
Earth Planets Space, 51, 1019–1022, 1999

A correction to Bahr’s “phase deviation” method for tensor decomposition
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1Loránd Eötvös Geophysical Institute, H-1145 Budapest, Kolumbusz u. 17-23, Hungary
2Geodetic and Geophysical Research Institute, H-9401 Sopron, POB 5, Hungary

(Received November 9, 1998; Revised February 17, 1999; Accepted April 12, 1999)

For models having moderate departures from the basic distortion model (from the so called “principal superim-
position” model, that is where local three-dimensional and regional two-dimensional structures are superimposed)
a special tensor decomposition method (the so called phase deviation method) was suggested by Bahr (1991). As
far as we know, this technique has never got a wide field application in the field. In a careful examination of the
suggested solution, an error was observed in the original derivation of the formulas. In this paper Bahr’s (1991)
solution is corrected. Using the new equations, more understandable and interpretable results are obtained, as it is
illustrated on synthetic examples.

1. Introduction
For the interpretation of a measured impedance tensor—

according to Bahr (1988)—one must ask, whether all ele-
ments of the measured tensor have the same phase. If they
do, the regional conductivity is purely depth dependent and it
is sufficient to split the impedance tensor into a real distortion
matrix and a scalar normal impedance.
If only the two elements in each column of the measured

tensor have equal phase values, the regional conductivity
is two-dimensional. The tensor decomposition solution for
this so called principal superimposition model is found in the
paper by Bahr (1988).
If the regional conductivity distribution is not perfectly

two-dimensional, a phase difference will appear between
the two elements of the same column. For this problem—
assuming a moderate departure from the principal superim-
positionmodel—a solution was given by Bahr (1991), which
he calls the “phase deviation” method. We found an error
in the original derivation of the formulas. In this paper we
first give a brief description of the phase deviation method,
then we present the corrected solution. Finally a comparison
between the original and the corrected solution is given.

2. Brief Description of Bahr’s (1991) Phase Devi-
ation Method

In case ofmoderate departures from the principal superim-
position model, Bahr (1991) represented the measured mag-
netotelluric tensor Z in the coordinate system of the regional
2D structure as

Z =
[

−a12ZTMeiδ a11ZT E

−a22ZTM a21ZT Ee−iδ

]
, (1)
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where a =
[
a11 a12
a21 a22

]
is a real, frequency-independent ma-

trix, representing the distortion due to small, localized, near-
surface anomaly. ZT E and ZTM are the principal impedances
for the 2D regional structure. According to the condition
set up by Bahr (1991), the phases between the elements in
both columns of the tensor—due to the effect of the phase-
sensitive regional skew η (Bahr, 1991)—differ by the same
phase deviation angle δ.
The strike angle α is found from the two conditions for the

two columns of the impedance tensor of Eq. (1), whereas the
two variables α and δ are to be resolved. From a comparison
of the real and imaginary parts of elements in both columns,
two equation are obtained:

Re Zx ′x ′ cos δ + Im Zx ′x ′ sin δ

Re Zy′x ′

= −Re Zx ′x ′ sin δ + Im Zx ′x ′ cos δ

Im Zy′x ′
, (2a)

Re Zy′ y′ cos δ − Im Zy′ y′ sin δ

Re Zx ′ y′

= Re Zy′ y′ sin δ + Im Zy′ y′ cos δ

Im Zx ′ y′
. (2b)

In another form:

cos δ(Re Zx ′x ′ · Im Zy′x ′ − Re Zy′x ′ · Im Zx ′x ′)

+ sin δ(Re Zx ′x ′ · Re Zy′x ′ + Im Zx ′x ′ · Im Zy′x ′) = 0
(3a)

and

cos δ(Re Zy′ y′ · Im Zx ′ y′ − Re Zx ′ y′ · Im Zy′ y′)

− sin δ(Re Zx ′ y′ · Re Zy′ y′ + Im Zx ′ y′ · Im Zy′ y′) = 0.
(3b)

To solve these equations, Bahr (1991) introduced
(1) two commutators between the complex numbers C1 and
C2 as follows:

[C1,C2] = Im(C2C
∗
1 ) = ReC1·ImC2−ReC2·ImC1, (4a)
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{C1,C2} = Re(C2C
∗
1 ) = ReC1 · ReC2 + ImC1 · ImC2.

