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Abstract

The 2008 Iwate-Miyagi Nairiku earthquake (M 7.2) was a shallow inland earthquake that occurred in the volcanic
front of the northeastern Japan arc. To understand why the earthquake occurred beneath an active volcanic area, in
which ductile crust generally impedes fault rupture, we conducted magnetotelluric surveys at 14 stations around
the epicentral area 2 months after the earthquake. Based on 56 sets of magnetotelluric impedances measured by
the present and previous surveys, we estimated the three-dimensional (3-D) electrical resistivity distribution. The
inverted 3-D resistivity model showed a shallow conductive zone beneath the Kitakami Lowland and a few
conductive patches beneath active volcanic areas. The shallow conductive zone is interpreted as Tertiary
sedimentary rocks. The deeper conductive patches probably relate to volcanic activities and possibly indicate
high-temperature anomalies. Aftershocks were distributed mainly in the resistive zone, interpreted as a brittle zone,
and not in these conductive areas, interpreted as ductile zones. The size of the brittle zone seems large enough for
a fault rupture area capable of generating an M 7-class earthquake, despite the areas distributed among the ductile
zones. This interpretation implies that 3-D elastic heterogeneity, due to regional geology and volcanic activities,
controls the size of the fault rupture zone. Additionally, the elastic heterogeneities could result in local stress
concentration around the earthquake area and cause faulting.
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Findings
Introduction
The 2008 Iwate-Miyagi Nairiku earthquake (M 7.2) was
an inland earthquake that occurred in the vicinity of the
volcanic front of the northeastern Japan arc on 14 July
2008. The focal mechanism of the earthquake was a re-
verse type, which is consistent with the crustal deform-
ation displaying east–west contraction around the study
area (Miura et al. 2002, 2004). Aftershocks of the earth-
quake were distributed within an area of 50 × 15 km and
showed a complex distribution (Figure 1) (Okada et al.
2012). A curious feature of the earthquake was that
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volcanic areas (Mt. Kurikoma, Mt. Yakeishi, and Onikobe
Caldera) surrounded the earthquake area. In general, duc-
tile areas caused by high temperature and partial melting
are distributed beneath volcanic regions. Because these
ductile areas impede the propagation of fault ruptures, it
would seem difficult for large earthquakes to occur in
volcanic regions. To address this question and better
understand the relationships between inland earthquakes
and volcanic activity, detailed structural investigations are
required.
The magnetotelluric (MT) method reveals the distribu-

tion of electrical resistivity and has been used to clarify
the geology, high-temperature anomalies, and fluid distri-
bution around earthquake zones (e.g., Mitsuhata et al.
2001; Ogawa et al. 2001; Sarma et al. 2004; Unsworth
and Bedrosian, 2004; Ichihara et al. 2008, 2009, 2011;
Wannamaker et al. 2009; Yoshimura et al. 2009). Mishina
(2009) conducted MT surveys along three survey lines
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Figure 1 Study locations. The red star and red triangles denote the epicenter of the 2008 Iwate-Miyagi Nairiku earthquake (M 7.2) and active
volcanoes, respectively. (a) The yellow circle denotes the remote reference site (Sawauchi station). The cross-hatched area indicates the Kitakami
Lowland. (b) Yellow diamonds and triangles denote MT stations in this and a previous study (Mishina 2009), respectively. Small red dots denote
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across the northern edge, central part, and southern edge
of the aftershock area (Figure 1) and estimated resistivity
distributions based on two-dimensional (2-D) inversions.
The models showed low-resistivity anomalies around the
earthquake area that imply crustal fluid flows. They also
showed significant differences among the resistivity profiles,
which indicate strong three-dimensionality. However, 2-D in-
version of a strong three-dimensional (3-D) resistivity struc-
ture often results in inaccurate models (e.g., Siripunvaraporn
et al. 2005b). Additionally, MT data were not measured
around the epicenter of the main shock. In this study, we
conducted wide-band MT measurements around the epi-
central area and updated the resistivity models based on a
3-D inversion. Then, we interpreted the geological and
thermal heterogeneity based on the estimated resistivity
model and discussed the relationship between the earth-
quake and these heterogeneities.

