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Magnetic distortion of GDS transfer functions: An example from the Penninic
Alps of Eastern Switzerland revealing a crustal conductor
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We carried out sixty-four MT and GDS soundings in the eastern Swiss Alps to obtain information on the electrical
conductivity distribution. One of the main findings is an anomalous directional behaviour of the real induction
arrows over the entire period range (7 = 1-300 s) on the Biindnerschiefer. The Biindnerschiefer occurs between
the crystalline Aar and Gotthard massives to the North and the crystalline Penninic nappes (Adula, Tambo, Suretta)
to the South within the investigation area. The sediments form an elongated eastwards plunging ramp with a
possible conductive link to the Northern Swiss Permo-carboniferous trough (Molasse basin). We consider electric
currents induced in various local and regional conductive structures and leaking into the Biindnerschiefer as possible
causes for the observed effect upon the electromagnetic field. Applying Hypothetical Event Analysis (HEA) we
find a spatial decoupling of the induction processes with depth and a conductivity anomaly presumably due to the

northward indentation by the Adriatic plate.

1. Introduction

Based on the available seismic, gravimetric and geologic
data from the past years, our understanding of the deep struc-
ture of the Central Alps has been revised. This part of the
alpine mountain belt was formed during the Late Cretaceous
and Pliocene (Schmid ez al., 1996) by the collision of the Eu-
ropean and Adriatic continents. Various long and short seis-
mic profiles together with information from geologic field
and laboratory studies have been projected on three major tra-
verses across the Western and Central Alps (Pfiffner and Hitz,
1997). The E1 (Eastern Traverse) profile is part of the Euro-
pean Geotraverse conducted from the active Mediterranean
margin to the Precambrian shield in Scandinavia (Blundell
etal., 1992). The aim of the combined interpretation of geo-
physical and geological information (Schmid et al., 1996),
was to elucidate the regional mechanisms involved in the
building of the Alps. Close to this line about sixty-four MT
and GDS sites with a spacing of about 5 km measured the
natural magnetic and telluric variations in a period range
from T = 1-300 s. We suggested to search structural and
geometrical correlations of well defined series within the
Biindnerschiefer to provide additional information about the
three-dimensional structure of the upper and lower crust, as
well as to reveal similarities or differences in the conductivity
distribution of the western and eastern Penninic Alps. How-
ever, the initial results show anomalous directional behaviour
of the real parts of the induction arrows derived from the GDS
data. Similar observations have been documented in several
field examples over elongated conductive structures (Arora
and Adam, 1992). Generally, we address our observation
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to the distortion effect due to the three-dimensional tectonic
setting of the conductive structures in the upper and lower
crust. Locally, we suspect near-surface inhomogeneities to
cause current channelling and/or deflection which is likely to
affect the directions of the induction arrows. In this case, the
regional electrical strike determined from single site MT data
for the computation of reliable TE and TM mode impedances
might be misleading (Bahr, 1988; Jones and Groom, 1993).

2. Geological Settings

Figure 1 is a map of Switzerland, containing the surveyed
area. Figure 2 shows a simplified North-South profile across
the eastern Central Alps from the Molassse foredeep to the
South Alpine thrust belt crosscutting the three main domains
(Coward and Dietrich, 1989). From North to South we find
(Fig. 3):

e an external part (Helvetic Aar and Gotthard Massives),
followed by

e the Penninic Zone and

e South Alpine Units.

The Penninic Zone consists of imbricate stacks of sedi-
mentary cover and basement slices, including the mesozoic
Biindnerschiefer, Avers-Schiefer and the crystalline micro-
continents Adula, Tambo and Suretta. Together with ophi-
olithic rocks they form the remnant of the alpine Thetys,
which has been divided by deep sea swells into different pull-
apart basins. In one of these basins, the Biindnerschiefer was
deposited as turbidity currents. During Tertiary time the in-
trusion of the Bregaglia massive (30 Ma) took place along
the Insubric Line forming the southernmost border of the
investigation area. To the East we find the Adriatic pas-
sive margin which is the transition zone between the Eastern

1023



1024

and the Western Alps. In this context, the Avers-Schiefer is
considered to be either part of an ancient mélange zone or an
accretion prism. Within the orogenic zone, all major tectonic
Units have a pronounced easterly axial dip. Consequently,
the crustal structure in Eastern Switzerland can be described
as a triple junction.

