity anomaly. J Geophys Res 107(B5):2096,
doi:10.1029/2001JB000391

Brasse H, Kapinos G, Li Y, Mütschard L, Soyer W, Eydam D (2009) Structural
electrical anisotropy in the crust at the South–Central Chilean continental
margin as inferred from geomagnetic transfer functions. Phys Earth Planet Int
173:7–16

Caricchi L, Gaillard F, Mecklenburgh J, Le Trong E (2011) Experimental
determination of electrical conductivity during deformation of melt-bearing
olivine aggregates: implications for electrical anisotropy in the oceanic low
velocity zone. Earth Planet Sci Lett, doi:10.1016/j.epsl.2010.11.041

Carlson RL, Miller DJ (2003) Mantle wedge water contents estimated from
seismic velocities in partially serpentinized peridotites. Geophys Res Lett
30(5):1250, doi:10.1029/2002GL016600

Chen T, Clayton RW (2009) Seismic attenuation structure in central Mexico: image
of a focused high-attenuation zone in the mantle wedge. J Geophys Res
114:B07304, doi:10.1029/2008JB005964

Constable S (2006) SEO3: a new model of olivine electrical conductivity. Geophys
J Int 166:435–437

Dinc AN, Rabbel W, Flueh ER, Taylor W (2011) Mantle wedge hydration in
Nicaragua from local earthquake tomography. Geophys J Int 186:99–112

Eberhart-Phillips D, Reyners M, Chadwick M, Stuart G (2008) Three-dimensional
attenuation structure of the Hikurangi subduction zone in the central North
Island, New Zealand. Geophys J Int 174:418–434

Evans RL, Wannamaker PE, McGary RS, Elsenbeck J (2013) Electrical structure of
the central Cascadia subduction zone: the EMSLAB Lincoln line revisited.
Earth Planet Sci Lett, http://dx.doi.org/10.1016/j.epsl.2013.04.021

Faul UH, Fitz Gerald JD, Jackson I (2004) Shear wave attenuation and dispersion
in melt-bearing olivine polycrystals: 2. Microstructural interpretation and
seismological implications. J Geophys Res 109:B06202

Furukawa Y (1993) Magmatic processes under arcs and formation of the volcanic
front. J Geophys Res 98:8309–8319

Galanopoulos D, Sakkas V, Kosmatos D, Lagios E (2005) Geoelectric investigation
of the Hellenic subduction zone using long period magnetotelluric data.
Tectonophys 409:73–84

http://dx.doi.org10.1016/j.epsl.2013.04.021/


Pommier Earth, Planets and Space 2014, 66:38 Page 10 of 11
http://www.earth-planets-space.com/content/66/1/38
Gerya TV, Yuen DA (2003) Rayleigh-Taylor instabilities from hydration and melting
propel ‘cold plumes’ at subduction zones. Earth Planet Sci Lett 212:47–62

Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone
magmatism. Annu Rev Earth Planet Sci 40:413–439

Guo X, Yoshino T, Katayama I (2011) Electrical conductivity anisotropy of
deformed talc rocks and serpentinites at 3 GPa. Phys Earth Planet Int
188:69–81

Hacker BR (2008) H2O subduction beneath arcs. Geochem Geophys Geosyst 9,
doi:10.1029/2007GC001707

Hacker BR, Abers GA (2004) Subduction factory 3. An Excel worksheet and macro
for calculating the densities, seismic wave speeds, and H2O contents of
minerals and rocks at pressure and temperature. Geochem Geophys Geosyst
5:Q01005, doi:10.1029/2003GC000614

Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective
magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

Hirose F, Nakajima J, Hasegawa A (2008) Three-dimensional seismic velocity
structure and configuration of the Philippine Sea slab in south western Japan
estimated by double-difference tomography. J Geophys Res 113:B09315,
doi:10.1029/2007JB005274

Ichiki M, Sumitomo N, Kagiyama T (2000) Resistivity structure of high-angle
subduction zone in the southern Kyushu district, southwestern Japan. Earth
Planets Space 52:539–548

