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Ground motions around a semi-circular valley
partially filled with an inclined alluvial layer under
SH-polarized excitation
Kao-Hao Chang1*, Deng-How Tsaur2 and Jeen-Hwa Wang1
Abstract

A simplified mathematical model, composed of a semi-circular valley partially filled with an inclined alluvial layer
under plane SH-wave incidence, is presented. To evaluate the site response theoretically, a rigorous series solution
is derived via the region-matching technique. For angular wavefunctions constrained by an inclined free surface,
the original form of Graf's addition formula is recast to arbitrarily shift the local coordinate system. The valley
geometry, filling material, angle of incidence, and wave frequency are taken as significant parameters in exploring
the site effect on ground motions. Also included are the frequency- and time-domain computations. Two canonical
cases, the semi-circular vacant canyon and the fully filled semi-circular alluvial valley, with exact analytical solutions,
and the partly horizontally filled case previously studied, are taken to be particular cases of the proposed general
model. Steady-state results show that the peak amplitudes of motion may increase at low frequencies when
the filling layer inclines to the illuminated region. At low-grazing incidence, the phenomenon of wave focusing
becomes evident on the shadow side of the filling layer. Transient-state simulations elucidate how a sequence of
surface waves travel on the topmost alluvium along opposite directions and interfere with multiple reflected waves
within the filling layer.
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Background
From numerous simulations of destructive earthquakes,
the seismological community has become increasingly
aware of the significance of site response to seismic
waves (e.g., Boore 2004). It is generally accepted that val-
leys (or basins) with alluvial sediments (e.g., gravel, peb-
bles, clays, and volcanic ashes) can amplify and prolong
ground motions dramatically (e.g., Koketsu and Kikuchi
2000; Huang et al. 2005, 2007, 2009). Near-surface geo-
logical and geometrical conditions at a specific site could
be partly responsible for a strong modification of ground
shaking on a regional scale (e.g., Ewald et al. 2006). Un-
fortunately, many metropolitan (or industrial) areas are
concentrated over such unfavorable sites (e.g., the Cascadia
region of northwestern USA) so that they are much more
prone to catastrophic seismic consequences such as
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loss of life, injury, economic damage, and environ-
mental impact. Recent striking events are the 1999 Mw

7.6 Chelungpu, Taiwan earthquake (Wang 2008), the
2010 Mw 8.8 Maule, Chile earthquake (Boroschek et al.
2012), and the 2011 Mw 9.0 Tohoku, Japan earthquake
(Ghofrani et al. 2013). Consequently, we have learned
that knowledge of valley- and basin-related site effects not
only improves the prediction of ground motions but also
contributes to feasible seismic hazard assessments for
seismically active areas (e.g., Frischknecht et al. 2005;
Wang 2006).
Since the early 1970s, a number of canonical models

have been constructed to approximate the cross-sectional
profiles of natural sediment-filled valleys. Among these
idealized simplified models, the most popularly adopted
ones are those of the fully filled type, especially those in
trapezoid shapes (e.g., Bard and Bouchon 1980; Kawase
and Aki 1989; Takenaka et al. 1996; Makra et al. 2005;
Kham et al. 2006; Gelagoti et al. 2010). Various numerical
approximation methods were devised to evaluate the
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dynamic site response (e.g., Aki and Larner 1970; Boore
et al. 1971; Dravinski et al. 1991; Clements and Larsson
1994; Fu and Bouchon 2004; Dravinski 2007; Ávila-Carrera
and Sánchez-Sesma 2013). Nowadays, tremendous progress
in parallel processing and faster processors has boosted the
growth of mesh discretization techniques. For a large-scale
domain with actual subsurface velocity structures, several
sophisticated numerical schemes are, no doubt, the most
powerful tools to carry out the ground-motion modelling
pertinent to specific earthquakes and event scenarios. Rep-
resentatives of modern schemes are the finite-difference,
finite-element, spectral-element, and boundary-element
methods (e.g., Komatitsch and Vilotte 1998; Bielak et al.
2005; Ma et al. 2007; Moczo et al. 2007; Lee et al. 2009;
Kristek et al. 2010; Pelties et al. 2010; Delépine and Semblat
2012; Virieux et al. 2012; Kham et al. 2013). Although these
effective approaches are flexible, the reliability and accuracy
of the numerical results from these codes have to be strictly
verified via the existing benchmark solutions.
In contrast to the fully filled alluvial valleys, the par-

tially filled valleys seem to be of little interest. However,
such types of valleys are common geological/geomor-
phological features. Examples are the Chusal valley in
the Garm region of the former USSR (see Figure five in
Tucker and King 1984), the Nera River valley in the Perugia
region of Italy (see Figure three in Lenti et al. 2009), and
the Aterno River valley in the Abruzzo region of central
Italy (see Figure nine in De Luca et al. 2005). Furthermore,
the top surfaces of alluvial deposits are sometimes
mildly inclined (see Figure two in Bordoni et al. 2011).
These cross-sectional geometries capture the authors'
attention and thereby motivate this study.
In a paper by Tsaur and Chang (2008a), the partially

filled semi-circular alluvial valley served as a simplified
model for the exploration of site response and wave-
scattering effects. Subsequently, the conceptual model was
extended by Tsaur and Hsu (2013) to study alluvial valleys
with semi-elliptic cross sections. Thus, this article con-
tinues along this path, looking closely at the spatial and
temporal fluctuations in ground motions near a semi-
circular valley partially filled with an inclined alluvial layer.
To the authors' knowledge, relevant topics in the literature
are very rare to date, especially those approaching the sub-
ject from a theoretical perspective. On the other hand, the
present model with an inclined filling layer can degenerate
into the simpler model with a horizontal filling layer.
However, the latter is infeasible for the former. For these
reasons, the model proposed herein is important per se.
Recently, Wang (2010) treated an analogous problem on
the basis of Tsaur and Chang (2008a). However, Wang
(2010) only dealt with the steady states limited to a fairly
narrow band of low frequencies.
For the problem under consideration, the method of so-

lution hinges on the application of the region-matching
technique (RMT), which is an effective way of overcoming
the intrinsic difficulty in exploiting the method of separ-
ation of variables. From a mathematical point of view,
such a promising technique is beneficial in pursuing the-
oretical solutions to problems involving geometric cross
sections incompletely coinciding with any one of the sep-
arable coordinate systems (e.g., Tsaur and Chang 2008b,
2009; Chang 2009; Tsaur et al. 2010; Tsaur 2011; Chang
et al. 2013). In this study, a rigorous series solution is
derived via the RMT for the plane SH-wave incidence.
Suitable wavefunctions are utilized to characterize the
antiplane displacements both inside and outside the val-
ley. The enforcement of matching conditions on the
soil-bedrock interface leads to the determination of un-
known expansion coefficients. A parametric analysis
with systematic variations in the associated parameters
(angle of incidence, wave frequency, valley geometry,
and filling material) is carried out to assess the influence
of these parameters on the peak amplitudes of motions.
In order to shift the coordinate origins of scalar cylin-