3. Theoretical Background

This paper deals with a two-dimensional interpretation
of the magnetic response functions which is based on a
simplified decomposition model. Therefore all conclusions
should be understood as an approximation to the actual three-
dimensional conductivity distribution. We benefit from
closely spaced sites arranged in an array to show an alterna-
tive way of presenting and determining the electrical strike
when three-dimensionality affects the induction arrows. To
do so, we assume that regional currents which originated in

Fig. 1. Location of the investigation area.
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remote areas are distorted and generate a local anomalous
magnetic field that is superimposed on the regional mag-
netic field. Hence the phase of the anomalous magnetic field
equals the phase of the regional electric field. From the
observed anomalous magnetic field caused by current chan-
nelling at a near surface inhomogeneity we can then derive,
from the phase, information about the strike of a regional
(hidden) conductive structure. The method of the “Hypo-
thetical Event Analysis” applied to these data can be found
in Bailey et al. (1974), Banks and Beamish (1984), Ritter
(1996) and Ritter and Banks (1998).
3.1 Magnetic distortion

The local superposition of an anomalous magnetic field B¢
on the regional magnetic field B” causes a magnetic distor-
tion. The measured field B is therefore the sum of the regional
and anomalous magnetic fields: B” 4+ B%. The anomalous
field (B¢, BS, BY) is generated by the spatial deviation of
uniform regional currents through or around a local anomaly,
which is assumed to be much smaller than the skin depth of
the investigated period range (Groom and Bailey, 1991). In
this case B¢ can be seen to be in phase with the regional elec-
tric field E" (Groom, 1988). Similar to the galvanic distor-
tion effect of the regional electric field (Bahr, 1985; Groom,
1988), magnetic distortion of the regional magnetic field can
be expressed by a frequency independent real distortion ma-
trix D:

B‘=D-E". (H
Replacing the regional field E" by the product of the re-

gional MT impedance Z" and the regional (horizontal) mag-
netic field B", we obtain:

B°=DZ -PB. )

This replacement is only valid, if the local anomaly is suf-
ficiently removed either horizontally or vertically from the
regional lateral conductivity boundaries (Ritter, 1996).
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Fig. 3. Simplified tectonic map of the Graubiinden with 5 different groups (A-D, dashed lines) of magnetic transfer functions.

Explicitly, if the regional conductivity distribution is two-
dimensional, the latter equation can be expressed as follows:

By Dix Dsy 0 Zz\(B
B¢ ) =(D, D, '(ZB 0 )(ﬁ) 3)
B¢ D.. D, y

with Zg, Zp being the principal impedances in the coordi-
nate system of regional strike 6, (counter-clockwise). In the
coordinates of the measurement we obtain for the vertical
component:

a 0 z B’
B! = (D, D:))R,, (ZB 0 ) R; ( B;) “
= B! =A'-B,+ BB 5

The components A’ and B! (see also Egs. (7) and (8))
of the local transfer function depend only on the regional
impedances Zg, Zg, the strike of the local inhomogeneity
0;, the strike of the regional structure 6,, their difference
o = 0, — 0,, and a real distortion parameter. In practice, if
we measure magnetic variation over an inhomogeneity and

if magnetic distortion is present, Eq. (5) substitutes for the
commonly used equation by Schmucker (1970):

B.=A-B.+B-B,. (6)

Consequently, the real induction arrows might not indicate
the local strike, nor the regional one, but a mixture of both.

4. Measured Induction Arrows

The inclusion of the imaginary induction arrows in the ex-
amination gives a quantitavive measure for the influence of a
three-dimensional conductivity distribution in the investiga-
tion area. In Fig. 4 real and imaginary induction arrows for
six representative sites are plotted over the period. Using the
convention by Schmucker (1970), the real induction arrows
point towards a more resistive region, perpendicular to the
strike of the lateral resistivity contrast. Furthermore, in the
period range of induction, we expect the imaginary arrows to
be opposed to the direction of the real arrows. Atthe period of
maximum induction, indicated by the maximum amplitude
of the real induction arrows, the imaginary arrows change
their sign and direction by 180°. Generally, the measured
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Fig. 4. Real and imaginary induction arrows in Schmucker convention for six representative GDS sites of each group of Fig. 3 over the period.

imaginary induction arrows in Fig. 4 do not significantly
show different behaviour to what we would expect for a two-
dimensional structure. Except for some sites, they do not
indicate any influence of other conductors nearby. Figures 5
and 6 show the real induction arrows for the representative
periods T = 10 s and 7 = 100 s together with the location
of MT/GDS sites and important structural boundaries in the
investigation area.