Ichiki M, Baba K, Fuji-ta K (2009) An overview of electrical conductivity structures
of the crust and upper mantle beneath the northwestern Pacific, the
Japanese islands, and continental East Asia. Gondwana Res 16:545–562

Jackson I, Faul UH, Fitz Gerald FD, Tan BH (2004) Shear wave attenuation and
dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication and
mechanical testing. J Geophys Res 109:B06201

Jarrard RD (1986) Relations among subduction parameters. Rev Geophys
24(2):217–284

Joedicke H, Jording A, Ferrari L, Arzate J, Mezger K, Rüpke L (2006) Fluid release from
the subducted Cocos plate and partial melting of the crust deduced from
magnetotelluric studies in southern Mexico: implications for the generation of
volcanism and subduction dynamics. J Geophys Res 111:B08102

Johnston DH, Toksoz MN, Timur A (1979) Attenuation of seismic-waves in dry
and saturated rocks. 2. Mechanisms. Geophys J R Astron Soc 44(4):691–711

Karato S-I, Spetzler HA (1990) Defect microdynamics in minerals and solid state
mechanisms of seismic wave attenuation and velocity dispersion in the
mantle. Rev Geophys 28:399–421

Kawakatsu H, Kumar P, Takei Y, Shinohara M, Kanazawa T, Araki E, Suyehiro K
(2009) Seismic evidence for sharp lithosphere–asthenosphere boundaries of
oceanic plates. Science 324:499–502

Kawano S, Katayama I, Okazaki K (2011) Permeability anisotropy of serpentinite
and fluid pathways in a subduction zone. Geology 39(10):939–942

Kazatchenko E, Markov M, Mousatov A (2004) Joint modeling of acoustic
velocities and electrical conductivity from unified microstructure of rocks.
J Geophys Res 109:B01202, doi:10.1029/2003JB002443

Kirby SH, Durham WB, Stern LA (1991) Mantle phase changes and deep
earthquake faulting in subducted lithosphere. Science 252:216–225,
doi:10.1126/science.252.5003.216

Ko Y-T, Kuo B-Y, Wang K-L, Lin S-C, Hung S-H (2012) The southwestern edge of
the Ryukyu subduction zone: a high Q mantle wedge. Earth Planet Sci Lett
335–336:145–153

Kristinsdóttir LH, Flóvenz ÓG, Árnason K, Bruhn D, Milsch H, Spangenberg E,
Kulenkampf J (2010) Electrical conductivity and P-wave velocity in rock samples
from high-temperature Icelandic geothermal fields. Geotherm 39:94–105

Mainprice D (1997) Modelling the anisotropic seismic properties of partially
molten rocks found at mid-ocean ridges. Tectonophys 279:161–179

Matsuno T, Evans RL, Seama N, Chave AD (2012) Electromagnetic constraints on
a melt region beneath the central Mariana back-arc spreading ridge.
Geochem Geophys Geosyst 13:Q10017, doi:10.1029/2012GC004326

Myers SC, Beck S, Zandt G, Wallace T (1998) Lithospheric-scale structure across
the Bolivian Andes from tomographic images of velocity and attenuation for
P and S waves. J Geophys Res 103:21233–21252

Naif S, Key K, Constable S, Evans RL (2013) Melt rich channel observed at the
lithosphere–asthenosphere boundary. Nature 495:356–359, http://dx.doi.org/
10.1038/nature11939

Nesbitt BE (1993) Electrical resistivities of crustal fluids. J Geophys Res 98:4301–4310
Ni H, Keppler H, Behrens H (2011) Electrical conductivity of hydrous basaltic

melts: implications for partial melting in the upper mantle. Contrib Mineral
Petrol 162:637–650
Peacock S, Wang K (1999) Seismic consequences of warm versus cool
subduction metamorphism: examples from southwest and northeast Japan.
Science 286(5441):937–939

Poli S, Schmidt M (2002) Petrology of subducted slabs. Annu Rev Earth Planet Sci
30:207–235

Pommier A (2013) Interpretation of magnetotelluric results using laboratory
measurements. Surv Geophys, doi:10.1007/s10712-013-9226-2

