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A source model of long-period volcanic earthquakes is presented. We consider that a fluid-filled spherical
cavity surrounded by an infinite elastic medium is excited into resonance like the Earth’s free oscillations. The
eigenequation of this system is derived in a general manner, making use of the spherical harmonic and spherical
Bessel expansions. The solution is given as a complex number; its real part is the eigenfrequency and the imaginary
part represents the attenuation coefficient of the oscillation. The eigenmodes are classified into five groups: (1) the
compressional modes in a fluid sphere, (2) the compressional modes in a solid medium, (3) the shear modes in
a solid medium, (4) the Stoneley modes, and (5) the torsional modes. We apply them to the long-period volcanic
earthquake observed at Asama volcano, Japan. Estimating the characteristic frequencies and attenuation coefficients
of the observed vibrations and assuming that the primary component ( f/ = 1.73 Hz) corresponds to the fundamental
translation mode of a fluid sphere as one of the compressional modes in fluid, we conclude that the resonator which
is a spherical cavity of diameter 220 m filled with steam of temperature 500°C and pressure 170 atm is favorable.

1. Introduction

In several varieties of earthquakes observed in an active
volcano, long-period volcanic earthquakes are uniquely dis-
tinguished from any other seismic events and have close re-
lations to the structure under the volcano and its activity
(McNutt, 1992; Chouet, 1996). This type of earthquake pos-
sesses very distinct features; its spectrum has a number of
narrow peaks in the frequency domain and these character-
istic frequencies are significantly low. One may call some of
them “harmonic tremors” as their oscillations last very long
time. A harmonic tremor is considered as a superposition
of sustaining long-period events (Chouet, 1996). Figure 1
shows an example of the long-period volcanic earthquake
observed at Asama volcano, Japan, to which we will apply
our model in Section 4 of this paper. Its waveform resem-
bles an exponentially damped sinusoid having a very low
characteristic frequency (f = 1.73 Hz) and lasts for more
than one minute. This event may be called one of the “long-
coda” volcanic earthquakes. Similar seismic events are
also observed at, for example, Mt. Galeras (Chouet, 1996;
Gomez and Roberto, 1997), Mt. Meakan-dake (Nishimura
and Yamashita, 1982), and many other volcanoes in the
world.

Many attempts have been made to account for the long-
period seismic events and mysterious vibrations of active
volcanoes. For example, mechanisms based on the reso-
nance of elastic waves in a fluid sphere (Crosson and Bame,
1985; Fujita et al., 1995), a fluid pipe (Ferrick et al., 1982;
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Chouet, 1985) and a fluid-filled crack (Chouet, 1988) have
been considered to deal with specific structures under vol-
canoes. Instead of the resonance effects, vibrations due to
volcanic fluid flowing through a channel (Julian, 1994) and
a path-effect intrinsic to near-surface local structures (Kedar
et al., 1996) are considered as physical mechanisms.

This paper focuses on a model based on acoustic reso-
nance of a fluid sphere, firstly, because a sphere is one of
the simplest shapes in nature and, secondly, because a com-
plete description of its characteristic frequencies has never
presented. Relating problems have been already solved. For
example, free oscillations of a fluid sphere in vacuum have
been well studied in an attempt to understand the nature of
the Earth’s free oscillations (Aki and Richards, 1980). An-
other example is free oscillations of an infinite elastic body,
including a vacuum spherical cavity, quoted in one of prob-
lems in Landau and Lifshitz (1986). In their formalism,
the eigenfrequency of its radial mode is given as a com-
plex number whose imaginary part stands for the attenuation
(damping) coefficient of the oscillations.

Fujita et al. (1995) argued the eigenoscillation of a fluid
sphere embedded in an infinite elastic body in detail and
presented mathematical formulae. However, they are only
concerned with the radial motions; other higher-order eigen-
modes remain unknown. We generalize their approach to
take three-dimensional motions of fluid and elastic media by
expanding any physical quantity in spherical harmonics to
resolve its horizontal structure and in spherical Bessel func-
tions to resolve its radial structure. The eigenfrequencies
are given in a similar manner to the case of the Earth’s free
oscillations, though they are not real numbers.
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Fig. 1. Seismograms of the long-period event observed at four stations
(KAC, KAH, KAM and KAN) around the summit of the Asama vol-
cano. Vertical axis represents the relative magnitude of the up-down
component of ground velocity.

In the following sections, we first present the general
equations governing three-dimensional free oscillations of
the system. Next, we describe the properties of the eigen-
modes and classify them into several groups. The nature of
vibrations is understandable as the combination of two spe-
cial cases: free oscillations of a fluid sphere in vacuum and
those of an infinite elastic body including a vacuum spheri-
cal cavity. However, some distinct features arise due to the
interactions between fluid and solid media. The last part of
this paper is devoted to the interpretation of the long-period
volcanic earthquake observed at Asama volcano by applying
our fluid-sphere model.

2. Model

Our model is essentially identical to that presented by
Fujita et al. (1995). Let us consider a fluid sphere M,
of radius a which is embedded by a homogeneous elastic
medium M, extending infinitely. We assume that the Lamé
elastic parameters, A; and u;, and the density p; of M; are
constants, where the subscript j under a quantity indicates
its value in the fluid sphere if j = 1 and that in the solid
medium if j = 2 (Fig. 2). The P and S wave velocities
area; = /(A; +2u;)/pj and B; = /1 /p;, respectively.
Note that 8; = 0, because there is no shear stress in the fluid
sphere.

The equation governing elastic motion with no external
forces can be written in the vector form

32uj
012

=GV(V u) = FV XV xu (1)

where u; is the displacement in M;. We decompose the
vector field ; into three terms:

u;=VF,+VxVx(Sr+Vx({Tr), (2)

where F;, §; and T; are the defining scalar functions and r
is the position vector with respect to the center of the fluid
sphere. In terms of the Earth’s free oscillations, spheroidal
oscillations are represented by £; and S;, and torsional os-
cillations are represented by 7;. On substituting (2) into

M,: Fluid Sphere M,: Elastic Medium
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Fig. 2. A schematic view of the model.