From other induction studies in the Penninic Alps of west-
ern Switzerland (Schnegg, 1998) and in the area between the
Rhinegraben, the Bohemian Massive and the Central Alps
(Berktold, 1978), we know that the predominant direction
for real induction arrows is south-eastwards. The Molasse
foredeep contributes to this direction (Richards et al., 1982).
This sediment basin (1-30 2m) extends over 800 km from
Vienna to Geneva, and is partly overridden and incorporated
in the orogenic wedge of the northerly propagating Alpine
front (Schlunegger et al., 1997). Geological and geophysical
observations confirm that the Biindnerschiefer in the inves-
tigation area is situated between Penninic basement slices
and the Helvetic massives. The Biindnerschiefer forms an
elongated, eastwards plunging ramp with a considerable ex-
tension beneath the Austroalpine Units. We consider the
unit’s resistivities comparable with flysch sediments (20-100
©m) or lower due to high organic carbon content (>1 wt%)
(Steinmann, 1994).

Since the Biindnerschiefer can be regarded as a quasi two-
dimensional structure, the azimuth of the induction arrows

should be perpendicular to the strike of this inhomogeneity
and point south-east or north-west. However, a rather differ-
ent behaviour can be observed in the data. Apart from the
expected predominant south-eastward direction of the real
induction arrows, we also find real induction arrows (Figs. 5
and 6) on the Biindnerschiefer and in adjacent areas of the
Helvetic mesozoic cover sediments indicating the main Swiss
alpine strike direction (65°N-70°N). The particular geome-
try of the tectonical setting leads to the assumption that a
flow-around of telluric currents (Rokityansky, 1982) along
the surface boundary of the Biindnerschiefer might be re-
sponsible for this anomalous directional behaviour of the
real induction arrows. The very long induction arrows for
the period 7' = 10 s together with their directional behaviour
indicate that a major lateral contrast in conductivity and ge-
ometry is present between the mesozoic sediments and the
resistive Penninic basement. In particular, the change of di-
rection next to the site SUF marks the direct and steep contact
of both structures. Induced polarization measurements near
the site RON (Suana, 1984) obtained surface resistivies for
crystalline rocks of the Penninic domain of about 8000 Qm.
Deep geoelectric surveys in the Southern Alps of Orobie
revealed the existance of a substratum with high resistivity
values of 15000-40000 2m (Alfano et al., 1994). Similar
resistivity values are found by this method to be typical for
the exposed mantle rocks of the Ivrea Zone (Blohm, 1977).
These values strongly suggests the existence of lateral con-
ductivity contrasts between 10° and 10° and deep penetration
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Fig. 5. Real induction arrows in Schmucker convention for the 64 MT/GDS sites (filled squares) for the period 7 = 10 s.

depths of the electromagnetic field in the host medium from
the mesozoic sediments.

5. Local and Regional Conductive Structures

The induction arrow map shows indications for magnetic
distortion of GDS data due to a possible current channelling
or deflection effect. We do not know the origin of these cur-
rents. They may be related to local or regional induction
processes. These currents can also be injected from struc-
tures elsewhere at the surface of the globe, outside the survey
area (Fischer, 1984). Consequently, the investigation area
may be too small to account for regional or global effects on
the data. To determine wether this is the case, a difference
field GDS data set would be in useful. Such a data set would
eliminate the influence of a possible regional magnetic field.
At present, these data are unavailable.