drical wavefunctions, the use of Graf's addition formula
(e.g., Watson 1966) is helpful to solve the multiple-scatter-
ing problems in several branches of wave physics such
as elastic, electromagnetic, sound, and water waves (e.g.,
Varadan et al. 1978; Bostock and Kennett 1992; Martin
2006). When the angular components of the wavefunc-
tions are not expected to meet any constraints, Graf's
addition formula can be utilized straightforwardly. For
full-plane problems in the context of elastodynamics, this
addition formula is usually applied in a half truncated
form if the expressions with sine/cosine functions are
preferred over those with exponential functions (e.g.,
Equations 33 to 36 in Avilés and Sánchez‐Sesma 1983).
For half-plane cavity/inclusion problems, this formula is
commonly combined with the method of images (e.g.,
Smerzini et al. 2009; Tsaur and Chang 2012). When the
angular wavefunctions are constrained by the zero-
stress condition on a horizontal free surface, the original
form of Graf's addition formula should be appropriately
rewritten for specific arrangements of coordinate systems
(e.g., Equations 15 and 16 in Tsaur and Chang 2008a).
Herein, for angular wavefunctions constrained by an in-
clined free surface, a novel form of Graf's addition formula
is derived. Such a recast version is devoted to ‘arbitrary’
offsets so that it is more general than those given in the
literature for offsets along the vertical direction (e.g., Tsaur
and Chang 2008a; Chang 2009).
The main simplifications in the adopted model lie in

the two-dimensional geometric profile, excitation source,
and physical properties of the media. For the valley par-
tially filled with inclined strata, these idealizations are
perhaps the most significant ones in proposing a simple
model. This indeed allows theoretical manipulation to
yield the displacement/stress fields throughout the entire



Figure 1 Geometric layout of the problem. (The parameters are
explained in the text).
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domain. So far, the element-based methods have been
well established and developed with plenty of in-house/
commercial codes. However, these methods cannot by-
pass the need for frequency-dependent discretizations.
When the wavelength of the incident wave is smaller than
the characteristic length scale of the region of interest, a
rapidly growing number of degrees of freedom are indis-
pensable to maintain accuracy. In standard discretized al-
gorithms, adaptive mesh refinement and multi-grid
preconditioning operations may have to be incorporated
to capture the phenomena of interest while keeping the
cost of a simulation tractable on the current hardware.
Nevertheless, above a certain threshold frequency, the size
of the discretized model may be too large (or impractical)
so that the associated computational cost may become
prohibitive. For the high-frequency case, the use of trad-
itional domain/boundary discretization schemes may gen-
erate oscillatory solutions (see Engquist et al. 2009). By
contrast, the semi-analytical nature of the present series
solution makes the high-frequency computation very easy
and efficient. With increasing frequency, only one simple
manipulation is needed in the present series-based code,
namely, raising the number of wavefunction expansions.
The key reason for this is that by making good use of the
RMT, well-defined expressions can be obtained for the
wavefield components. The field solution of each individ-
ual subregion is well behaved because the governing equa-
tion and all the boundary conditions (except for those at
the soil-bedrock interface and circular-arc free surface)
are fulfilled innately.
The RMT proposed herein can be conveniently ap-

plied to deal with more SH-wave problems involving
other types of partially filled models consisting purely of
circular-arc lines or those made up of both curves and
straight lines. As to P- and SV-wave incidence, the RMT
may be applicable if the explicit expressions of wave-
functions in specific coordinate systems are available.
However, such wavefunctions in the open region have to
inherently satisfy the zero-stress condition on the hori-
zontal ground surface, while those in the enclosed region
have to intrinsically fulfill the traction-free condition at
the surface of the alluvium. This is a fundamental re-
quirement for extension of the applicability of the RMT
to in-plane wave propagation.
The model profile assumed in this paper might be the

most obvious one in a first investigation for an inclined
alluvial layer partially filling the valley. Because our
interest focuses on the site-amplification effect, the po-
tential applications of the current model may cover a
wide range of geophysical, environmental, and engineer-
ing disciplines. It is known that during strong ground
motions, site amplification is one of the root causes re-
sponsible for the instability of steep rocky slopes, the
loss of cohesion, the imbalance of stress-strength state,
the reduction of frictional resistance of the substrate,
and the mobilization of superficial loose materials (e.g.,
Keefer et al. 2006; Chigira et al. 2010; Hovius and Meunier
2012). Thus, the current analysis lays a solid foundation
for related studies. Typical examples are those concerning
the earthquake-induced slope failures, landslides, and deb-
ris flows. However, their dynamic processes involve a
succession of granular materials, ranging in size from
silts and clays to gravel, pebbles, and even boulders. Op-
portunities for these situations may be provided by
using the individual-based approaches such as the off-
lattice method, the discrete (or distinct) element method,
the material point method, and the particle method (see
Jing and Stephansson 2007; Andersen and Andersen 2010;
Marketos and O’Sullivan 2013; Takekawa et al. 2013).
Methods
Theoretical formulations
Consider a semi-infinite medium bounded by the hori-
zontal ground surface, inlaid with an infinitely long,
semi-circular valley (of radius a) partially filled with an
inclined alluvial layer (see Figure 1). An infinite train of
plane SH waves (with an angular frequency ω) is inci-
dent upon this valley at an angle α to the y1-axis. The
origins of global coordinate systems (x1, y1) and (r1, θ1)
are set at the center of the valley, while those of local co-
ordinate systems (x2, y2) and (r2, θ2) are set at the center
of the alluvium surface. Relative positions between the
global and local coordinate systems are expressed as
(re, θe). The angular positions of the soil-bedrock inter-
face range from β1 to β2. All the media involved are as-
sumed to be isotropic, homogeneous, and linearly
elastic. The shear modulus, mass density, and shear-

wave velocity are given by μj, ρj, and cj ¼
ffiffiffiffiffiffiffiffiffiffi
μj=ρj

q
, re-

spectively, where the subscripts, j = 1 and 2, stand for
those in the half plane and alluvium, respectively. The
contact interface between the two materials is supposed
to be perfectly bonded. Note that for the clarity of each
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symbol shown in Figure 1, the inclination of the filling
layer is somewhat exaggerated.