Eq. (1), we have the following three independent equations
describing general elastic motion:

3%F;
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We assume that each defining scalar, say F;, is expanded in
the form
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where Y/" (0, ¢) = P"(cosf)e'™? is the spherical harmon-
ics, P/" is the associated Legendre functions, (7,0, ¢) are
the spherical polar coordinates, and w is the complex angu-
lar frequency. In this expression, the displacement and the
traction across the spherical surface of radius » are given by
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where D7 is the differential operator defined by
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and the subscript j is omitted for simplicity.
On integrating Egs. (3)~(5) multiplied by P" (cos §)e~""?
on a unit sphere, we have

(D} + p§)F}'} =0, (13)
(D} +43)S); =0, (14)
(D} +43)T)} =0, (15)

where p; = w/a; and g; = w/B;. Equations (13)—(15)
are the Bessel differential equations of order of half an odd
integer. Therefore, the solution is a linear combination of
the spherical Bessel function j; and the spherical Neumann
function #;.

In the fluid sphere M|, the defining scalars S; and 77 must
be zero because the S wave velocity B; is zero. Further-
more, the defining scalar F is proportional to the spheri-
cal Bessel function to avoid singularities at the center of the
sphere. Hence, the function F7}(r) must be proportional to
the spherical Bessel function of /th order:

Fij(r) =

A7 ji(pir), (16)

where A" is a complex constant. In the solid medium M,
on the other hand, we adopt the radiative boundary condition
at infinity which yields the solution of the outward spherical
wave there. This condition is readily satisfied by forcing the
functions 3} (r), S5;(r) and T} (r) to be proportional to the
spherical Hankel function of the second kind h}z) defined by

h? @) = ji@) —ini(2), (17)

where z is a complex variable. It is known that h;z) (z) ~

i"*1z71¢7% in the limit of |z| — oo. Thus we have
FR () = B'h? (par), (18)
n(r) = Cl'hy? (qar), (19)
T3 (r) = DI"hy” (qor), (20)

where B;", C[" and D} are complex constants.
The boundary conditions at » = a are the continuity of
the radial component of displacement u, and the tractions

across the boundary o;,, 0,9 and o0,4. Therefore, we have
the following equations at » = a:
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The eigenfrequencies of the spheroidal oscillations are given
by letting the determinant of the coefficient matrix of Eq.
(21)—(23) be zero. Using the recurrence relations of the
spherical Bessel function, we have the following character-
istic equation:

X1 )1 21
X2 )2 22| = 0, (25)
0 y3z3
where
xy = Lji(2) — Qi 1(2),
Xy = —Rji(),
v =1 (X) = Xhi?, (X),

vy = [21(1 - Yz]h(z)(X) +4xh?, (X),
y3 =20 — DA (X)
21 =11+ DD (1),
2= 20( + 1)[(1 — AP () -

—2Xh2, (X,

Yhm))

2y = [2(12 — - Yz]hl(z)(Y) +2Yh® (1),
X = QJa,
Y =X/y,
R="Y%/p.

Here, @ = pja = wa/a; is the nondimensional angular
frequency scaled with the characteristic time 7 = a /o) and
o, y and p are the nondimensional parameters defined by

il _B i

o= ’ y ’ p -
o (2%] L1

(26)

The eigenfrequencies of the torsional oscillations are given
by Eq. (24) as
(I = Dy (1) —

Yh{?,(Y) =0. (27)
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Note that the nondimensional eigenfrequencies €2 given by
solving (25) or (27) discretely and infinitely exist in a com-
plex plane. The real part of 2 represents the angular fre-
quency of the free oscillations. The imaginary part, which
is always positive, stands for the attenuation coefficient of
the oscillations because the amplitude of the displacement
is proportional to ef ReCD!=Im(" at any place. The degen-
eracy with respect to the azimuthal wave number m occurs
like the case of free oscillations of a homogeneous sphere in
vacuum. Hence, the eigenfrequency is generally written as
Q = ,Q, wheren =0, 1,2, - is the number to identify
the solution.

3. Physical Properties of the Eigenmodes
3.1 Free oscillations of a fluid sphere in vacuum

First of all, we describe the physical properties of the
eigenmodes of two extreme cases. One extreme end is the
free oscillations of a fluid sphere in vacuum, which is a
special case with p; = 0 (i.e,, p = 00) in our model. The
other is free oscillations of an infinite elastic body including
a spherical void, which is another special case with p; = 0
(i.e., p = 0).

The eigenfrequency ,€2; of free oscillations of a fluid
sphere in vacuum is given by the (n-+1)th root of the spher-
ical Bessel function j; (see the left-hand side of Eq. (22)
and also Aki and Richards (1980)). Note that ,$2; is a real
number because no emission of waves occurs in the present
situation. Figure 3 shows the relation between the eigenfre-
quency €2 and the degree /; known as the dispersion rela-
tion of the eigenmodes. One can clearly see a number of
branches of which the slope measures the group velocity
of the resonating waves. We refer to these modes as “the
compressional modes in a fluid sphere” and use the sym-
bol ,S; (n = 0,1, 2, - --) to indicate them because they are
essentially the same as the Earth’s spheroidal modes. The
radial component of the displacement u, is shown in Fig. 4
for the eigenmodes (.5, 1.5; and ,S;. It is evident that the
spherically symmetric (radial) modes , Sy have n nodes and
the asymmetric modes ,S; (/ > 1) have n+1 nodes in the
range 0 < r < a. The reason why there are no higher-
order (/ > 1) eigenmodes which have no nodes in the range
0 < r < a, is that the shear stress is absent in the fluid
sphere. It should be noticed that the use of the symbol ,,S; is
different from that conventionally adopted in the case of the
Earth’s free oscillations. In Fig. 3, there exists an eigenmode
287 of n = 0and/ > 0. This does not mean that there is a
higher-order mode having no nodes in the fluid region be-
cause n does not represent the number of nodes but merely
the index number to identify the branch.