Magnetic distortion on a local conductive structure de-
pends not only on the lateral conductivity contrast, but also
on it’s dimension relative to the skin depth of the penetrating
fields, the shape and geometry of the inhomogeneity com-
pared to the host rocks (Ritter, 1996). Therefore, in a small

conductive body at shallow depth, short period induction pro-
cesses will evoke a local magnetic field. For longer periods,
the same structure can also deviate or concentrate telluric
currents originating from a deep regional structure. This
will create an additional anomalous static magnetic field on
the local response of the inhomogeneity (Ritter, 1996). The
Biindnerschiefer and Avers-Schiefer may be local conduc-
tive structures, embedded between crystalline rocks, while
the Molasse foredeep has to be considered as the domi-
nant regional structure with a possible conductive link to the
Biindnerschiefer. The length of the prismatic ramp formed
by the Biindnerschiefer is about 80 km, whereas the Avers-
Schiefer is 30 km. The lengths of these structures compared
with the estimated skin depths in their host media shown on
Table 1 are small for periods longer than 7 = 10 s and re-
sistivty values of the host rocks greater than 1000 Q2m. This
indicates, that if magnetic distortion is present in the data,
the magnetic transfer functions are mostly affected for peri-
ods longer than 7 = 10 s. Furthermore, the whole data set
can be distorted if the host rocks reach resistivity values of
100000 2m.
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Fig. 6. Real induction arrows in Schmucker convention for the 64 MT/GDS sites (filled squares) for the period 7 = 100 s.

Table 1. Skin depths for various periods 7" and host rock resistivities p.

p in Qm T=1s T=10s T =100s
10 1.6 km 5km 16 km
100 5km 16 km 50 km
1000 16 km 50 km 160 km
100000 50 km 160 km 500 km

Schnegg (1998) found a high conductive (0.2 2m) slab in
the western Swiss Alps at the base of the Penninic nappes.
This slab assumes the shape of the alpine arc. In analogy, we
expect a similar or possibly genetically the same structure
related to the Penninic basement in eastern Switzerland. In
this context, the outcrop of the basal Penninic thrust repre-
sents the shape of a possible regional conductive structure
into which electric currents might be induced and finally in-
jected into the Biindnerschiefer. We will now focus on the
components A and B of the magnetic transfer function so

that we can use their significance to delinate the channel ge-
ometry and to separate different local structures. To do so,
the magnetic transfer functions of each station of the entire
data set are grouped according to their behaviour over period,
tectonic setting and their amplitudes into five groups shown
in Figs. 3 and 7:

1) Group A: Helvetic sediments and basement

2) Group B: Biindnerschiefer, mesozoic sediments
3) Group C1: Austroalpine

4) Group C2: Austroalpine

5) Group D: Avers-Schiefer, mesozoic sediment.

Figure 7 shows plots of the real (RE) and imaginary (IM)
components of the magnetic transfer functions for each site
j of a group. In the period band T = 10 s the minimum
of the RE Aj curves of group A and C1 show strong evi-
dence for a current flow in East-West direction. This effect
is smaller in group C2. The minimum in RE Aj from group
A to C1 and further to C2 are shifted towards longer peri-



M. GURK: MAGNETIC DISTORTION OF GDS TRANSFER FUNCTIONS

1029

1 1 1
< @ <
g o @& Y PN z
4 « «
-1 1 -1
1 10 100 1000A 1 10 100 1000 1000
Period Tins Period Tins
1 1 1
< & <
= [ s 1] M s 0
1 -1 -1
1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000
Period Tins Period Tins Period Tins Period Tins
1 1 1 1
[} &
s o @ o w = o w o
o @ @ o«
-1 1 -1 -1
1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000
Period Tins ‘ :1 Period Tins Period Tin s ‘ :2 Period Tins
1 1 1 1
P @ . .
< < @
$o m z o0 %@Q& 3 o S SSass 2o
1 -1 -1 -1
1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000
Pericd Tins Period Tins Period Tin s Period Tins

1 1
-1 -1
1 10 100 1000 1 10 100 1000
Period Tins D Period Tins
1 1
I %ﬁsﬂ g o m
-1 1
1 10 100 1000 1 10 100 1000

Period Tins

Fig. 7. Real and imaginary parts of the magnetic transfer functions (rotation: 0°N) for groups A-D.

ods. This is a consequence of the eastwards dipping tectonic
units. However, the maximum of the RE Bj values for the
most eastern sites SER, CHA, ALB and BAE of'the C2 group
are now influenced by a North-South trend of the electric cur-
rent. Overall, real and imaginary parts in groups A, C1 and
C2 show a smoother behaviour over period and comparable
amplitudes. In contrast, the magnetic transfer functions of
group B and D show different behaviour. In Fig. 7 we find the
real parts of both components in group B similar in ampli-
tude and over period, whereas in group D they show inverse
sign. The relationship between the magnetic data in group
B and in group D can be explained in terms of the magnetic
distortion theory for two-dimensional structures:

If magnetic distortion is present in the data of one of the
groups, we obtain for the components of the local transfer
function the following expression (Ritter, 1996).