Magnetotelluric measurements and impedances
Wide-band MT surveys were conducted at 14 sites along
a profile passing through the epicenter of the earthquake
in August 2008 (Figure 1). We recorded two horizontal
components of electric field and three components of mag-
netic field using MTU2000 systems (Phoenix Geophysics,
Ltd., Toronto, Canada). The electric and magnetic fields
were measured using Pb-PbCl2 electrodes and induction
coils, respectively. The recorded time series were converted
into frequency-domain MT impedance tensors between
320 and 0.00034 Hz by using the SSMT200 system
(Phoenix Geophysics, Ltd.). The remote reference tech-
nique (Gamble et al. 1979) was applied in the estimation of
MT impedances using horizontal magnetic field data from
Sawauchi station (Figure 1), which yielded high-quality
MT responses.
We then evaluated the dimensionality of the resistivity

distribution based on MT impedances and geomagnetic
transfer functions at 56 sites: 14 sites evaluated by this
study, 41 sites by Mishina (2009), and 1 site by the Geo-
graphical Survey Institute. Figure 2 shows the phase
tensor ellipses (Caldwell et al. 2004) and Parkinson's in-
duction vectors (Parkinson 1962). The azimuths of Φmax

(α − β) in the phase-tensor ellipses were directed do-
minantly toward 115° to 295° in the long period (227 s in
Figure 2). This azimuth is perpendicular to the strike azi-
muth of the NE Japan arc. On the other hand, no obvious
trend was found from the phase tensor in the shorter
period or the induction vectors in all periods (Figure 2).
Additionally, large |β| values (>10°) were recognized in
more than half of the phase tensors in the long period.
These indicate that the resistivity distribution was highly
three-dimensional.

Three-dimensional inversion
The 3-D resistivity distribution was estimated based on
the 56 MT impedances via a 3-D inversion code. We
adopted the WSINV3D code (Siripunvaraporn et al.
2005a), which is based on a data-space variant of the
Occam approach, for the inversion. Twelve periods of
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MT impedances between 0.44 and 990 s were used as
input for the inversion. Error floors of 10% and 20%
were applied for off-diagonal and diagonal components,
respectively. The 3-D resistivity model covered a 4,000
(x-axis) × 4,000 (y-axis) × 1,240 km (vertical) region
discretized into 54 × 65 × 31 layers (without air layers).
The length and width of the blocks within the survey
area were 2 km, but these widened outside the study
area. The initial inversion model consisted of a 300Ω m
homogeneous half-space model, except for the seawater
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area. The model blocks in the seawater area were fixed
to 0.3Ω m. The same model used for the initial model
was adapted as a prior model. We iterated the inversion
procedure 10 times and obtained a minimum RMS mis-
fit model in the sixth iteration (RMS misfit 2.54). Then,
we adopted the sixth iteration model as the initial and
prior model and reran the inversion procedures 10
times. Finally, a minimum RMS misfit model was ob-
tained in the second iteration of the second procedure
(RMS misfit 1.53). The final inverted resistivity model
mostly explained all components of the measured im-
pedances (Figure 3). The model showed distinct con-
ductors around the aftershock area (Figures 4 and 5): a
shallow conductor (1 to 10Ω m) beneath the Kitakami
Lowland (C-1); conductors beneath the volcanic areas of
Mt. Kurikoma (C-2), Onikobe Caldera (C-3a), and
Mukaimachi Caldera (C-3b); and conductors distributed
beneath the C-1 conductor (C-4 and C-5). On the other
hand, high resistivity (100 to 10,000Ω m) was estimated
in the mainshock and aftershock areas.
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tests (see text for details).
High Φmax and Φmin (>45°) in short-period data (<1 s)
in the Kitakami Lowland required the C-1 conductor
(Figure 2). Induction vectors around the middle period
(1 to 30 s) directed to the Kitakami Lowland supported
the C-1 conductor. The C-2, C-3a, C-4, and C-5 conduc-
tors were verified based on the following sensitivity tests.
If the area enclosed by the black dashed line around C-2
in Figures 4 and 5 was given a uniform resistivity of 300
Ω m, the RMS misfit for all the MT sites was increased
to 1.895 from 1.530 in the inverted model. In this sensi-
tivity test, the calculated phases in the YX component
were decreased more than 10° at site K180 in the periods
between 0.885 and 7.09 s compared with the measured
impedances and the response of the inverted model
(Figure 3). Similarly, the sounding curves in the MT
sites near the C-3a, C-4, and C-5 conductors and the
total RMS misfits were significantly changed when
these conductors were replaced with 300Ω m (Table 1
and Figure 3). The resistive zone around the earthquake
area (R-1) was also verified based on the following
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Table 1 The RMS misfits of the sensitivity test models (see text for details)