3.2 Free oscillations of a spherical cavity in an infinite
elastic body

The eigenfrequencies of the other extreme end, free os-
cillations of an elastic medium including a spherical cav-
ity, are given by solving Egs. (22), (23) and (24) in which
A" = 0. The spheroidal modes (i.e., the solutions of (22)
and (23)) are shown in Fig. 5 for y = 0.5 (y is the ratio of
the S and P wave velocities). In this figure, we temporarily
defined a nondimensional angular frequency Q' = wa/w,.
One can find similar branches in the dispersion relation be-
tween Re(€2') and /, as seen in Fig. 3. These branches are

20
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Fig. 3. The nondimensional eigenfrequencies 2 of free oscillations of a
fluid sphere in vacuum are plotted versus angular order /. The branches
are designated as the compressional modes in a fluid sphere ,,.S;, where
n is an integer to distinguish the branches as indicated.
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Fig. 4. The amplitude of radial displacement (the quantity in the bracket
in Eq. (7)) associated with free oscillations of a fluid sphere in vacuum
is shown as a function of the nondimensional distance from the center
of the sphere, . The eigenmodes (.5, 1.5 and ».S; are shown for / = 0
(solid line), / = 1 (dashed line) and / = 2 (dash-and-dot line). The
amplitude is normalized so that the maximum in the range 0 < r < l is
unity.
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Fig. 5. The spheroidal eigenmodes of free oscillations of an infinite elastic body including a spherical void when the sound velocity ratio y is 0.5. The
eigenfrequency ' is now a complex number; (a) the real part (angular frequency) is plotted versus angular order /, and (b) its imaginary part is plotted
in the right which is regarded as the attenuation coefficient. The compressional modes , H; and the shear modes , L; are represented by broken and

dotted lines, respectively.
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Fig. 6. The torsional eigenmodes , 77 of free oscillations of an infinite elastic body including a spherical void when the sound velocity ratio y is 0.5. The

format is the same as that of Fig. 5.

categorized into two groups by the difference of their slopes.
The first one is a set of “compressional modes in a solid
medium” of which the slope is about unity, the nondimen-
sional P wave velocity in the solid medium. In contrast to the
previous case, the number of branches increases along the
lower right direction in Fig. 5(a). Thus, we use the symbol
«Hy (n=0,1,2,--.) to indicate the compressional modes,
but now the frequency of the mode , H; is higher than that
of ,+1 H;. The other one is a set of “shear modes in a solid
medium” of which the slope is y, nondimensional S wave
velocity in the solid medium. The torsional oscillations of
the elastic medium, including a spherical cavity (i.e., the so-
lutions of (24)), are shown in Fig. 6. We refer to the eigen-
modes in Fig. 6 as “torsional modes in a solid medium” and
use the symbol ,7; (n = 0, 1,2, ---). The slope of the tor-
sional modes is about y.

In Fig. 5, the compressional and shear modes in the

solid medium look like twin branches; that is, there is one
shear mode to be paired with a compressional mode , H;
and the branches of theses two modes intersect at the point
(I, Re(2")) = (2n — 1, 0) in Fig. 5(a). We refer to the as-
sociated shear mode as the nth shear mode of degree / and
use the symbol , L;. Note that o L; does not exit; there is no
branch of the shear modes to be paired with ¢ H;.

In general, the attenuation coefficient Im(Q2") of , H; is
larger than that of ,, L;, and that of the torsional mode , 7; lies
between them. Of particular interest is that the attenuation
coefficient of the eigenmodes |L; decreases as the degree
I increases. These modes are generated by surface waves
trapped along the spherical surface of the cavity. In this
case, the surface wave is known as the Rayleigh wave but its
generalization in the system described in this paper presents
much interest. A detailed description on the ;Z; mode is
given in such a general case below.
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Fig. 7. The nondimensional eigenfrequencies of free oscillations of a fluid sphere embedded in an elastic medium are shown when the nondimensional
parameters are « = 2, y = 0.5 and p = 5. The real part (a) of the eigenfrequency 2 is plotted versus angular order / in the left and its imaginary part
(b) in the right. The compressional modes in a fluid sphere (,,.57), the compressional modes in a solid medium (,, /;) and the shear modes in a solid

medium (, L;) are denoted, respectively, by solid, broken and dotted lines.

3.3 Free oscillations of a fluid sphere in an infinite elas-
tic body

The essential features of free oscillations of a fluid sphere
embedded in an elastic medium can be understood as the
combination of the two special cases described above. Fig-
ure 7 shows the complex nondimensional eigenfrequencies
of the spheroidal oscillations fore =2,y = 0.5and p = 5.
At first sight, one may regard the solutions of this system
as the complete sum of those of free oscillations of a fluid
sphere (shown in Fig. 3) and those of free oscillations of an
elastic body including a spherical cavity (shown in Fig. 5).
For example, we can identify the red branches in Fig. 7 with
the compressional modes in a fluid sphere ,,5;. The differ-
ence from the previous case is that these modes have small
but finite values of attenuation coefficient because the elastic
waves in fluid radiate through the fluid-solid boundary into
the medium outside. As shown in Fig. 8, the eigenfunctions
have almost the same property as that of free oscillations of
a fluid sphere.

Similarly, we can identify the black and blue branches
in Fig. 7 with the compressional modes , H; and the shear
modes ,L;, respectively. In this case, the gradient of the
branches of the compressional modes is about @ and that of
the shear modes is oy, because we have taken the nondi-
mensional P wave velocity in fluid as unity. The eigen-
modes of the torsional oscillations are completely the same
as shown in Fig. 6 because the property of the fluid sphere
does not affect Eq. (24).