Al = D [-Zg -sinf, -cosa + Zp - cos 6, - sinar] (7)

B' = D! -[+Zf - cosb, - cosa + Zp - sinb, - sina]  (8)

with: D, magnetic distortion parameters in measurement
coordinates, Zg, Zp principal impedances in the coordinate

Molasse )

N

B

north-south
>
,47{5‘,
N
e
)\/ N
/ \J N

east-west

Fig. 8. Possible configuration of local and regional conductive structures in
the Eastern Swiss Alps. A-D are groups of magnetic transfer functions
of Fig. 7. No scale!
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Table 2. The components of the magnetic transfer functions for different configurations of local and regional conductive structures.

REGIONAL REGIONAL REGIONAL REGIONAL
structure structure structure structure
penninic basal Biindnerschiefer B: penninic basal thrust ; Molasse basin:
thrust: Avers-Schiefer D:
0, =135° 0, =135° 0, =135° 0, =90°
0, =135°,0, =135° Regional 0, =45°,0,=135° 0, =90°,0, =135°
B o Structure =90° —45°
=0 Biindnerschiefer o= o=
L A'=-D_ "z, 12 ' A'=D"2,/\2 A'=-D_" -z, 12
c | B'=-D," -z, /\2 Local B'=D_"-Z,/\2 B'=+D_"-Z, 12
Structure
: =4'=8 Biindnerschiefer =4 =B =>4 ' =B'forZ; =-Z,
D 0, =135°,0, =45° 0, =135°,0, =45° gegional 0, =90°,0, =45°
tructure
o =90° o =90° Avers-Schiefer o =—45°
L A'=-D,-Z,/2 | 4'=-D, -Z,/\2 ; A'=-D. -z, I\2
Cc | B'=+D, -z,/N2 | B'=+D_ -Z,/\2 Local B'=-D, -Z,/\2
Structure
ﬁ =4'=-B' =4'=-B' Avers-Schiefer = 4' =-B' for Zp=-Z,

system of regional strike 8,, « = 6; — 0, and 6, local strike
(angles counted counter-clockwise).

This leads to special cases due to the geometric configu-
ration of local and regional conductive structures and their
spatial constellation as shown in Table 2 and in the simple
model in Fig. 8.

1) geometric configuration
Regional strike parallel or perpendicular to local strike:

a=0°:
A= D! [-Zg - sin6,] 9)
B' = D! -[+Z - cosb,]. (10)
a =90°:
A= D! -[+Zp - cosb,] (11)
B' = D/ [+Zp - sin6,]. (12)

2) spatial constellation

Since we do not know which of the introduced structures of
the area is local or regional, we listed the respective combina-
tions of parameters for regional strike directions of 6, = 45°
and 135° in Table 2. In addition, the East-West orientated
(¢ = 45°) Molasse basin is also shown. The Table provides
a series of permutations which combine regional and local
conductive structures to generate the observed relationship
between the real transfer functions of Group B and D.

The Molassse basin is the only case which depends on
both principal impedances Zz and Zp. This structure can
be responsible for the anomalous direction of the real in-
duction arrows on the Biindnerschiefer only if the regional
conductivity distribution is one-dimensional (Zr = —Zp).
However, we should not exclude this basin to be the origin
of currents injected into the Penninic sediments, since the
overall dominating azimuth for real induction arrows in the
central Alps seems to be caused by its sedimentary filling.
If the Penninic basal thrust represents a L shaped regional

conductive structure as shown in Fig. 8, it has the ability to
cause the observed effects upon the magnetic transfer func-
tions of group B as well as for group D. If we regard the
Biindnerschiefer as a regional conductive structure and the
Avers-Schiefer as a local conductive structure, we can ex-
plain the effect on the magnetic field in group D but not in
group B, and vice versa. But we have to point out that the
Auvers structure does not exceed the required longitudinal ex-
tension to allow currents be induced in the observed period
band and presumably for much longer periods. The continu-
ation of the Biindnerschiefer beneath Middle Penninic, South
Penninic and Austroalpine units to the East is generally con-
sidered. From these observations following conclusions can
be made:

e Any superposition of conductive structures of regional
extension with an azimuth of a multiple of 45°N can
cause the magnetic distortion in GDS data in the inves-
tigation area.