Pommier A, Garnero EJ (2014) Petrology-based modeling of mantle melt
electrical conductivity and joint-interpretation of electromagnetic and
seismic results. J Geophys Res, doi:10.1002/2013JB010449

Pozgay SH, Wiens DA, Conder JA, Shiobara H, Sugioka H (2009) Seismic
attenuation tomography of the Mariana subduction system: implications for
thermal structure, volatile distribution, and slow spreading dynamics.
Geochem Geophys Geosyst 10(4):Q04X05, doi:10.1029/2008GC002313

Reynard B (2013) Serpentine in active subduction zones. Lithos 178:171–185
Rondenay S, Abers GA, van Keken PE (2008) Seismic imaging of subduction zone

metamorphism. Geology 36(4):275–278
Rondenay S, Montési LGJ, Abers GA (2010) New geophysical insight into the

origin of the Denali volcanic gap. Geophys J Int 182:613–630
Rychert C, Fischer KM, Abers GA, Plank T, Syracuse E, Protti JM, Gonzalez V,

Strauch W (2008) Strong Alon arc variation in attenuation in the mantle
wedge beneath costa Rica and Nicaragua. Geochem Geophys Geosyst 9:
Q10S10, doi:10.1029/2008GC002040

Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating
slabs and consequences for arc magma generation. Earth Planet Sci Lett
163:361–379

Schurr B, Asch G, Rietbrock A, Trumbull RB, Haberland C (2003) Complex patterns
of fluid and melt transport in the central Andean subduction zone revealed
by attenuation tomography. Earth Planet Sci Lett 215:105–119

Shimakawa Y, Honkura Y (1991) Electrical conductivity structure beneath the
Ryukyu trench-arc system and its relation to the subduction of the Philippine
sea plate. J Geomagnetism Geoelectricity 43:1–20

Soyer W, Unsworth M (2006) Deep electrical structure of the northern Cascadia
(British Columbia, Canada) subduction zone: implications for the distribution
of fluids. Geology 34(1):53–56, doi:10.1130/G21951.1

Stachnik JC, Abers GA, Chistensen DH (2004) Seismic attenuation and mantle
wedge temperatures in the Alaska subduction zone. J Geophys Res 109:B10304

Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana
trough magmas. Earth Planet Sci Lett 121:293–325

Syracuse EM, Abers GA, Fischer K, MacKenzie L, Rychert C, Protti M, Gonzalez V,
Strauch W (2008) Seismic tomography and earthquake locations in the
Nicaraguan and costa Rican upper mantle. Geochem Geophys Geosyst 9:
Q07S08, doi:10.1029/2008GC001963

Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction
zone thermal models. Phys Earth Planet Int 183:73–90

Takanami T, Sacks IS, Hasegawa A (2000) Attenuation structure beneath the
volcanic front in northeastern Japan from broad-band seismograms. Phys
Earth Planet Int 121:339–357

Takei Y (2002) Effect of pore geometry on Vp/Vs: from equilibrium geometry to
crack. J Geophys Res 107(B2):2043, doi:10.1029/2001JB000522

ten Grotenhuis SM, Drury MR, Spiers CJ, Peach CJ (2005) Melt distribution in
olivine rocks based on electrical conductivity measurements. J Geophys Res
110:B12201, doi:10.1029/2004JB003462

Toh H, Baba K, Ichiki M, Motobayashi T, Ogawa Y, Mishina M, Takahashi I (2006)
Two-dimensional electrical section beneath the eastern margin of Japan Sea.
Geophys Res Lett 33:L22309, doi:10.1029/2006GL027435

Tsuji Y, Nakajima J, Hasegawa A (2008) Tomographic evidence for hydrated
oceanic crust of the pacific slab beneath northeastern Japan: implications for
water transportation in subduction zones. Geophys Res Lett 35:L14308,
doi:10.1029/2008GL034461

Tsumura N, Matsumoto S, Horiuchi S, Hasegawa A (2000) Three-dimensional
attenuation structure beneath the northeastern Japan arc estimated from
spectra of small earthquakes. Tectonophys 319:241–260