The most distinctive feature of this system consists in the
existence of (L;, which does not appear in free oscillations
of a fluid sphere nor in those of a spherical cavity in an in-
finite elastic body. We use the symbol (L; to distinguish
the new branch because this appears to be paired with ¢ H,
in Fig. 7. However, it bears characteristics common to the
free oscillations of a fluid sphere. This is confirmed by the
fact that the slope of the (L; branch is the same as that of
the compressional modes in fluid (red branches) and that its
eigenfunction has large amplitude in the fluid sphere. The

B i=0 — =1 - =2 =3

/0

Fig. 8. Normalized amplitude of radial displacement (the quantity in the
bracket in Eq. (7)) of the compressional modes in fluid (¢S5 and ;5;
(0 < I < 3)is shown as a function of the nondimensional distance
from the center of the sphere (» = 1 is the fluid-solid boundary). The
nondimensional parameters are the same as Fig. 7; « = 2, y = 0.5 and
p=>5.

top panel of Fig. 9 shows the radial displacement of (L,
(1 <1 < 4). One can readily find that these are essen-
tially the fundamental modes of the oscillations of a fluid
sphere; the fluid sphere vibrates more vigorously than the
solid medium outside and there are no nodes in the range
0 < r < a. The existence of the higher-order fundamental
modes which have no nodes in fluid is brought by the cou-
pling between the fluid sphere and the outer solid medium.
Although the fluid does not have shear stress, the elasticity
of the outer medium sustains the deformation of the fluid-
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Fig. 9. Same as Fig. 8 but for the shear modes in the outer medium
2L; (0 < n < 2). Note that the eigenmodes L, are classified to the
fundamental modes of a fluid sphere.

solid boundary and enables the eigenmodes (L;. In particu-
lar, it is remarkable that the translation mode (L is permit-
ted in this system.

The middle panel of Fig. 9 shows the radial displacement
of |L;. As already mentioned, these modes are generated
by the resonance of surface waves. In fact, one can rec-
ognize the tendency that the region where particle motion
retains large amplitude gradually concentrates around the
spherical boundary as the degree / increases. The surface
wave which is trapped around the fluid-solid boundary is
called the Stoneley wave (Aki and Richards, 1980). Thus,
it is appropriate that these modes are designated as “Stone-
ley modes”. The Stoneley modes are also distinguished by
the fact that the attenuation coefficient decreases to zero as
the angular order increases, as seen in the right-hand side of
Fig. 7.

Other eigenmodes ,L; of n > 2 have the properties as
the shear modes in the outer solid medium. For example,
the radial displacement of ,L; in the solid medium, shown
in the bottom panel of Fig. 9, is significantly larger than that
in the fluid. Similarly, the radial displacement of the com-
pressional modes , H; is amplified in the region outside the
sphere, as seen in Fig. 10. Only the mode (H; has differ-
ent features from others; it retains relatively large amplitude
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r
Fig. 10. Same as Fig. 8 but for the compressional modes in the outer

medium , H; (n =0, 1).

in the fluid sphere and around the fluid-solid boundary, es-
pecially in a lower-order mode. This is because the branch
of o H; weakly interacts with the branches of (L; and |L;.
However, the higher-order modes of ¢ H; lies in the category
of the compressional modes in a solid medium.

Of further interest is the parameter effects on the eigen-
modes of the system. Though there are three independent
nondimensional parameters «, y and p, we restrict our in-
terest to the effects of o and p. In most cases, the ratio of
the S and P wave velocities y in the uppermost crust lies be-
tween 0.4 and 0.6, and it contributes only a minor effect in
this range. Figure 11 shows the angular frequency of several
eigenmodes as a function of « for some values of p. The
nondimensional parameter y is fixed to 0.5. We can find es-
sentials of the parameter effects in Fig. 11. First, the angular
frequency of the compressional mode in a fluid sphere, ,,.S;
and (L, is approximately constant against the change of the
nondimensional parameters. However, it makes only a slight
difference of the constant value whether «p < 1 or ap > 1.
When ap < 1, the situation is like the free oscillations of a
fluid sphere in vacuum; the boundary condition can be ap-
proximated by the stress-free condition. When ap > 1, on
the other hand, the situation is like the free oscillations of
a fluid sphere in a rigid body; the boundary condition is
u, = 0 atr = a. In this respect, the attenuation coeffi-
cient is larger when ap =~ 1, and it decreases to zero as
the impedance contrast ap becomes much greater or much
smaller than unity.

Second, the compressional mode in a fluid sphere ¢L;
(I = 1) which has no nodes in the range 0 < r < a does not
always exist but disappears when ap < 1. This is because
the nature of the vibrations when ap < 1 is essentially the
same as that of free oscillations of a fluid sphere in vacuum,
in which the elasticity of the outer medium has less influence
on the deformation of the fluid sphere. Similarly, the angular
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Fig. 11. Complex eigenfrequencies of (.S; (red lines; 0 < / < 2), oL; (green lines; 1 </ < 3) and o H; (black lines; 0 < / < 2) are shown as functions
of « for, from top to bottom, p = 20, 10, 5, 3 and 2. The nondimensional parameter y is 0.5. Left, middle and right panels are, respectively, angular
frequency, attenuation coefficient, and the ratio of the two. ¢Sy, 9L and ¢ Hy are shown as broken lines.
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Table 1. Frequency and its attenuation coefficient of spectral peaks of the long-period event observed at four sites (KAC, KAH, KAM and KAN). There
are 16 peaks detected (See Figs. 13 and 14). The mean value and rms of the attenuation coefficients are shown in the right column.

frequency, f [Hz]

attenuation coefficient, € [Hz]