Conductor Inverted model 3Ω m 10Ω m 30Ω m 100Ω m 300Ω m

C-2 1.530 1.532 1.541 1.580 1.715 1.895

C-3a 1.530 1.537 1.568 1.667 1.895 2.118

C-4 1.530 1.537 1.570 1.663 1.878 2.124

C-5 1.530 1.530 1.533 1.558 1.620 1.684

The resistivities in the first row indicate filled resistivities in the tests. RMS misfits indicating significant differences compared with the inverted model are
italicized. The significances are based on the F test at the 95% confidence level. All models have 5,375 degrees of freedom.
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sensitivity test. If the area enclosed by white dashed line in
Figures 4 and 5 was given with 30Ω m, the RMS misfit
was increased to 2.906 and the calculated MT impedances
were significantly changed in the short-middle period
band (<100 s) (Figure 3).
We next constrained the reliable resistivity ranges of

the C-2, C-3a, C-4, and C-5 conductors based on the
following additional sensitivity tests (Toh et al. 2006). In
these tests, we replaced the conductors in the inverted
model with 100, 30, and 10Ω m. The replaced areas are
enclosed by dashed lines in Figures 4 and 5, except for
the blocks that showed lower resistivity than the re-
placing resistivities. The RMS misfits of these models
are shown in Table 1. To examine whether the filled test
models were significantly different from the original
inverted models, we adopted the F test. Based on the F
test with a 95% confidence level, C-2, C-3a, C-4, and
C-5 with resistivities higher than 30, 30, 30, and 100
Ω m, respectively, were significantly worse compared
with the original inverted model, which indicated that
the resistivity of the conductors should be lower than
these resistivities.

Discussion
Although C-1, C-2, C-3b, C-4, and C-5 were also found
in the previous study based on the 2-D inversion
method (Mishina 2009), their shapes and distribution
depths are different in the present model. The C-2 and
C-3b conductors are in shallower areas in the 3-D model
than in the 2-D models. This inconsistency is probably
due to inaccuracy in the 2-D inversion, because large |β|
values (>10°) above C-2 and C-3b (Figure 2) indicate a
strong 3-D effect in the MT impedances. Additionally, a
conductor beneath Mt. Yakeishi in the 2-D model does
not occur in the 3-D model. The likely reason for this
difference in the models is that the 2-D inversion may
have detected C-2, which is distributed alongside but
not below the 2-D survey line (Figure 4), because 2-D
inversion often shows conductors distributed off the
profile (e.g., Siripunvaraporn et al. 2005b).
The C-1 conductor reflects Tertiary sedimentary rocks

because these rocks show low resistivity (1 to 10Ω m)
in the NE Japan area (Takakura 1995; Ichihara et al.
2011) and are distributed from the surface to a depth of
3,000 m (maximum) beneath the Kitakami Lowland, ac-
cording to geological and seismic surveys (e.g., Kato
et al. 2006). However, the C-1 conductor is not shown in
blank areas of the MT stations (between lines Y and I
and east of line N), although seismic surveys found thick
sediment in these areas (Kato et al. 2006). In order to as-
sess the impact of the surface conductive sediment in
the blank areas to the present MT data, we filled these
areas (purple dashed line in Figure 4, depth 0.5 to
3.0 km) in the inverted model with conductor (5Ω m)
and calculated MT impedances (‘test C-1’ in Figure 3).
The calculated impedances are slightly changed from
these of the inverted model except for the long-period
impedances in the eastern part of C-1 area where deep
conductors such as C-4 and C-5 also affect the long-
period MT responses as we discuss later. This indicates
that the present MT data are hard to detect C-1 in the
blank areas, and thus, conductors are possibly distrib-
uted. On the other hand, the resistive zone including
R-1 beneath C-1 and the aftershock area is reliable
regardless of the shape of C-1 conductor because it
slightly affects the MT impedances above the R-1
while the MT responses are significantly changed
when R-1 is covered with 30Ω m (sites Y170 and
I820 in Figure 3). The R-1 are interpreted as granites be-
cause these rocks are distributed beneath the Tertiary
sedimentary rocks and are a basement rock of the NE
Japan arc (e.g., Sato 1994).
The C-2 conductor is distributed beneath Mt. Kuri-

koma, which has displayed Quaternary volcanic activity
(Fujinawa et al. 2001). Okada et al. (2010) indicated a
low-velocity (Vs) anomaly in this area that was inter-
preted as partial melting. They inferred that the melt
originated from upwelling flow in the mantle wedge (e.g.,
Hasegawa et al. 2005). Thus, C-2 can be interpreted as
high-temperature or partial melt zones related to vol-
canic activities. Assuming that C-2 consists of a silicic
composition and contains 2.5 to 3.0 wt% or 0 wt% H2O,
the temperature of C-2 (<30Ω m) would be 500°C or
600°C, respectively, based on Gaillard (2004) (Figure 6).
Similarly, the temperature of C-3a (<30Ω m), which is
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distributed beneath the Onikobe Caldera, should be
more than 500°C. In contrast, the temperature in the non-
volcanic area of the volcanic front area at a depth of 8 km
should be 210°C, assuming a heat flow of 80 mW/m2