e If the conductivity distribution in the Molasse basin is
one-dimensional, the current channelling effect of the
Biindnerschiefer (with « = 45°) can be responsible for
distortion effects in the data.

e The superposition of point 1 and point 2 can cause the
observed induction arrow pattern.

e The Avers-Schiefer are local, the Biindnerschiefer are
regional inhomogeneities.

6. Hypothetical Event Analysis

To verify the validity of the model obtained in the previous
section, the method of Hypothetical Event Analysis (HEA)
has been applied to the measured data set. This method uses
a hypothetical uniform external horizontal field Bj, of speci-
fied polarization ¥ * to calculate a predicted vertical magnetic
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field BY for all stations in a data array. All variations in the
generated predicted map are of internal origin and are caused
by channelling effects or induction (Bailey, 1974). From a
calculated predicted map of B for each period T and differ-
ent polarizations ¥, we try to infer the anomalous current
distribution and therefore to analyse the three-dimensional
conductivity structure with depth:

(13)

In practice, a horizontal field of 1 nT is chosen to generate
maps of the anomalous field (Bailey, 1974):

BZ[,Z(A’B)<1~COS19 )

1-sing*

BP =A-Bi+B-B].

(14)

Consequently, if the hypothetical event is polarized in the
East or North direction relative to the magnetic North with
zero phase, the predicted value B! reduces to one of the
principal magnetic response functions:

B?Y = A for9* = 0° (15)

(16)

The polarization in the North direction should drive a cur-
rent in East-West direction, whereas an eastwards polarized
magnetic field drives currents in the North-South direction
through the area of interest.

The simplified analysis of the magnetic transfer function
in the previous section already implied the main strike direc-
tions for the structures to be either 90°N, 45°N or 135°N. In
Figs. 9, 10 and 11 we used polarizations according to these

B? = B for 9* = 90°.

directions to generate HEA maps of the real part of the mag-
netic field for the periods 7 = 4.7 sand 7 = 126 s. Current
concentration are indicated by the spatial gradients (£1 nT)
in the vertical magnetic field. Figures 9(a) and 9(b) show
the effect of a North-South polarized horizontal magnetic
field, that drives an electric current in East-West direction.
In Figs. 10(a) and 10(b) we generate a current flow along
the strike of the Biindnerschiefer (North-East), whereas in
Figs. 11(a) and 11(b) the direction of the current flow is
South-East.

Regardless of the polarization angle, we find, for the short
periods a complex pattern of anomalies mainly generated on
the mesozoic sediments. On the other hand, the Helvetic
Domain, the Penninic basement slices and the Austroalpine
Units are almost free from channelling effects. Significantly,
the HEA maps for 7 = 126 s contrasts with the previous
cases and show a dominating anomaly under the Austroalpine
Units. The anomaly forms a wedge and is strongly associ-
ated with the strike of the Engadine Line (strike-slip fault),
whereas the anomalies for the shorter periods on the Penninic
sediments have virtually disappeared.

From the model in Fig. 8, we would expect an anomaly pat-
tern which is correlated with the basal Penninic thrust and the
mesozoic sediments Biindnerschiefer and Avers-Schiefer. In
fact, the HEA map for a magnetic field with an azimuth of
135°N and 7 = 4.7 s (Fig. 10(a)) produces the most straight
forward current channelling system. Here we find a strong
anomaly in front of the Tambo and Suretta nappes which
deviates into the Avers-Schiefer and stops at the end of the
Engadine Line. Another current channelling effect might be
associated with the Verrucano, which separates the Aar and



1032

M. GURK: MAGNETIC DISTORTION OF GDS TRANSFER FUNCTIONS

710

220 y v
= s~ 0
8 a
| \
| ° A
\ A
\
\ \
\
£ |
O 3\ 4 Chug \
llans.
~ 2
) j 0
= s > /,
2 A T8 v
090 ~ 20)) ,
) E
{
160 ! P
o ne ! !
/
04 ’ S
@ = AR
0 2 5 - Py N
4 0
o
)
———— subric Une -
110 =
790 710 750 790
(b)

T = 4.7 s (a), Period T = 126 s (b). Amplitude of horizontal field: 1 nT, phase of the horizontal field: 0°.