KAC KAH KAM KAN mean
1.73 0.0315 0.0339 0.0309 0.0310 0.0318 £ 0.0012
3.19 0.180 0.159 0.0976 0.137 0.144 £ 0.030
3.65 0.0877 0.0829 0.0864 0.0734 0.0826 £ 0.0056
5.79 0.0665 0.0717 0.0796 0.0762 0.0735 4+ 0.0050
6.65 0.0905 0.0861 0.0844 0.152 0.103 £ 0.028
7.14 0.166 0.131 0.172 0.121 0.148 £ 0.022
7.45 0.134 0.103 0.126 0.146 0.127 £0.016
7.92 0.0965 0.0924 0.108 0.0618 0.0897 £ 0.0171
8.11 0.0747 0.0705 0.0862 0.0855 0.0792 £+ 0.0068
8.77 0.115 0.131 0.0963 0.105 0.112 £0.013
10.17 0.0877 0.0691 0.0749 0.0358 0.0669 £+ 0.0192
10.60 0.114 0.122 0.106 0.146 0.122 £0.015
11.43 0.167 0.112 0.129 0.0917 0.125 £ 0.028
11.81 0.126 0.179 0.109 0.0823 0.124 £ 0.035
12.27 0.125 0.0826 0.138 0.106 0.113 £0.021
13.61 0.0795 0.103 0.107 0.0939 0.0959 £+ 0.0105

frequency of some compressional modes in a solid medium,
say o Hp, becomes to zero when ap < 1. Once the frequency
falls into zero, the solution becomes two pure imaginaries
(Fujita et al., 1995). Around the critical point where (L,
disappears, this branch strongly interacts with the branch
oH; and it is difficult to interpret which branch plays a role
as the fundamental compressional mode in fluid.

Third, the complex eigenfrequencies of the compressional
and shear modes in a solid medium are proportional to «.
Thus, the ratio of the attenuation coefficient to the angular
frequency ¢ = Im(2)/Re(£2) is almost constant against
the change of «. It should be noticed that the value of ¢
is at least larger than 0.1 for any ,H; and ,L; of n > 1
as seen in the right panels of Fig. 11. For example, the
amplitude of the vibrations is damped down to 1/e in each
cycle of the vibration if ¢ = 1/27 =~ 0.159. Therefore,
we can recognize that the compressional and shear modes
in solid are more radiative than this situation. Though the
detail is not shown, the torsional modes are the same as the
compressional and shear modes in a solid medium in nature;
its angular frequency is proportional to «, and ¢ is at least
larger than 0.1.

4. Application to the Long-Period Volcanic Earth-
quake

The seismograms of the long-period volcanic earthquake
to which we will apply the model described in the previ-
ous sections have been shown in Fig. 1. The earthquake oc-
curred beneath the summit crater of Asama volcano, Japan.
In Fig. 1, the data obtained at the nearest four observation
points (KAC, KAH, KAM and KAN) to the hypocenter are
plotted. The location of these observation points is shown in
Fig. 12. From a precise seismic study (Tsuji ef al., 1998),

Fig. 12. The topographic map around the summit of the Asama volcano.
The interval of thin contours is 10 m. Four seismometers (KAC, KAH,
KAM and KAN) are installed around the summit crater and shown as
dots. The hypocenter of the observed long-period event is shown as a
star which is at a depth of 800 m below KAC.

it is known that the hypocenter is about 800 m deep be-
neath KAC, as shown in Fig. 12. Although the seismome-
ters recorded three components of ground vibrations, we
only use the vertical motion data because other components
seems to have considerable noises.

Figure 13 shows the spectra obtained by Fourier trans-
forming the data in the range 5.9s < ¢ < 74.1 s in Fig. 1.
The primary peak is the one of which the characteristic fre-
quency is about 1.73 Hz. The amplitude of the other peaks
are several percent of that of the primary one. We detected
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Fig. 13. The amplitude spectra of the data shown in Fig. 1 of which the time domain 5.9 s < ¢ < 74.1 s is used in the calculation.

16 characteristic peaks including the main peak in the range
f < 15 Hz (Table 1). It appears that the amplitudes of the
primary oscillations (f = 1.73 Hz) are consistent with the
distance from the hypocenter.

The attenuation coefficient of the characteristic oscilla-
tions can be obtained by Fourier transforming the data with
many staggered windows and estimating the time variation
of the peak amplitude. Figure 14 shows the time variation of
the amplitude of various peaks. From the slope of the lines
in Fig. 14, we can estimate the attenuation coefficient € [Hz]
defined in such a way that the amplitude is proportional to
e~ For example, the attenuation coefficient of the primary
peak is 0.032 £ 0.001 Hz. The attenuation coefficients of
the other peaks are also estimated but with less precision
(Table 1).

We consider that the primary peak (f = 1.73 Hz and
€ = 0.032 Hz) is the compressional mode in a fluid sphere
of the lowest frequency, because there are no notable peaks
before it and its attenuation coefficient is very small. In
general, the lowest frequency belongs to oL | mode, a simple
translation mode of a fluid sphere in an elastic medium.

To estimate the model parameters «, y and p, we direct
attention to a quantity ¢ = Im(€2)/Re(€2). This quantity is
related to the observables f and € as

€

§=m-

(28)

In this case, we have ¢ = (2.95 % 0.09) x 1073 for the pri-

mary peak from observation. If we assume that the primary
peak corresponds to oL ; mode, the value of ¢ of L mode,
which is a function of «, y and p, satisfies

L) =0Lia,y, p) 2295 x 107, (29)
The relation between « and p is shown in Fig. 15 on condi-
tion that Eq. (29) is satisfied for y = 0.5. Under this con-
dition, the nondimensional frequencies of several compres-
sional modes in a fluid sphere which have small values of ¢
are also shown in Figs. 16 and 17. One can see that the real
part of the eigenfrequency is almost constant, even though
the nondimensional parameters vary. Thus, we cannot de-
termine the nondimensional parameters that best fit the data
from the information of frequency. However, the imaginary
part sensitively depends on the nondimensional parameters,
as shown in the bottom panels of Figs. 16 and 17, giving the
possibility of estimating the model parameters.