Derivation for the general case
As seen in Figure 1, the half plane is divided into two re-
gions, an open region 1 and an enclosed region 2. In
these two regions, the steady-state out-of-plane motions
are required to satisfy the governing Helmholtz equa-
tions, namely,

∇2uj þ k2j uj ¼ 0; j ¼ 1; 2; ð1Þ

where ∇2 is the 2-D Laplacian and kj = ω/cj is the shear
wavenumber. Throughout this work, the time-harmonic
factor exp (iωt) is assumed and suppressed.
The zero-stress boundary conditions on the horizontal

ground surface, the curved surface of the valley, and the
surface of the alluvium are as follows:

τ 1ð Þ
θ1z

¼ μ1
r1

∂u1 r1; θ1ð Þ
∂θ1

¼ 0; θ1 ¼ �π

2
; r1 > a; ð2Þ

τ 1ð Þ
r1z ¼ μ1

∂u1 r1; θ1ð Þ
∂r1

¼ 0; −
π

2
≤θ1≤β1; β2≤θ1≤

π

2
; r1 ¼ a; ð3Þ

τ 2ð Þ
θ2z

¼ μ2
r2

∂u2 r2; θ2ð Þ
∂θ2

¼ 0; θ2 ¼ −’; π−’ : ð4Þ

For the half-plane medium without any surface/sub-
surface anomalies, the free-field displacement uF can be
expressed as a sum of the incident waves and their
reflected waves from the horizontal ground surface, that
is,

uF r1; θ1ð Þ ¼ exp ik1r1 cos θ1 þ αð Þ½ � þ exp −ik1r1 cos θ1−αð Þ½ � :
ð5Þ

Employing the Jacobi-Anger expansion (Abramowitz
and Stegun 1972), Equation 5 can be rewritten as

uF r1; θ1ð Þ ¼ 2
X∞
n¼0

εn −1ð ÞnJ2n k1r1ð Þ cos 2nαð Þ cos 2nθ1ð Þ

−4i
X∞
n¼0

−1ð ÞnJ2nþ1 k1r1ð Þ sin 2nþ 1ð Þα½ � sin 2nþ 1ð Þθ1½ � ;

ð6Þ

where εn is the Neumann factor (equal to 1 if n = 0 and
2 if n ≥ 1) and Jn( ⋅ ) denotes the nth order Bessel func-
tion of the first kind. Note that Equation 6 inherently
satisfies the traction-free condition on the horizontal
ground surface (Equation 2).
The total scattered field uS in the open region 1 may

be separated into two parts, uS0 and uS2. Thus,
uS r1; θ1ð Þ ¼ uS0 r1; θ1ð Þ þ uS2 r1; θ1ð Þ : ð7Þ
The first component uS0 represents the scattered fields

excluding the effect of region 2. It corresponds to the
scattered fields regarding the case of completely empty
semi-circular canyons, that is,

uS0 r1; θ1ð Þ ¼
X∞
n¼0

~AnH
2ð Þ
2n k1r1ð Þ cos 2nθ1ð Þ

þ
X∞
n¼0

~BnH
2ð Þ
2nþ1 k1r1ð Þ sin 2nþ 1ð Þθ1½ � ;

ð8Þ
where Hn

(2)( ⋅ ) is the nth order Hankel function of the
second kind, and the exact analytical expressions for
scattered coefficients Ãn and ~Bn have been derived by
Trifunac (1973) as

~An ¼ −2εn −1ð Þn J ′2n k1að Þ
H 2ð Þ′

2n k1að Þ
cos 2nαð Þ ; ð9Þ

~Bn ¼ 4 i −1ð Þn J ′2nþ1 k1að Þ
H 2ð Þ′

2nþ1 k1að Þ
sin 2nþ 1ð Þα½ � ; ð10Þ

in which the primes stand for differentiation with re-
spect to the arguments of the corresponding functions.
The second component uS2 means the scattered fields

induced by the existence of region 2, and its proper
wavefunction can be written as

uS2 r1; θ1ð Þ ¼
X∞
n¼0

AnH
2ð Þ
2n k1r1ð Þ cos 2nθ1ð Þ

þ
X∞
n¼0

BnH
2ð Þ
2nþ1 k1r1ð Þ sin 2nþ 1ð Þθ1½ � ;

ð11Þ
in which the complex expansion coefficients An and Bn

are unknown.
In region 1, the displacement of the resultant wavefield

u1, which is the conjunction of the free wavefield and
the total scattered wavefield, can be expressed as

u1 r1; θ1ð Þ ¼ uF r1; θ1ð Þ þ uS r1; θ1ð Þ : ð12Þ
In region 2, the displacement of wavefield u2, which

satisfies the Helmholtz equation (Equation 1) and the
stress-free boundary conditions (Equation 4) on the
upper face of the filling layer, is given by

u2 r2; θ2ð Þ ¼
X∞
n¼0

CnJn k2r2ð Þ cos n θ2 þ ’ð Þ½ � ; ð13Þ

where the complex expansion coefficients Cn will be
determined.
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In order to rewrite Equation 13 in terms of (r1, θ1), the
necessary coordinate transformation from (r2, θ2) to
(r1, θ1) is accomplished via Graf's addition formula
for Bessel functions (section 11.3, p 360, Equation 2
in Watson 1966), which is recast in an appropriate form
as follows:

Jn k2 r2ð Þ cos n θ2 þ ’ð Þ½ �
¼

X∞
m¼0

Jm k2 r1ð Þ FC
m;n cos m θ1ð Þ þ FS

m;n sin m θ1ð Þ
h i

;

ð14Þ

where the functions Fm,n
C and Fm,n

S are given in Appendix 1
(see Equations 39 and 40). Note that Equation 15 in Tsaur
and Chang (2008a) is just the special case of Equation 14.
Because the coordinate-transformation formula adopted
herein is more compact than that in Wang (2010), the fol-
lowing solution enables a more effective computational
performance, notably for high frequencies.
Considering the stress continuity condition on the

soil-bedrock interface, we have

τ 1ð Þ
r1z r1; θ1ð Þ ¼ τ 2ð Þ

r1z r1; θ1ð Þ; β1≤θ1≤β2; r1 ¼ a :

ð15Þ

Applying the zero-stress conditions on the two
circular-arc free surfaces of the valley (Equation 3) to
the left-hand side of Equation 15, multiplying a sequence
of weight functions and integrating over the correspond-
ing bounds lead to

Z π=2

−π=2
τ 1ð Þ
r1z a; θ1ð Þ cos 2qθ1ð Þdθ1 ¼

Z β2

β1

τ 2ð Þ
r1z a; θ1ð Þ cos 2qθ1ð Þdθ1;

q ¼ 0; 1;…;

ð16Þ
Z π=2

−π=2
τ 1ð Þ
r1z a; θ1ð Þ sin 2q þ 1ð Þθ1½ �dθ1 ¼

Z β2

β1

τ 2ð Þ
r1z a; θ1ð Þ sin 2q þ 1ð Þθ1½ �dθ1;

q ¼ 0; 1; ::::

ð17Þ

Employing the orthogonal property of sine/cosine
functions and performing some algebraic manipulations
yield the following relations between the unknown ex-
pansion coefficients:

An ¼ εnμ2

πH 2ð Þ′
2n k1að Þμ1

X∞
p¼0

Cp ~G
C
p;2n; ð18Þ

Bn ¼ 2μ2
πH 2ð Þ′

2nþ1 k1að Þμ1
X∞
p¼0

Cp ~G
S
p;2nþ1; ð19Þ

in which
~GC
p;n ¼

X∞
m¼0

FC
m;p I

C
m;n þ FS

m;p I
SC
m;n

� �
J ′m k2að Þ; ð20Þ

~GS
p;n ¼

X∞
m¼0

FC
m;p I

SC
n;m þ FS

m;p I
S
m;n

� �
J ′m k2að Þ; ð21Þ

and detailed expressions are given in Appendix 1 (see
Equations 39 to 43).
Similarly, the enforcement of displacement continuity

across the soil-bedrock interface is required, that is,

u1 r1; θ1ð Þ ¼ u2 r1; θ1ð Þ; β1≤θ1≤β2; r1 ¼ a : ð22Þ

In light of this, utilizing a succession of sine/cosine
functions and integrating over the range [β1, β2] give

Z β2

β1

u1 a; θ1ð Þ cos 2qθ1ð Þdθ1 ¼
Z β2

β1

u2 a; θ1ð Þ cos 2qθ1ð Þdθ1;
q ¼ 0; 1;…;

ð23Þ
Z β2

β1

u1 a; θ1ð Þ sin 2q þ 1ð Þθ1½ �dθ1 ¼
Z β2

β1

u2 a; θ1ð Þ sin 2q þ 1ð Þθ1½ �dθ1;
q ¼ 0; 1; ::::

ð24Þ
Applying Equations 18 and 19 to eliminate the scatter-

ing coefficients (An and Bn), using the Wronskian rela-
tions for Bessel and Hankel functions (e.g., p 113,
Equation 5.9.3 in Lebedev 1965), and rearranging the re-
sults in two coupled sets of infinite, linear, and algebraic
equations with unknown coefficients Cn yield

X∞
n¼0

CnR
C
q;n ¼ LCq ; q ¼ 0; 1;…; ð25Þ

X∞
n¼0

CnR
S
q;n ¼ LSq; q ¼ 0; 1;…; ð26Þ

where the pertinent functions used are shown in Appendix 2
for conciseness (see Equations 44 to 47).
After truncating the infinite series in Equations 25 and

26 properly, the expansion coefficients Cn can be evalu-
ated by standard matrix techniques. For numerical com-
putations, it is necessary to truncate the infinite
summation to a finite number of terms. Summation in-
dices n and weighting indices q in Equations 25 and 26
are truncated after 2N − 1 and N − 1 terms, respectively.
Therefore, Equations 25 and 26 constitute a system of 2
N equations with 2N unknowns. Once the coefficients
Cn are found, the expansion coefficients An and Bn can
be evaluated straightforwardly via Equations 18 and 19.
For the specific location, the displacement amplitude |

u| is evaluated from the expressions of corresponding
wavefields (see Equations 12 and 13), that is,
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uj j ¼ u1j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re u1ð Þ½ �2 þ Im u1ð Þ½ �2

q
; for region 1

u2j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re u2ð Þ½ �2 þ Im u2ð Þ½ �2

q
; for region 2

;

8<
:

ð27Þ

where Re(·) and Im(·) denote the real and imaginary
parts of complex expressions, respectively. Note that for
the computed results given below, the free wavefield uF

is directly evaluated from Equation 5.

Degeneration for limiting cases
Vacant canyon
When the filling layer in the valley is absent (i.e., β1 = β2 = 0),
the model is merely the semi-circular vacant canyon.
Hence, the expansion coefficients are An = 0, Bn = 0, and
Cn = 0. This gives uS2 = 0, and only uS0 exists. Thus, the
series solution derived for such a limiting case is the
exact analytical solution derived by Trifunac (1973).

Fully filled alluvial valley
When the valley is entirely filled with alluvial soils (i.e.,
’ = − β1 = β2 = π/2), the displacement field shown in
Equation 13 for region 2 can be rewritten as

u2 r1; θ1ð Þ ¼
X∞
n¼0

−1ð ÞnC2nJ2n k2r1ð Þ cos 2nθ1ð Þ

−
X∞
n¼0

−1ð ÞnC2nþ1J2nþ1 k2r1ð Þ sin 2nþ 1ð Þθ1½ � :

ð28Þ

Replacing the symbols of the unknowns in Equation 28
via

Ĉn ¼ −1ð ÞnC2n ; ð29Þ

D̂n ¼ − −1ð ÞnC2nþ1 ; ð30Þ

and simplifying Equations 25 and 26, the expansion co-
efficients for region 2 are

Ĉn ¼ −
4 i εn −1ð Þn cos 2nαð Þ

πa μ1J2n k2að ÞH 2ð Þ′
2n k1að Þ−μ2J ′2n k2að ÞH 2ð Þ

2n k1að Þ
h i ;

ð31Þ

D̂n ¼ −
8 −1ð Þn sin 2nþ 1ð Þα½ �

πa μ1J2nþ1 k2að ÞH 2ð Þ′
2nþ1 k1að Þ−μ2J ′2nþ1 k2að ÞH 2ð Þ

2nþ1 k1að Þ
h i :

ð32Þ

Based on Equations 18, 19, 31, and 32, Equation 7
gives
Ân ¼ ~An þ An

¼ −
2 εn −1ð Þn cos 2nαð ÞW 2n

μ1J2n k2að ÞH 2ð Þ′
2n k1að Þ−μ2J ′2n k2að ÞH 2ð Þ

2n k1að Þ
;

ð33Þ
B̂n ¼ ~Bn þ Bn

¼ 4 i −1ð Þn sin 2nþ 1ð Þα½ �W 2nþ1

μ1J2nþ1 k2að ÞH 2ð Þ′
2nþ1 k1að Þ−μ2J ′2nþ1 k2að ÞH 2ð Þ

2nþ1 k1að Þ
;

ð34Þ
in which

Wn ¼ μ1Jn k2að ÞJ ′n k1að Þ−μ2J ′n k2að ÞJn k1að Þ : ð35Þ
Equations 31 to 34 are the solutions of simultaneous

equations derived by Trifunac (1971) for the fully filled
semi-circular alluvial valleys.

Horizontal free surface
When the filling materials in regions 1 and 2 have the
same mechanical properties (i.e., ρ1 = ρ2 and c1 = c2, and
thus μ1 = μ2 and k1 = k2), a fully filled alluvial valley be-
comes a horizontal free surface without any surficial dis-
continuities. Clearly, in such a condition, Ân and B̂n in
Equations 33 and 34 are zero because Wn in Equation 35
becomes zero. This signifies that all the scattered waves
vanish in the absence of alluvium. By applying the
Wronskian relation (Lebedev 1965) to simplify the de-
nominators of Equations 31 and 32, and then utilizing
Equations 28 to 30, the wavefields in region 2 recover
the free wavefields shown in Equation 6.