(based on Tanaka and Ishikawa (2002) and Tanaka et al.
(2004)). Therefore, the temperature in the areas of the C-2
and C-3a conductors should be 200°C higher than that of
the surrounding area, assuming that high temperature
causes the conductive anomalies. The actual temperature
in the areas of the C-2 and C-3a conductors, however,
should be higher than these estimates for the following
reasons: (1) andesite, which requires a higher temperature
to explain the same resistivity, as compared to silicic
material (e.g., Gaillard and Marziano 2005), is distributed
in the Kurikoma volcano (Fujinawa et al. 2001) and (2) the
actual resistivity in the conductive areas should, in part, be
lower than 30Ω m because the inverted model shows a
value of 1Ω m in the centers of the C-2 and C-3a conduc-
tors and the inversion adopted a smoothness constraint.
Partial melt or a large amount of aqueous fluid may be re-
quired to explain such a low resistivity. For better con-
straint, additional surveys are required, especially for the
C-3a conductor, which does not include an MT station.
The C-4 conductor is possibly required to explain out-

of-quadrant phases in the YX component at sites Y200,
Y210, and Y220 because the anomalous large phases are
not explained when the C-4 conductor is filled with 300
Ω m (Figure 3). Similarly, out-of-quadrant phases observed
at site I823 are not explained when C-5 is filled with 300
Ω m (Figure 3). On the other hand, strong channeling of
telluric current due to the shallow conductor beneath the
Kitakami Lowland (C-1) is also a candidate for the anomal-
ous large phases because a shallow conductor complex
sometimes induces out-of-quadrant phases (e.g., Ichihara
and Mogi 2009; Ichihara et al. 2013). Indeed, the above hy-
pothesis model that the conductor is inserted in the blank
areas of the MT sites (Figure 4) increases YX phase in the
anomalous phase areas (Figure 3). However, the true resist-
ivity distribution around the Kitakami Lowland is difficult
to obtain based on the present data because the shallow re-
sistivity distribution is not constrained in the blank area of
MT stations, as we discussed previously.
The aftershocks are dominantly distributed in the

resistive zone but are slightly within the C-1 and C-2
conductors. Because these are interpreted as granitic
and Tertiary sedimentary rocks and high-temperature
areas, respectively, the aftershocks occurred in brittle
areas but rarely in ductile areas. This indicates that the
seismicity depended highly on three-dimensional elastic
heterogeneity. As mentioned in the ‘Introduction,’ the
magnitude and rupture area of the 2008 Iwate-Miyagi
Nairiku earthquake (M 7.2) are anomalously large for an
earthquake occurring in a volcanic area where ductile
zones are generally distributed. However, this study has
indicated that the ductile zones related to volcanic activ-
ities are patchily distributed and that the size of the brittle
area is large enough for M 7-class earthquakes to occur.
These elastic heterogeneities may also have been respon-
sible for the earthquake occurrence in a different way be-
cause elastic heterogeneities may result in local stress
concentration zones and can cause faulting (e.g., Ichihara
et al. 2008, 2013; Iio et al. 2002). These interpretations
imply that the MT method can detect elastic heterogene-
ities that may control the occurrence and magnitude of the
large inland earthquakes. Therefore, three-dimensional re-
sistivity modeling based on MT surveying is important for
understanding earthquake occurrences.

Conclusion
We conducted magnetotelluric surveys at 14 stations
around the focal area of the 2008 Iwate-Miyagi Nairiku
earthquake (M 7.2). Based on the MT impedances along
four profiles by the present and previous studies, a prelim-
inary 3-D resistivity model was obtained using WSINV3D
code. The resistivity model showed a shallow conductive
zone (C-1) and a few distinct conductive areas around the
focal area (C-2, C-3a, C-4, and C-5). C-1 was interpreted
as Tertiary sediment based on its geological distribution.
C-2 and C-3a possibly indicate high-temperature zones re-
lated to volcanic activities beneath Mt. Kurikoma and Oni-
kobe Caldera. Aftershocks were distributed mainly in the
resistive zone and not in the aforementioned conductive
zones, which implies that elastic heterogeneity due to vol-
canic activity and geology may control the magnitude and
occurrence frequency of such earthquakes. However, this
study could not constrain the precise resistivity distribu-
tion in the blank areas of MT stations. Thus, dense surveys
between the existing profiles of MT stations are required
for more detailed interpretations.
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