Figure 18 shows the extent to which the observed spectral
peaks are explained by the model. We obtained a relation
between the observed frequency and the calculated angular
frequency by fitting a line to the intersections of vertical
(Re(2)) and horizontal ( f [Hz]) lines in the diagram shown.
If the relation is written in the form

f =bRe(Q), (30)
our preferred model indicates b = o /2wa = 0.933 Hz. It
can be said that its proportionality is reasonably good; all
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Fig. 14. Amplitude of the spectral peak f is shown as a function of time. Each dot at time # is obtained by Fourier transforming the data with the data
window (¢ + 17) s. The frequencies observed at KAC, KAH, KAM and KAN are shown as black, red, green, and blue lines, respectively.

Fig. 15.

The relation between o and p on condition that the ratio of

the imaginary to real parts of the eigenfrequency Q of oL is fixed to
2.95 x 1073 for y = 0.5 (i.e., the condition that Eq. (29) is satisfied).

the peaks are explained with an error of less than ~3% but
with two exceptions, f = 3.65 Hz and f = 1.73 Hz. The
problem is that there exist a few eigenmodes which are not
excited to vibrations as shown in Fig. 18. There are some
situations in which an eigenmode does not reveal itself. We
can imagine that the source function of the long-period vol-
canic event does not include the eigenfunction of that mode;
but this is rather self-seeking. Instead, it may be reasonable
that the eigenmode could not be observed because its attenu-
ation coefficient was so large. Re-examining Figs. 16 and 17
from this point of view, we find that some of the eigenmodes
have relatively large values of Im(£2) at a certain parameter.
Indeed, the nondimensional attenuation coefficients of (L3,
oL4 and (L5 are larger than the others when p ~ 25 and,
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Fig. 16. The real and imaginary parts of the eigenfrequencies of oL
(1 <1 < 9) are plotted as functions of p. The other nondimensional
parameters (o and y) are determined by Fig. 15; « is a function of p and
y = 0.5. A number to a line denotes the degree / of the eigenmode.

at the same time, the corresponding peaks to these eigen-
modes are absent, as seen in Fig. 18. In this case, we adopt
the criterion that the eigenmode of which the imaginary part
of its nondimensional frequency is larger than 0.0175 can-
not be observed due to its rapid damping. Then we have a
constraint p > 23 because Im(2) of L3, gL4 and (L5 are
all greater than 0.0175 (see Fig. 16). And further, Im(£2)
of oL¢ should be less than 0.0175 because this eigenmode
seems to be excited into resonance, according to Fig. 18.
Therefore we can impose another condition p < 26 (see
Fig. 16). Taking account of the error in estimating the atten-
uation coefficients from observation, we can determine the
nondimensional parameters in the range p ~ 24 + 2 and,
correspondingly, @ ~ 3.9  0.2. Figures 18 and 19 indi-
cate our preferred model in which « = 3.88, y = 0.5 and
p = 24. The absence of (L3, 9L4, oLs and the higher-order
modes of (S; (I > 4) is well explained by the high attenua-
tion of the calculated eigenmodes. The result is summarized
in detail in Table 2.

5. Summary and Discussion
We described theoretical and applicable aspects of free
oscillations of a fluid sphere in an infinite elastic medium.
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Fig. 17. Same as Fig. 16, but for ¢S; (0 </ <5), 18 (0 <1 < 2)and 5.
A number to a line denotes the degree of the eigenmode (.S;.

In the first half of this paper, the eigenequation of three-
dimensional free oscillations of the system is derived mak-
ing use of the spherical harmonic and spherical Bessel ex-
pansions. The solutions are categorized into five different
types of eigenmodes: (1) compressional modes in fluid, ,S;
and ¢L;; (2) compressional modes in a solid medium, ,, Hj;
(3) shear modes in a solid medium, , L; (n > 2); (4) Stoneley
modes, L;; and (5) torsional modes, ,7;. In these modes,
the compressional modes in fluid, originating from free os-
cillations of a fluid sphere in vacuum, is the most important
to be applied to long-period volcanic earthquakes because
they have small attenuation coefficients. In particular, the
quantity { = Im(€2)/Re(£2) of the compressional modes in
fluid is smaller than O(10~"), while that of the other modes
caused by the vibrations of the outer medium is much larger.
Therefore, it is enough for us to take account of the modes
257 and o L, to apply the model to a long-coda volcanic earth-
quake.

The eigenfrequency obtained from (25) or (27) is a com-
plex number; its real part is the angular frequency and imag-
inary part is the attenuation coefficient, since the ampli-
tude of the displacement is written as u o< exp[i Re(2)¢ —
Im(2)¢], where Im(2) > 0. At the same time, the dis-
placement at the point very far from the center of the fluid
sphere can be written as u o« exp[—i Re(2)r + Im(Q2)r],
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Fig. 18. The observed characteristic frequencies f [Hz] are represented by horizontal lines, while the nondimensional frequencies Re(2) calculated for
o = 3.88, y = 0.5 and p = 24 are represented by vertical lines. The intersections of the horizontal and vertical lines are represented by a filled symbol;
the square, circle, triangle and star denote that the observed frequencies are explained by oLy, 057, 157 and 2.5/, respectively. The vertical dotted line
denotes that the calculated eigenmode is not observed; the absent eigenmode is classified by using the same symbol but colored white. The diamond

denotes the eigenmode 3 S;.

because the spherical Hankel function of the second kind of
degree / takes the form h}z) (z) ~ i1z exp(—iz) at infin-
ity (|z] = o00), where z o< Qr is a complex variable. There-
fore, the eigenfunction is inevitably forced to diverge in the
region far from the fluid sphere. Figures 9 and 10 show the
tendency that the compressional and shear modes in a solid
medium are more affected by this divergent problem, be-
cause they have large attenuation coefficients. This problem
is due to the adoption of the radiative boundary condition at
infinity which permits only the outgoing elastic waves there.
However, our practical interest is directed to the compres-
sional modes in fluid of which the attenuation coefficient is
small enough (¢ < 0.1 at least). We consider that this prob-
lem can be avoided if we are concerned about ,,S; and oL; in
the application.