Results and discussion
In this section, the dimensionless frequency η is defined
as the ratio of the maximum width of the valley to the
incident wavelength λ1, that is,

η ¼ k1a
π

¼ 2a
λ1

: ð36Þ

The displacement amplitude of the incident waves
is taken to be one unit. All the following simulations
are done using a desktop computer with a 3.40 GHz
Intel® Core™ i7-3770 CPU (Intel, Santa Clara, CA, USA)
and 8.00 GB RAM under Windows 7 64-bit OS and
MATHEMATICA programming environment (Wolfram,
Champaign, IL, USA).

Convergence test
At the initial stage of calculations, a number of conver-
gence tests are performed. The inner series with indices m
(see Equations 48 and 49 in Appendix 2) are truncated
and bounded from 0 to M − 1 terms. These internal sums
should be accurately calculated via numerical testing for
their convergence, thereby leaving only one parameter



Table 1 Values of pertinent parameters for different
inner truncation indices

M Low-frequency case (η = 1)

P1 P2 P3

22 1.190294289687 3.494137369096 3.951746767643

24 1.190267947613 3.494149108380 3.951352255433

26 1.190267465292 3.494149365072 3.951351221806

28 1.190267458947 3.494149368736 3.951351210176

30 1.190267458962 3.494149368728 3.951351210224

32 1.190267458962 3.494149368728 3.951351210224

34 1.190267458962 3.494149368728 3.951351210224

High-frequency case (η = 10)

105 3.852549926081 3.798895709292 1.426239484464

110 3.852670425350 3.798897978157 1.425983729509

115 3.852672532000 3.798897841089 1.425996636539

120 3.852672269462 3.798898139431 1.425999548587

125 3.852672241997 3.798898064628 1.425997735750

130 3.852672217055 3.798898082794 1.425997818638

135 3.852672217334 3.798898082637 1.425997818635

140 3.852672217334 3.798898082637 1.425997818635

Low-frequency case (η = 1)

P4 P5 Error

22 0.500030672653 0.891741857615 75.0368864083

24 0.499811004983 0.891382133938 0.187004610300

26 0.499810783582 0.891381807308 4.47556145287 × 10−4

28 0.499810781914 0.891381803982 3.63315136472 × 10−6

30 0.499810781927 0.891381804004 1.61204492590 × 10−8

32 0.499810781927 0.891381804004 3.13190321119 × 10−9

34 0.499810781927 0.891381804004 <10−10

High-frequency case (η = 10)

105 0.293334113173 0.421453729093 3.09171329268

110 0.293284625937 0.421398985186 1.79321185135 × 10−2

115 0.293286828405 0.421402108231 9.05131671893 × 10−4

120 0.293286952154 0.421402250130 2.04211367705 × 10−4

125 0.293286901718 0.421402154841 1.27127443954 × 10−4

130 0.293286913103 0.421402167992 5.81262142562 × 10−6

135 0.293286912958 0.421402167820 4.96550950368 × 10−8

140 0.293286912958 0.421402167820 <10−10

M, inner truncation index; P1 to P5, displacement amplitudes at five specific
positions; Error, maximum relative error (in percent) for 800 equally spaced
locations.
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(i.e., the summation index n) to remove the problem of
relative convergence.
Take the moderately filled case (β1 = − 40° and β2 =

55°) with ρ2/ρ1 = 0.82 and c2/c1 = 0.4 as an example. At
first, the value of the outer truncation index N is fixed,
then the displacement amplitudes along the horizontal,
curved, and inclined traction-free surfaces are evaluated
with respect to increasing inner truncation index M.
During the convergence test, only the horizontally inci-
dent cases are checked because they take more trunca-
tion terms than others to reach convergence. The
relative error is defined to be

Er ¼
Vp−V f

�� ��
V f

� 100% ; ð37Þ

in which Vp and Vf denote the two adjacent computed
values of displacement amplitudes. Successive computa-
tions are performed until the target relative error is met.
Table 1 displays the values of displacement amplitudes
for α = 90° at five specific positions, where P1 to P5 are
located at x1/a = − 1.5, − 0.95, 0.1, 0.95, and 1.5, respect-
ively, that is, P1 and P5 are placed outside the valley and
P2 to P4 inside. The outer truncation index is chosen at
N = 18 for the low-frequency case (η = 1) and N = 82 for
the high-frequency one (η = 10). The errors listed in
Table 1 mean that the maximum values of relative errors
are calculated for the displacement amplitudes at 800
equally spaced locations, ranging between x1/a = − 4 and
4. As seen in Table 1, numerical results converge to at
least 12 significant digits at M = 30 for η = 1 and at M =
135 for η = 10. When the number of inner truncation
terms is sufficient, the coordinate-transformation process
is carried out accurately. Based on further numerical tests
for other filling levels, M = 200 is adequate to produce re-
liable results at higher frequencies (14 ≤ η ≤ 16).
The outer truncation index N dominates the fulfill-

ment of continuity conditions (across the soil-bedrock
interface) and zero-stress conditions (across the circular-
arc surface of the valley). Table 2 shows the variations in
maximum relative errors and computational costs when
N increases. In Table 2, the maximum relative error is
smaller than 0.1% after N = 16 at η = 0.5 and after N =
138 at η = 12. Overall, the computation time and mem-
ory gradually increase with N. Considering a reasonable
balance between computational efficiency and accuracy,
the convergence criterion for N is that the maximum
relative error falls below the threshold value of 0.1%,
which is acceptable for engineering purposes.

Validation for the completely empty case
When the upper surface of the alluvial layer approaches
the bottom of the valley, the computed results for the ex-
tremely lowly filled valley can be exploited to approximate
those for the completely empty canyon. Several cases
shown in Trifunac (1973), with an exact analytical solu-
tion to antiplane scattering induced by a semi-circular
canyon, are taken as validation examples. Computed re-
sults pertinent to the case of η = 0.75 at α = 30° are given
in Figure 2a. The angular position β1 of the inclined
layer is − 20°, − 15°, and − 5° while β2 is 25°, 20°, and 10°,



Table 2 Values of pertinent parameters for different
outer truncation indices

N Low-frequency case (η = 0.5)

Error Elapsed time Memory

6 2.27 0.85 11.11

8 0.63 1.20 12.19

12 0.29 1.32 14.06

16 0.017 1.63 15.62

28 0.0026 3.23 20.70

High-frequency case (η = 12)

70 26.64 23.89 44.46

78 13.95 25.49 46.61

88 2.93 29.87 52.79

100 1.41 36.04 59.74

120 0.51 46.46 72.13

126 0.12 49.89 78.04

138 0.07 57.51 86.07

148 0.0086 64.44 93.09

N, outer truncation index; Error, maximum relative error in percent; Elapsed
time, computation time in seconds; Memory, memory in megabytes.