710

(2)

220 220
b
S
lia g
l@_\/
]
7
7 N I
9 ) 3 160 160
O Ltivon: & i
& A
N
=== aubria-0e A 110 110
750 790

Fig. 10. Hypothetical event map of the anomalous vertical magnetic field: real part, Azimuth of regional field relative to magnetic North: 45°. Period

790

750

(b)

T = 4.7 s (a), Period T = 126 s (b). Amplitude of horizontal field: 1 nT, phase of the horizontal field: 0°.

Fig. 11. Hypothetical event map of the anomalous vertical magnetic field: real part, Azimuth of regional field relative to magnetic North: 135°. Period



M. GURK: MAGNETIC DISTORTION OF GDS TRANSFER FUNCTIONS

1033

-

oMilar\o 10°

o
% 77 -

44
\—_-—_-——

Udine \
/O
4 Trieste

6 3

42 40 38 36

arvisio

o

100 km

-
-

~

/7 .0

Fig. 12. Depth contour lines 1) of the Moho boundary (km) inclusive the location of the investigation area. The major near vertical offsets and overriding
fronts are plotted. 2) Moho overriding front; 3) offset >10 km; 4) offset <10 km; 5) Insubric Line. After Cassinis et al. (1997).

Wy, '}\.’ A l.-l ‘_"‘l h
'~ Adriatic-lower crust

fef ¢

50

lithospheric mantle

Fig. 13. Simplified model of the top of lower crust from the trace of the Eastern traverse (Penninic Domain) to the North-East (Austroalpine) showing
the indentation by the Adriatic plate and the presumed current channelling/ induction. The upper crust is stripped off. After Pfiffner et al. (1997) and

Cassinis et al. (1997).



1034

Gotthard massive. The anomaly to the North-East of Thusis
is probably due to internal structures of the Biindnerschiefer.
However, the current system in this pattern moderately re-
flects the boundaries of the magnetic transfer functions found
for the groups A-D.

7. Conclusion

The HEA shows a spatial decoupling of induction
processes with depth. For short periods (7 = 1-10 s),
induction and/or current channelling is related to the meso-
zoic sediments and their internal inhomogeneities. For peri-
ods longer than T = 126 s, induction and/or current chan-
nelling is limited to the Austroalpine and Penninic basement.
The model of a L shaped structure associated with the basal
Penninic thrust cannot be confirmed. A structural conduc-
tivity anomaly with a strike of 45°N respectively 135°N is
found at depth. Thus, the conductivity distribution in this
part of the Alps is strongly three-dimensional. The correla-
tion of the deep conductor with the Engadine Line implies
that this strike slip fault is of lower crustal origin.

8. Discussion

Little is known about the deep structure of the transition
zone from the Western to the Eastern Alps. Recent seismic
refraction studies, however, revealed a region partially lack-
ing of lower crustal reflectivity. This is probably related to
strong energy scattering along complex deformation struc-
tures (Pfiffner et al., 1997). Figure 12 (after Cassinis, 1997)
shows depth contour lines of the Moho boundary derived
from seismic and gravity data together with our investigation
area (box). Line (4) represents a strip of an Moho offset(< 10
km) due to a possible Adriatic indenter which forms in its
western part a wedge bearing the geometric properties nec-
essary to explain the revealed deep conductivity anomaly.
Since their data resolutions is quite poor, we can shift this
structure some kilometers to the West. In our model shown
in Fig. 13, this Moho offset is caused by a strip of peeled
Adriatic lower crust/mantle overlaying the European lower
crust (stacked lithosphere). As a fact of this offset, good con-
ductive Adriatic lower crust lies side by side with resistive
European upper crust, creating a sharp lateral conductivity
contrast. In this context, a North-South component of cur-
rent flow found by Berktold (1974, 1976) south of the Tauern
might be associated to the same regional anomaly.
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