Normal modes of a spherically symmetric solid sphere in
vacuum are orthogonal to each other and there is no interac-
tion among them. In this model, however, the eigenfunctions
are not orthogonal to each other due to the radiative bound-
ary condition at infinity. And further, they interact with each
other to some extent. For example, the eigenfunctions of the
lower-order modes of o H; retain large amplitude in the fluid

sphere as well as in the solid medium outside (Fig. 10), in-
dicating that these modes have the characteristic common to
the compressional modes in fluid. We also find that an eigen-
mode significantly influences another eigenmode and there
occurs a strong interaction between them when the complex
eigenfrequencies are close to one another (Fig. 11). These
features are intrinsic to the present situation where the reso-
nance ensues in an infinite elastic body. Therefore, we must
take care of the difference from the free oscillations of a
solid (or fluid) sphere in vacuum which has been well stud-
ied.

In this study, we found a new type of eigenmode, (L,
(I = 1), generated by the interactions between fluid and
solid media. These modes are categorized as one of com-
pressional modes in fluid and have small ¢ values. Their
eigenfunctions have no nodes in the sphere except at its cen-
ter and the boundary and they are maintained by finite elas-
ticity outside the fluid sphere. If the cavity is filled with
a solid, this type of vibration has no interest but is a well-
known branch of free oscillations of an elastic sphere. In the
present situation, however, the fluid-solid interaction sus-
tains deformation of boundary shape and even enables a
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eigenfrequencies calculated for « = 3.88, y = 0.5 and p = 24 are also

plotted in the same plane. In order to dimensionalize them, the relations / = b - Re(2) and € = 27b - Im(£2) are adopted, where b = 0.933 Hz. The
eigenfrequencies of g L; (1 </ <13),085 (0<71<38),185 (0=<1<6),285 (0<!<3)and3S (0 </ < 1) are denoted, respectively, by square, circle,
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symbol denotes that the absence of the eigenmode can be explained by its rapid dumping (Im(€2) > 0.0175) or weak excitation (/ > 7), while the gray

shaded one denotes that its absence cannot be reasonably explained.

translation (! = 1) mode not observed in the solid-sphere
system.

In Section 4 of this paper, we attempted explaining the ob-
served signals of a long-period volcanic earthquake by using
the eigenmodes of the vibrating fluid sphere under the vol-
cano. It was found that the spectral peaks of the data have
very small ¢; for example, the main component of the vi-
brations possesses ¢ =~ 0.003, implying that it takes more
than 50 cycles of vibrations to make its amplitude damped
down to 1/e. For this reason, it is naturally deduced that
those spectral peaks should be explained by the compres-
sional modes in a fluid sphere in our model. We determined
the nondimensional parameters which best explain the ob-
servation in the following way. First, we assumed that the
ratio of the attenuation coefficient to the angular frequency
of the primary peak (f = 1.73 Hz) was the same as the
value of ¢ that (L has, because (L is the compressional
mode in fluid of the lowest frequency. If the elastic property
in the outer medium is prescribed (we used y = 0.5 as a
nominal value), the number of free parameters decreases to
one due to this assumption. Next, we determined a linear
relation f = b Re(£2) by enforcing the condition that all the
spectral peaks were explained by the compressional modes
in fluid with less errors. Then it follows that the relation
f =0.933 x Re(£2) Hz is a reasonably good approximation
to the observation. Last, we assumed that the eigenmode of
which the nondimensional attenuation coefficient was larger
than 0.02 should be hidden due to its rapid damping. Us-
ing the information of the lack of several spectral peaks to
which the corresponding eigenmodes exist, we arrived at the
conclusion that the observed frequencies and the attenuation
coefficients are well explained by specifying « = 3.9 + 0.2

and p =24 F 2.

Of particular interest is how large is the spherical res-
onator and what is the material inside the sphere? With
respect to the size of the spherical resonator, the value of
the P wave velocity in the outer medium is needed. If we
adopt that oy = 2500 m/s (Sawada et al., 1983), we have
a =ay/2rba) =2500/(2%x3.14x0.933 x3.9) = 110 m;
the diameter of the fluid sphere is about 220 m. With respect
to the material inside the sphere, its density and pressure
give information for estimation. If we adopt that the density
in the country rock p, is 2200 kg/m? and the fluid sphere is
D = 800 m deep beneath the volcano, the estimated value of
the fluid density is p; = p»/p = 2200/24 = 92 kg/m? and
the pressure is p = pygD = 2200 x 9.8 x 800 = 1.7 x 107
Pa (=170 atm), where we assumed a hydrostatic balance un-
der a constant gravity g. We consider that the fluid sphere
is mainly composed of high-pressure vaporized water, firstly
because we observed an eventual eruption of vapor at Asama
volcano when the earthquake occurred and secondly be-
cause the physical property of water at such a high-pressure
seems to explain the estimated density of the fluid. Al-
though we don’t know the precise form of equation for the
state of high-pressure water, there are some grounds to sup-
port the vaporized water as a candidate of the fluid mate-
rial. The temperature and density of steam in saturation at
p = 170 atm are known, respectively, as 630 K and 135
kg/m?, and the temperature and pressure of steam in sat-
uration at a density of p; = 92 kg/m?® are, respectively,
610 K and 144 atm (Lide, 1993). Provided that the high-
pressure steam obeys the perfect gas law, its temperature
at the state p 170 atm and p, 92 kg/m*® may be
narrowed between 630 x 135/92 = 925 K (652°C) and
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Table 2. Our preferred model for the observed long-period event. The nondimensional angular frequencies of the compressional modes in fluid (,, S; and
oL) are calculated for « = 3.88, y = 0.5 and p = 24 (listed in the second column). The predicted values (third column) are given by the relations
f =b-Re(RQ) and € = 27b - Im(2), where b = 0.933. Observed frequency and attenuation coefficient of the spectral peaks are listed in the right

column.