Figure 2 Surface motions versus x1/a at α = 30°. (a) The
completely empty case. (b) The fully filled case. The solid, dashed,
and dotted lines display the results of this study and the open
circles show those obtained by Trifunac (1971, 1973).

Table 3 Mechanical properties for the three materials
adopted

ρ2/ρ1 c2/c1 μ2/μ1
Material 1 0.88 0.8 0.5632

Material 2 0.85 0.6 0.3060

Material 3 0.82 0.4 0.1312
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respectively. The values of ρ2/ρ1 and c2/c1 are 0.82 and
0.4, respectively. The specific locations on the valley
surface ranging between x1/a = − 1 and 1 are displayed
by a bold black line. As seen in Figure 2a, the present
results tend to coincide with those of Trifunac (1973)
when the filling level of alluvial layer falls gradually to-
wards the valley bottom. Obviously, these results con-
firm the present formulism.

Validation for the fully filled case
In contrast, when the upper surface of the alluvial layer
approaches the ground level, the computed results can
approximate those for the fully filled valley. The exact
analytical solution to SH-wave scattering induced by a
semi-circular alluvial valley obtained by Trifunac (1971)
serves as the benchmark. The analytical solutions are
displayed by open circles in Figure 2b. Results for η = 0.5
at α = 30° when β1 = − 87°, − 89°, and − 89.999° with β2 =
80°, 86°, and 89°, respectively, are shown in Figure 2b.
The values of ρ2/ρ1 and c2/c1 are 0.6667 and 0.5, respect-
ively. Figure 2b exhibits good consistency between the
present results and those of Trifunac (1971) when the
filling level of alluvial layer rises gradually towards the top
of the valley. Figure 2b thus suggests that the present
model is valid.

Surface motions in the frequency domain
The Seattle basin in northwestern USA (e.g., Pratt et al.
2003) is a good example for numerical simulations.
Three types of materials are chosen, and the mechanical
properties such as ρ2/ρ1, c2/c1, and μ2/μ1 are listed in
Table 3. The alluvial stratum becomes softer from mate-
rials 1 to 3. Three models, models 1 to 3, are illustrated
in Figure 3a. Model 1 is a lowly filled case with β1 = −
25° and β2 = 40°, model 2 an intermediately filled case
with β1 = − 45° and β2 = 60°, and model 3, a highly filled
case with β1 = − 60° and β2 = 75°.
The computed results revealing the effect of the filling

level of soft alluvial layer (i.e., material 3) on the dis-
placement amplitudes are shown in Figure 3b,c,d,e,f for
α = 0°, 45°, 90°, − 45°, and − 90°, respectively, and when
η = 1. Owing to the valley asymmetry, asymmetric
motions under symmetric excitation can be found in
Figure 3b. For obliquely incident cases in Figure 3c,e, the
peak amplitudes of motions increase with the filling
level. In Figure 3b,c,d,e,f, the number of local maximum



Figure 3 Valley geometries for models 1 to 3 and surface motions. (a) Valley geometries for models 1 to 3 are displayed. Surface motions
versus x1/a for different filling levels with material 3 at η = 1: (b) α = 0°, (c) α = 45°, (d) α = 90°, (e) α = − 45°, and (f) α = − 90°.

Chang et al. Earth, Planets and Space 2014, 66:53 Page 9 of 18
http://www.earth-planets-space.com/content/66/1/53
amplitudes increases when the filling level of the alluvial
layer rises.
Figure 4a illustrates the three valley geometries for

models 4 to 6: model 4 is a horizontally filled case with
β1 = − 53.1301° and β2 = 53.1301°, model 5 a slightly ob-
liquely filled case with β1 = − 48.2934° and β2 = 58.2934°,
and model 6, a moderately obliquely filled case with
β1 = − 43.7802° and β2 = 63.7802°. To demonstrate the
influence of the inclination of filling layer (with material
3) on the displacement amplitudes, the computed results
with a range of incident angles at η = 0.5 are displayed in
Figure 4b,c,d,e,f. From models 4 to 6 (see Figure 4a),
the top surface of the filling layer gradually rotates
counterclockwise with respect to an axis at (x1/a, y1/a) =
(0, 0.6). This makes the locations of maximum displace-
ment amplitudes shift to the right (see Figure 4b,c,d,e,f ).
If the low-frequency waves come from the lower left
quadrant (α = 45° and 90°), the peak amplitudes of mo-
tions may go down (see Figure 4c,d). The main reason
for this change is that more wave energy is straightfor-
wardly reflected back into the bedrock due to increments
in the circular-arc free surface at the left-hand side of
the valley. On the contrary, the peak amplitudes of mo-
tions may increase (see Figure 4e,f) because more wave
energy is transmitted through the soil-bedrock interface
into the alluvial layer when the low-frequency waves em-
anate from the lower right quadrant (α = − 45° and − 90°).
Motions on the horizontal surface are insensitive to varia-
tions in inclinations of filling layer, especially for those in
the shielded region. Such a feature can be also found in
the vertically incident case (see Figure 4b).
Figure 5 displays the displacement amplitudes versus

the dimensionless horizontal distance and the incident
angle for three models with material 3 to manifest the influ-
ence of incident angles on the surface motions. Each sub-
diagram in Figure 5 comprises a total of 400 simulations
with computational times of 15 to 44 min. During one
simulation step, 400 data points along the x1 direction are
calculated for a fixed value of α. At low frequency (η = 1),
the amplitudes are high when − 40° ≤ α ≤ − 20° and −
90° ≤ α ≤ − 80° for the lowly filled case (Figure 5a) and when
0° ≤ |α| ≤ 20° and 70° ≤ |α| ≤ 90° for the intermediately filled