(4b)
In this way Eqs. (3a) and (3b) have the following simpler

form:

cos δ[Zx ′x ′ , Zy′x ′ ] + sin δ{Zx ′x ′ , Zy′x ′ } = 0, (5a)

cos δ[Zy′ y′ , Zx ′ y′ ] − sin δ{Zy′ y′ , Zx ′ y′ } = 0, (5b)

and (2) he defined four so called modified impedances

S1 = Zxx + Zyy

2
, (6a)

S2 = Zxy + Zyx

2
, (6b)

D1 = Zxx − Zyy

2
, (6c)

D2 = Zxy − Zyx

2
. (6d)

Their transformation into a new coordinate system which
is rotated by an angle α yields

S′
1 = Zx ′x ′ + Zy′ y′

2
= S1, (7a)

S′
2 = Zx ′ y′ + Zy′x ′

2
= S2 cos 2α − D1 sin 2α, (7b)

D′
1 = Zx ′x ′ − Zy′ y′

2
= D1 cos 2α + S2 sin 2α, (7c)

D′
2 = Zx ′ y′ − Zy′x ′

2
= D2. (7d)

Therefore Zx ′x ′ , Zx ′ y′ , Zy′x ′ and Zy′ y′ are a function of α:

Zx ′x ′ = S1 + D′
1 = S1 + D1 cos 2α + S2 sin 2α, (8a)

Zx ′ y′ = S′
2 + D2 = D2 + S2 cos 2α − D1 sin 2α, (8b)

Zy′x ′ = S′
2 − D2 = −D2 + S2 cos 2α − D1 sin 2α, (8c)

Zy′ y′ = S1 − D′
1 = S1 − D1 cos 2α − S2 sin 2α. (8d)

By using the commutators (4a and b) and the modified
impedances (8a, b, c and d) Bahr (1991) expressed Eqs. (5a)
and (5b) as:

−A sin 2α + B cos 2α + C + E cos 2α · sin 2α = 0, (9a)

−A+ sin 2α + B+ cos 2α + C+ + E+ cos 2α · sin 2α = 0,

(9b)

where for the first equation (if indices 1 refer to the terms
with cos δ and indices 2 refer to those with sin δ)

A = A1 + A2 = ([S1, D1] + [S2, D2]) cos δ

+({S1, D1} + {S2, D2}) sin δ, (10a)

B = B1 + B2 = ([S1, S2] − [D1, D2]) cos δ

+({S1, S2} − {D1, D2}) sin δ, (10b)

C = C1 + C2 = ([D1, S2] − [S1, D2]) cos δ

+({D1, S2} − {S1, D2}) sin δ, (10c)

E = E2 = ({S1, S1} − {D2, D2}) sin δ, (10d)

and for the second equation

A+ = A1 − A2, (11a)

B+ = B1 − B2, (11b)

C+ = −C1 + C2, (11c)

E+ = E2 = E . (11d)

3. Problem
We have found that in Eqs. (9a) and (9b) a further term

must exist. In addition, the indices in Eq. (10d) are mixed
up and some other misprints should be corrected, too.
We think, the origin of the problem in the derivation by

Bahr (1991)must be an erroneous transformation of the com-
mutator {C1,C2}.

4. Correction
Since

C2C
∗
1 = a2e

iϕ2 · a1e−iϕ1

= a1a2 cos(ϕ2 − ϕ1) + ia1a2 sin(ϕ2 − ϕ1), (12)

the commutative laws for the two commutators are:

{C1,C2} = {C2,C1}, (13a)

[C1,C2] = −[C2,C1]. (13b)

It is inevitable to express {Zx ′x ′ , Zy′x ′ } in details:

{Zx ′x ′ , Zy′x ′ } = {S1 + D1 cos 2α + S2 sin 2α,

−D2 − D1 sin 2α + S2 cos 2α}
= −{S1, D2} − {D1, D2} cos 2α

−{S2, D2} sin 2α − {S1, D1} sin 2α
−{D1, D1} sin 2α · cos 2α
−{S2, D1} sin2 2α + {S1, S2} cos 2α
+{D1, S2} cos2 2α
+{S2, S2} sin 2α · cos 2α (14)

= −({S1, D1} + {S2, D2}) sin 2α
+({S1, S2} − {D1, D2}) cos 2α
+({S2, S2} − {D1, D1}) cos 2α · sin 2α
−{S1, D2} + {D1, S2} cos2 2α
−{S2, D1} sin2 2α.