eigenmode calculated predicted observed
Re(R2) Im(2) f [Hz] € [Hz] f [Hz] € [Hz]
oL 2.071 0.00611 1.933 0.0358 1.73 0.0318
oL 3.326 0.01443 3.104 0.0846 3.19 0.1435
050 4.485 0.01320 4.185 0.0774 3.65 0.0826
oLs 4.491 0.02234 4.191 0.1310 - -
oL4 5.610 0.02587 5.235 0.1517 - -
051 5.933 0.01342 5.537 0.0787 5.79 0.0735
oLs 6.707 0.02033 6.259 0.1192 - -
0SH 7.283 0.01316 6.797 0.0772 6.65 0.1033
150 7.724 0.01323 7.208 0.0776 7.14 0.1476
oLe 7.797 0.01179 7.276 0.0691 7.45 0.1273
03 8.577 0.01380 8.004 0.0809 7.92 0.0897
oL7 8.881 0.00599 8.288 0.0351 - -
151 9.204 0.01384 8.589 0.0812 8.11 0.0792
0S4 9.835 0.01534 9.178 0.0899 8.77 0.1118
oLg 9.957 0.00293 9.292 0.0172 - -
1S, 10.610 0.01520 9.901 0.0891 10.17 0.0669
250 10.900 0.01206 10.172 0.0707 10.60 0.1217
oLy 11.030 0.00142 10.293 0.0083 - -
0S5 11.070 0.01763 10.331 0.1034 - -
153 11.970 0.01619 11.171 0.0949 11.43 0.1249
oL10 12.090 0.00068 11.283 0.0040 - -
0S6 12.270 0.02079 11.450 0.1219 - -
251 12.400 0.01232 11.572 0.0722 11.81 0.1241
oLn 13.150 0.00033 12.272 0.0019 - -
154 13.290 0.01591 12.402 0.0933 12.27 0.1129
0S7 13.470 0.02519 12.570 0.1477 - -
25, 13.850 0.01299 12.925 0.0762 - -
350 14.070 0.01154 13.130 0.0677 - -
oL12 14.200 0.00016 13.252 0.0009 - -
155 14.590 0.01568 13.616 0.0919 13.61 0.0959
0S8 14.650 0.03149 13.672 0.1846 - -

610 x 170/144 = 720 K (447°C). It is generally known
that the P wave velocity of gas is proportional to the square
root of the absolute temperature and independent of its pres-
sure for a given temperature (Landau and Lifshitz, 1987).
Since the sound speed in vapor at 134°C (407 K) is 494
m/s (Lide, 1993), the P wave velocity of the fluid mate-
rial lies between o = 494 x 4/(925/407) = 745 m/s and
494 x /(720/407) = 657 m/s. These values are compara-
ble to the one o = ap/a = 2500/3.9 = 640 m/s, which
is estimated by model fitting. Considering the error arising
from the parameter estimation, we can say that there is no
inconsistency in our conclusion that the resonator is a sphere
of diameter 220 m, mainly filled with steam of tempera-
ture ~500°C and located beneath the vent of the volcano

at a depth of 800 m. In this estimation, we used p; = 92
kg/m?, p; = 2200 kg/m?, ) = 640 m/s, a; = 2500 m/s
and B, = 1250 m/s.

The most fundamental assumption we made is that the ob-
served volcanic earthquake occurs due to the resonance of a
fluid cavity of which the shape is well approximated by a
sphere. Its adequacy cannot be verified unless we find the
very cavity under the volcano. However, we have several
supporting results which strongly suggest that the observed
event is a result of the free oscillations of a spherical fluid
cavity under the volcano. Our final result summarized in
Fig. 18 and Table 2 shows that the calculated frequencies
and attenuation coefficients explain well the observed quan-
tities. The existence of the eigenmodes not observed is a
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natural result due to their high attenuation coefficients.

A problem arising from the present model may be the size
of the resonator. We conclude that the diameter of the fluid
sphere is 220 m and it is buried at a depth of 800 m below
the summit crater of Asama volcano. One may think that this
configuration is not so realistic to be pictured. However, we
consider that the estimated size of the fluid sphere lies within
a permissible range because the diameter of the summit
crater of Asama is about 300 m which is larger than the
size of the sphere (Fig. 12). There is a good possibility
that a cavity exists under the volcano now filled with steam
but with magma in the past, which partly causes the present
surface features around the summit of Asama.

Whether the fluid sphere really generates the vibrations,
as shown in Fig. 1, is not described in this paper. According
to the nature of the observed oscillations, it is enough that
the excitation of the main spectral peak (f = 1.73 Hz),
which is identified as the simple translation mode of a fluid
sphere (L1, is verified. The selective excitation of the mode
of angular order / = 1 suggests a pulsative force acting
along one axis. If the vapor flows into the cavity at one side
or escapes out of it at one side, the translation mode may be
effectively excited.

The present fluid-sphere model is one candidate and, of
course, there could be other models to explain the observed
long-period event. In particular, Kumagai and Chouet
(1999) claim that a thin crack with length of 100 m filled
with ash-laden gases can explain the long-period event ob-
served at the Kusatsu-Shirane volcano whose waveform and
the long-lasting features are very similar to those of Asama.
A fluid-filled crack may thus provide an alternative to our
fluid-sphere model.

Three components of ground motion could give us infor-
mation about the source of the long-period event. In this ap-
plication, however, the velocity data, except for the up-down
component, seemed to have considerable errors. Using all
the components of the ground motion, we could obtain more
details of the source mechanism.

It is worth noting that the imaginary part of the eigenfre-
quency changes sensitively with the change of the nondi-
mensional parameters in our model. Therefore, measure-
ment of attenuation coefficients will be of critical impor-
tance in determining the source parameters from the seismic
data. In this respect, we have to pay attention to the seismic
character in the volcanic region. For example, seismic sig-
nals may be contaminated through the effect of porosity of
crust materials.

In this paper, we made an attempt to completely describe

the nature of vibrations of a fluid sphere in an infinite elastic
medium. We believe that this study provides a reference to
interpret seismic data of long-period events.
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