Figure 4 Valley geometries for models 4 to 6 and surface motions. (a) Valley geometries for models 4 to 6 are displayed. Surface motions
versus x1/a for different inclinations of filling layers with material 3 at η = 0.5: (b) α = 0°, (c) α = 45°, (d) α = 90°, (e) α = − 45°, and (f) α = − 90°.
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case (Figure 5c). As to the highly filled case (Figure 5e), the
amplitudes are high except for those with − 30° ≤ α ≤ − 10°
and 25° ≤ α ≤ 40°. For the high-frequency excitation (η = 7),
the peak amplitudes inside the valley are at least five times
larger than those on the free field (see Figure 5b,d,f).
In order to demonstrate the effect of dimensionless

frequencies on surface motions around the valley, we
compute the spectral variations in displacement ampli-
tudes for model 2 with material 3. Results are shown in
Figure 6a,b,c,d,e,f with α = 0°, 30°, 60°, 90°, − 45°, and −
90°, respectively. Each sub-diagram in Figure 6 consists of
400 × 400 grid squares, and the computational times
are about 1.2 to 2.6 h. For vertical incidence (α = 0°) in
Figure 6a, the intense ground shaking (in the red region)
appears almost near the center of the upper face of the
alluvium and near the two intersections of the inclined
and curved surfaces of the valley, especially when η ≥ 11.
For oblique incidence in Figure 6b,c,e, the average peak
values may be 10 or 11. For horizontal incidence (α = 90°
and − 90°), the focusing of wave energy can almost be
observed at x1/a = 0.6 in Figure 6d and at x1/a = − 0.4 in
Figure 6f. This may be attributed to the constructive
interference between multiple reflected waves within
the alluvial layer. In the upper corner on the illuminated
side of the valley (x1/a = − 1 in Figure 6d and x1/a = 1 in
Figure 6f ), the displacement amplitudes are very close
to 4, which is a theoretical value of the quarter-plane
problem (see e.g., Sánchez‐Sesma 1985). Under horizon-
tal incidence, the average maximum amplification can
be up to eight times larger than that at the free field.
Figure 7a,b,c,d,e,f exhibits the influence of soil/bedrock

stiffness ratios (μ2/μ1) upon displacement amplitudes for
model 1 with η = 2 at α = 0°, 30°, 60°, 90°, − 45°, and − 90°,
respectively. It is clear from the figures that the surface
motions inside the valley become more oscillatory and
complicated as the filling layer gets softer. The peak amp-
litude increases with decreasing μ2/μ1, and the value
may reach at least 16 for grazing incidence (Figure 7d,f).
For the softer case (material 3, shown by red dotted lines),
the peak amplitudes under vertical and oblique incidence



Figure 5 Surface motions versus x1/a and α for different models with material 3. (a) model 1 at η = 1, (b) model 1 at η = 7, (c) model 2 at
η = 1, (d) model 2 at η = 7, (e) model 3 at η = 1, and (f) model 3 at η = 7.
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(see Figure 7a,b,c,e) are smaller than those under hori-
zontal incidence (Figure 7d,f). For oblique and grazing in-
cidence, the motion pattern in the illuminated region
(x1/a < − 1 in Figure 7b,c,d or x1/a > 1 in Figure 7e,f) is
less sensitive than those in the shielded region (x1/a > 1
in Figure 7b,c,d or x1/a < − 1 in Figure 7e,f ).



Figure 6 Spectral variations in surface motions around the valley for model 2 with material 3. (a) α = 0°, (b) α = 30°, (c) α = 60°, (d) α = 90°,
(e) α = − 45°, and (f) α = − 90°.
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Figure 7 Surface motions versus x1/a for model 1 with different stiffness ratios at η = 2. (a) α = 0°, (b) α = 30°, (c) α = 60°, (d) α = 90°,
(e) α = − 45°, and (f) α = − 90°.
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Overall, the surface motions within and around the
valley are dependent not only on the filling level and
mechanical properties of alluvial layers but also on the
frequency and incident angle of input waves.
Surface and subsurface motions in the time domain
Using the fast Fourier transform algorithm, one may
examine the response in the time domain. The incident
signal is a symmetric Ricker wavelet (Ricker 1945), which
is defined as
u tð Þ ¼ 2π2f 2ct
2−1

� �
exp −π2f 2ct

2
� �

; ð38Þ
where fc is the characteristic frequency and is set to be
2 Hz. Computations are made at discrete frequencies
ranging from 0 to 8 Hz with an interval of 0.0625 Hz.
The half-width of the valley top and the outer shear-
wave velocity are 1 km and 1 km/s, respectively. The ref-
erence point for t = 0 when the plane waves pass by is
specified at the position (x1, y1)=(0 km, 4 km) for vertical
incidence and at (x1, y1)=(–4 km, 0 km) for grazing
incidence.
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Synthetic seismograms are shown in Figure 8 for
model 1 with material 2 and in Figure 9 for model 2
with material 2. Figures 8a and 9a correspond to vertical
incidence (α = 0°), while Figures 8b and 9b to oblique in-
cidence (α = 30°). In Figures 8 and 9, the time series are
plotted at 101 locations with equal spacing of 0.1 km
from x1 = − 4 to 6 km. Due to constructive interference
between multiple reflections from the alluvium top and
Figure 8 Synthetic seismograms for model 1 with material 2 at
fc=2 Hz. (a) α = 0° and (b) α = 30°.

Figure 9 Synthetic seismograms for model 2 with material 2 at
fc=2 Hz. (a) α = 0° and (b) α = 30°.
the soil-bedrock interface, signal enhancement within
the filling region can be observed in Figures 8 and 9. For
oblique incidence (see Figures 8b and 9b), the shielding
effect of the valley makes the displacement amplitudes
near the upper right corner of the valley (x1 = 1 km)
smaller than those of direct waves.
Comparing Figure 8 with Figure 9, the total response

duration for the lowly filled case is shorter than that for
the intermediately filled case. This is due to the fact that
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most of the wave energy is transmitted back into the half
plane in the former case, while more wave energy is
trapped within the alluvium in the latter case. The peak
amplification for the intermediately filled case is larger
than that for the lowly filled case. In Figure 9b, the amp-
lification of surface motions in the intermediately filled
case can be up to about three times larger than that in
the free field. In addition, several late-arriving signals
after the direct waves are in turn labeled on the top and
bottom of Figure 9a by arrows L1, L2, R1, R2, etc. In
order to explain the sources of these marked phases, we
produced Figure 10, which shows ten snapshots of tran-
sient subsurface motions for model 2 with material 2
under vertical incidence (α = 0°). At each time instant,
an overall view of motions around the valley is displayed
in the left-hand frame, while a close-up view of motions
within the alluvial layer is displayed in the right-hand
frame. The arrows in Figure 10 correspond to those
marked in Figure 9a.
Figure 10 Snapshots for subsurface motions at specific phases under
(d) t = 4.875 s, (e) t = 5.375 s, (f) t = 5.875 s, (g) t = 6.375 s, (h) t = 6.875 s, (i)
Figure 10a shows that the incident pulse is partly
reflected and partly transmitted at the soil-bedrock
interface. The waves entering the deposits slow down
and bend downwards because the input signal moves
from a high-velocity layer to a low-velocity one. Figure 10b
shows that two scattered waves (marked by white crosses)
are generated when the incident pulse passes through the
lower corners of the valley. The geometric spreading
of reflected waves from the valley bottom (displayed
with white asterisks in Figure 10a,b,c,d,e,f,g) reaches the
horizontal ground surface and couples with scattered
waves L1 and R1 generated from the upper corners of the
valley (see Figure 10c,d,e,f,g). Reflected waves from the
inclined surface of the valley (displayed with white hollow
triangles in Figure 10b,c,d,e) cross through the soil-
bedrock interface, then interact with scattered waves from
the lower corners of the valley, and finally trigger scattered
waves R2 and L2 from the upper corners of the valley
(see Figure 10f,g,h,i,j). The amplitudes of scattered waves
vertical incidence. (a) t = 3.125 s, (b) t = 3.875 s, (c) t = 4.375 s,
t = 7.375 s, and (j) t = 8.375 s. Left: overall view; right: close-up view.
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induced by reflected waves from the horizontal ground
surface (see those displayed with yellow arrows in
Figure 10e,f,g,h,i) are much weaker than those from the
valley corners. Hence, it is not easy to recognize the scat-
tered waves from valley corners in Figure 9a. The scat-
tered waves R3, L3, R4, and L4 (see Figure 10h,i,j) can be
generated from the waves transmitted from the lower
corners of the valley. Overall, the upper and lower corners
of the valley behave as new sources to generate waves.
Figure 10c,d,e,f,g,h,i,j reveals that the surface waves