Since—according to (13a)—{S2, D1} = {D1, S2}, the sum
of the last three terms in Eq. (14) is

−{S1, D2} + {D1, S2} cos2 2α − {S2, D1} sin2 2α
= {D1, S2} − {S1, D2} − 2{S1, D2} sin2 2α (15)

and not {D1, S2} − {S1, D2} as in Bahr (1991).
According to Eq. (15) and to the corresponding relation-

ship between the two elements in the right column, Eqs. (5a)
and (5b) with two unknowns: δ and α, have the following
form:

−(A1 + A2) sin 2α + (B1 + B2) cos 2α + (C1 + C2)

+Em
2 cos 2α · sin 2α − Fm

2 sin2 2α = 0, (16a)

−(A1 − A2) sin 2α + (B1 − B2) cos 2α − (C1 − C2)

+Em
2 cos 2α · sin 2α − Fm

2 sin2 2α = 0, (16b)

where A1, A2, B1, B2, C1 and C2 are the same as in Eqs.
(10a), (10b) and (10c), and Em

2 and Fm
2 are as follows:

Em
2 = ({S2, S2} − {D1, D1}) sin δ, (17a)

Fm
2 = 2{D1, S2} sin δ, (17b)
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where the superscript m indicates modifications to the orig-
inal equations.
In the following, all steps of the solution are the same

as those of Bahr (1991), though the results are somewhat
different. From the sum and difference of Eqs. (16a) and
(16b), α and β can be derived from the following equations:

(−a1 sin 2α + b1 cos 2α) cos δ

+(c2 + em2 cos 2α · sin 2α − f m2 sin2 2α) sin δ = 0, (18a)

c1 cos δ + (−a2 sin 2α + b2 cos 2α) sin δ = 0, (18b)

where the small case letters refer to the corresponding quan-
tities, without cos δ and sin δ.

Finally

tan(2α1,2) = 1

2

b1a2 + a1b2 + c1em2
a1a2 − c1c2 + c1 f m2

±
√
1

4

(b1a2 + a1b2 + c1em2 )2

(a1a2 − c1c2 + c1 f m2 )2
− b1b2 − c1c2

a1a2 − c1c2 + c1 f m2
(19)

Then δ can be determined from Eq. (18a) or (18b).
In the original solution (equation (30), Bahr, 1991), the

terms with f m2 are missing. Furthermore, e2 in the original
solution is not the same as the modified em2 .

5. Mathematical Discussion
According to Bahr (1991), this phase deviation method is

valid in cases where the phase sensitive regional skew η and
the regional one-dimensional indicator μ do not vanish.
Their original definitions are as follows (Bahr, 1988,

1991):

η = (|[D1, S2] − [S1, D2]|) 1
2

|D2| = C
1
2

|D2| , (20a)

μ = (|[D1, S2]| + |[S1, D2]|) 1
2

|D2| . (20b)

If η = 0, the C1 = c1 = 0. In Eqs. (18a) and (18b) if
c1 = 0, there are two mathematical cases:

1) sin δ = 0, which leads directly to

tan 2α = b1
a1

.

2) sin δ �= 0. In this case

tan 2α = b2
a2

.

Since η = 0 means a perfect two-dimensional regional
structure, this second case does not have any physical mean-
ing. Consequently in Eq. (19) it is a reasonable preference
to select from α1 and α2 the root associated with minimal δ

solution, as it was suggested by Bahr (1991).
The above analysis tells that Eq. (19) does remain if η = 0.

The only case when Eq. (19) does not work, is if the regional
one-dimensional indicator μ is zero. With μ = 0 no strike
angle α is obtained and only one single impedance value can
be recovered from the measured tensor.
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6. Comparison with the Original Solution
Equation (19) in this paper and equation (30) in the paper

by Bahr (1991) may result in quite significant differences in
the regional strike estimates, as it is illustrated in Table 1.
In our numerical example an impedance tensor having rea-

sonable μ and η values and some different distortion tensors
were selected. The tensor was rotated from its principal di-
rection with an angle of α = −30◦ and the original strike
direction had to be reconstructed, by using the two formulas.
As it is shown in Table 1, while Eq. (19) found the correct

value (α = 30.0◦ and δ = −6.0◦), by using the original
formula α = 38.3◦ and δ = −3.9◦ were obtained.

When the same tensor was rotated with α = +30◦, Eq.
(19) gave again the correct value (α = −30.0◦ as expected),
the discriminant in the original formula was negative.
It is not a role of the present paper to provide a complete

numerical discussion. A comparison between the original
and the corrected formulas clearly justifies the necessity of
the proposed correction in Bahr’s “phase-deviation” tensor-

decomposition formulas.

7. Conclusion
According to numerical tests carried out on syntheticmod-

els, the differences between the two formulas cannot be ne-
glected. Therefore, it is recommended to use this improved
tensor decomposition method on field data.
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