Tyburczy JA, Waff HS (1983) Electrical conductivity of molten basalt and andesite
to 25 kilobars pressure: geophysical significance and implications for charge
transport and melt structure. J Geophys Res 88(B3):2413–2430

Unsworth M, Rondenay S (2013) Actively observing fluid movement in the mid to
deep crust and lithospheric mantle utilizing geophysical methods, solicited
chapter. In: Harlov D, Austrheim H (eds) Metasomatism and metamorphism: the
role of fluids in crustal and upper mantle processes. Lecture Notes in Earth
System Sciences, Springer, pp 535–598, ISSN: 2193-8571

http://dx.doi.org/ 10.1038/nature11939
http://dx.doi.org/ 10.1038/nature11939


Pommier Earth, Planets and Space 2014, 66:38 Page 11 of 11
http://www.earth-planets-space.com/content/66/1/38
van Keken PE, Hacker B, Syracuse EM, Abers GA (2011) Subduction factory: 4.
Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys
Res 116:B01401, http://dx.doi.org/10.1029/2010JB007922

Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and
fluxes based on melt inclusion and volcanic gas data. J Volc Geotherm Res
140:217–240

Wang D, Guo Y, Yu Y, Karato S-I (2012) Electrical conductivity of amphibole-
bearing rocks: influence of dehydration. Contrib Mineral Petrol 164:17–25

Wannamaker PE, Caldwell TG, Jiracek GR, Maris V, Hill GJ, Ogawa Y, Bibby HM,
Bennie SL, Heise W (2009) Fluid and deformation regime at an advancing
subduction system at Marlborough, New Zealand. Nature 460:733–737

Watt JP, Davies GF, O’Connell RJ (1976) The elastic properties of composite
materials, Rev. Geophys Space Phys 14(4):541–563

Wiens DA, Kelley K, Plank T (2006) Mantle temperature variations beneath back-
arc spreading centers inferred from seismology, petrology, and bathymetry.
Earth Planet Sci Lett 248:30–42

Wiens DA, Conder JA, Faul UH (2008) The seismic structure and dynamics of the
mantle wedge. Annu Rev Earth Planet Sci 36:421–455

Worzewski T, Jegen M, Kopp H, Brasse H, Castillo WT (2011) Magnetotelluric
image of the fluid cycle in the Costa Rican subduction zone. Nat Geosci
4:108–111

Xie H, Zhou W, Zhu M, Liu Y, Zhao Z, Guo J (2002) Elastic and electrical
properties of serpentinite dehydration at high temperature and high
pressure. J Phys Condens Matter 14:11359–11363

Yoshino T, Laumonier M, McIsaac E, Katsura T (2010) Electrical conductivity of
basaltic and carbonatite melt-bearing peridotites at high pressures: implications
for melt distribution and melt fraction in the upper mantle. Earth Planet Sci Lett
295:593–602

Yoshino T, McIsaac E, Laumonier M, Katsura T (2012) Electrical conductivity of
partial molten carbonate peridotite. Phys Earth Planet Int 194–195:1–9

Zhao D, Wang Z, Umino N, Hasagawa A (2007) Tomographic imaging outside a
seismic network: application to the northeast Japan arc. Bull Seismol Soc Am
97:1121–1132

Zhu M, Xie H, Guo J, Zhang Y, Xu Z (1999) Electrical conductivity measurement
of serpentine at high temperature and pressure. Chin Sci Bull 44:1903–1907

doi:10.1186/1880-5981-66-38
Cite this article as: Pommier: Geophysical assessment of migration and
storage conditions of fluids in subduction zones. Earth, Planets and Space
2014 66:38.
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1029/2010JB007922

	Abstract
	Findings
	Introduction
	Geophysical structure of subduction zones and fluid detection
	Electrical conductivity structure of subduction zones
	Input from seismic studies

	Relating electrical and seismic parameters to map fluid distribution
	Electrical conductivity-seismic velocity relationships in fluid-bearing materials
	Relating electrical conductivity and seismic velocities to subduction settings
	Geophysical parameters and global slab water flux

	Concluding remarks: potential for improving the understanding of subduction settings using a joint electrical-seismic approach

	Competing interests
	Acknowledgements
	References