emerge from the lower corners of the valley and
travel along the topmost alluvial layer in opposite di-
rections. The reflected waves continue to bounce back
and forth between the bimaterial interface and the in-
clined zero-stress surface. This traps energy within
the low-velocity filling layer. Interaction and interfer-
ence between surface waves and multiple reflected
waves are responsible for a long duration of ground shak-
ing, amplified ground motions, and complicated wave-
forms in the alluvial region.
Conclusions
Herein, the problem of SH-wave scattering, induced by a
semi-circular valley partially filled with an inclined allu-
vial layer, has been tackled and solved theoretically. The
use of the robust RMT has given rise to a rigorous series
solution. A novel form of Graf's addition formula is de-
rived for angular wavefunctions constrained by an in-
clined free surface so that it is more general than those
given in the literature for a horizontal free surface. With
the aid of such a newly derived version of Graf's addition
formula, the coordinate transformation for Bessel func-
tions between two arbitrarily located polar coordinate
systems can be performed conveniently. Disturbances in
antiplane displacement fields have been evaluated and
analyzed in both the frequency and time domains. Ap-
proximations of the extremely lowly filled valleys are
consistent with the completely empty canyons, and ap-
proximations of the extremely highly filled valleys with the
fully filled valleys. The frequency-domain results indicate
that the peak amplitudes of motions may increase at low
frequencies when the top surface of the filling layer
steepens towards the illuminated region (i.e., the region
facing the incident waves). If the incident angle bends to-
wards the horizontal ground surface, the phenomenon of
wave focusing is found to be significant, and spectral am-
plifications might reach up to approximately 8. The time-
domain results show that the dynamic response of the
valley is closely related to the interaction and interference
between the surface waves and multiple reflected waves
within the alluvial layer. The computed results presented
herein can serve as a benchmark to validate mesh-based
numerical simulations.
Appendix 1
Pertinent functions in Equations 14, 20, and 21
The related functions in Equation 14 are given by

FC
m;n ¼

εm
2

f −1ð ÞnJmþn k2 reð Þ cos mþ nð Þ’þ n θe½ �
þJm−n k2 reð Þ cos m−nð Þ’−n θe½ �g ;

ð39Þ

FS
m;n ¼

εm
2

f −1ð ÞnJmþn k2 reð Þ sin mþ nð Þ’þ n θe½ �
þJm−n k2 reð Þ sin m−nð Þ’−n θe½ �g :

ð40Þ

The functions used in Equations 20 and 21 are as
follows:

ICm;n ¼

β2−β1; m ¼ n ¼ 0
β2−β1
2

þ sin2nβ2− sin2nβ1
4n

; m ¼ n≠0

½m sinmβ2 cosnβ2− sinmβ1 cosnβ1ð Þ
þn sinnβ1 cosmβ1− sinnβ2 cosmβ2ð Þ�=
m2−n2ð Þ; m≠n

;

8>>>>><
>>>>>:

ð41Þ

ISm;n ¼

β2−β1
2

þ sin2nβ1− sin2nβ2
4n

; m ¼ n

½m sinnβ1 cosmβ1− sinnβ2 cosmβ2ð Þ
þn sinmβ2 cosnβ2− sinmβ1 cosnβ1ð Þ�=
m2−n2ð Þ; m≠n

;

8>>><
>>>:

ð42Þ

ISCm;n ¼

cos2nβ1− cos2nβ2
4n

; m ¼ n

½m cosmβ1 cosnβ1− cosmβ2 cosnβ2ð Þ
þn sinmβ1 sinnβ1− sinmβ2 sinnβ2ð Þ�=
m2−n2ð Þ; m≠n

;

8>>><
>>>:

ð43Þ

Appendix 2
Pertinent functions in Equations 25 and 26
The functions associated with Equations 25 and 26 are
as follows:

RC
q;n ¼ GC

n;2q−
μ2
πμ1

X∞
p¼0

εp ~G
C
n;2p

~H 2pI
C
2p;2q

−
2μ2
πμ1

X∞
p¼0

~GS
n;2pþ1

~H 2pþ1I
SC
2pþ1;2q ;

ð44Þ

RS
q;n ¼ GS

n;2qþ1−
μ2
πμ1

X∞
p¼0

εp ~G
C
n;2p

~H 2pI
SC
2qþ1;2p

−
2μ2
πμ1

X∞
p¼0

~GS
n;2pþ1

~H 2pþ1I
S
2pþ1;2qþ1 ;

ð45Þ
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LCq ¼ −
4i
πa

X∞
n¼0

εn −1ð Þn cos 2nαð Þ
H 2ð Þ′

2n k1að Þ
IC2n;2q

−
8
πa

X∞
n¼0

−1ð Þn sin 2nþ 1ð Þα½ �
H 2ð Þ′

2nþ1 k1að Þ
ISC2nþ1;2q ;

ð46Þ

LSq ¼ −
4i
πa

X∞
n¼0

εn −1ð Þn cos 2nαð Þ
H 2ð Þ′

2n k1að Þ
ISC2qþ1;2n

−
8
πa

X∞
n¼0

−1ð Þn sin 2nþ 1ð Þα½ �
H 2ð Þ′

2nþ1 k1að Þ
IS2nþ1;2qþ1 ;

ð47Þ

together with

GC
n;q ¼

X∞
m¼0

FC
m;n I

C
m;q þ FS

m;n I
SC
m;q

� �
Jm k2að Þ; ð48Þ

GS
n;q ¼

X∞
m¼0

FC
m;n I

SC
q;m þ FS

m;n I
S
m;q

� �
Jm k2að Þ; ð49Þ

~Hp ¼
H 2ð Þ

p k1að Þ
H 2ð Þ′

p k1að Þ : ð50Þ
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