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High-resolution maps of Coda Q in Japan and their interpretation by the
brittle-ductile interaction hypothesis

Anshu Jin and Keiiti Aki*

Association for the Development of Earthquake Prediction and National Research Institute for Earth Sciences and Disaster Prevention

(Received January 18, 2005; Revised March 16, 2005; Accepted March 18, 2005)

Using seismograms recorded at 582 Hi-net stations for earthquakes located within 30 km from each station, we
measured coda Q for frequency bands of 1-2, 2—4, 4-8, 8-16, and 16-32 Hz, respectively. Then coda Q maps
are constructed with average station spacing of 20 km over Japan, except the Hokkaido Island. The most striking
feature of the obtained maps is the significant spatial variation within Japan, up to a factor of 3 for the lower
frequency bands, as well as its strong frequency dependence. Such high spatial resolution was not possible to
achieve without the high density and sensitivity of the Hi-net. We found several low coda Q regions for frequency
band of 1-2 Hz including the southwestern Shikoku, eastern Shimane-western Tottori along the Japan Sea coast
and the disjointed spots along the Pacific coast from the Kanto-Tokai region to southern edge of the Kii-peninsula.
However, the most conspicuous low coda Q zone is a narrow belt from Niigata towards south-west to the Biwa
lake along the Japan Sea coast. This low Q zone appears at frequency bands of both 1-2 and 2—4 Hz, and it
coincides with the zone of high deformation rate revealed from the GPS data. For frequency bands 4-16 Hz (2—4
Hz in Kyushu), the low coda Q areas agree with volcanic and geothermal areas. For frequency band of 16-32 Hz,
the coda Q is distributed nearly uniformly throughout the study area.
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1. Introduction

Coda waves of local earthquakes have been studied ex-
tensively since Aki (1969), and the properties of coda waves
were summarized by Sato and Fehler (1998) in a systematic
mannered book. Coda wave record is usually represented
by the time-dependent power spectrum P (w | t). The first
attempt to predict the explicit form of P(w | ¢) was made
by Aki and Chouet (1975) assuming that coda waves are
singly back-scattered S waves. They obtained the following
formula for a station collocated as the earthquake source.
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where w is the angular frequency, ¢ is time measured from
the original time of the earthquake, S(w) is the source spec-
trum, B is S-wave velocity, g() is back scattering coeffi-
cient, and Q., called “coda Q”, is the measure of the en-
ergy loss suffered by the scattered waves. The details of the
derivation of Eq. (1) is described by Aki (1981) as well as
by Sato and Fehler (1998) in slightly different terms.

What the coda Q means precisely is still controversial,
partly because there are several plausible answers to the
question. Within the context of the single backscattering
model, coda Q appears to present an effective attenuation
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including both absorption and scattering loss. This idea
was supported by the close agreement between coda Q and
S-wave Q observed in the Kanto region by Aki (1980).
More recently, Sarker and Abers (1998) compared the coda
Q with S-wave Q measured using seismograms recorded
at two seismic arrays in Caucasus and Kopet Dagh (Turk-
menistan), Their results demonstrated that coda Q agrees
with S-wave Q in both areas. Jannaud et al. (1991) con-
firmed the validity of Eq. (1) numerically.

On the other hand, based on an energy-flux model,
Frankel and Wennerberg (1987) suggested that coda Q is
intrinsic loss. Gusev (1995) demonstrated that the coda de-
cay may be quantitatively explained if the scattering coeffi-
cient decreases with depth that causes the leakage of scat-
tering energy to the bottom and such loss cannot be dis-
criminated from the intrinsic loss. Applying the radiative
transfer theory Wu (1985) proposed a method to estimate
the relative contribution of scattering and intrinsic loss to
the total attenuation. Wu’s method was improved later to
the “Multiple Lapse Time Window Analysis” by Felher et
al. (1992). This method was applied to data in Japan (Felher
et al., 1992; Hoshiba, 1993), Hawaii (Mayeda et al., 1992)
and California (Mayeda et al., 1992; Jin et al., 1994). Jin et
al. (1994) compared the observed coda Q with the intrinsic,
scattering and total Q in each area and found that coda Q is
bounded between the total O and intrinsic Q, empirically.
The relative contribution of the scattering attenuation and
intrinsic absorption varies from region to region and also
depends on frequency. It is necessary to take into account
the depth dependence of total scattering coefficient and in-
trinsic absorption in addition to seismic velocity for a more
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Fig. 1. The overall frequency response of the Hi-net system (top) and a
representative original seismogram and its corresponding octave seis-
mograms (bottom). The station is in Kyushu, and earthquake is about
10 km away. The thin vertical lines indicate the starting time of coda
that is slightly different for each octave seismograms due to the phase
shift for different frequency bands. And the ending time of coda is 30
second in lapse time or the signal-to-noise ratio = 2, whichever comes
first.

complete understanding of coda Q.

Nevertheless, coda Q is an interesting geophysical pa-
rameter that show strong correlation with seismicity in both
space (e.g., Jin and Aki, 1988) and time (e.g., Jin and Aki,
1989). Results from numerous studies on coda Q over the
last two decades (e.g. Singh and Herrmann, 1983; Hoshiba,
1993; Mitchell et al., 1997; Bager and Mitchell, 1998) show
that coda Q varies systematically with the tectonic activity
by more than an order of magnitude as summarized by Sato
and Fehler (1998) and by Mitchell and Cong (1998). How-
ever, the spatial resolution of the coda Q maps from ear-
lier studies was low because of the large station spacing as
well as the use of relatively distant earthquakes. The Hi-net,
established and operated by NIED, nearly uniformly dis-
tributed over Japan with a station spacing of 20 km with the
high local seismicity, offers an opportunity to study spatial
distribution of coda Q with unprecedented high resolution.

2. Data and Method
The Hi-net started to offer its uniform and stable wave-
form data from the end of 2000 for Kyushu, Shikoku,
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and Honshu in Japan. In this study we use seismograms
recorded at 582 Hi-net stations over Japan, except the
Hokkaido Island, for earthquakes occurring from January
2001 through July 2004. For each Hi-net station we search
for earthquakes with magnitude 1.5-3.0 located within 30
km from the station with focal depth 5-30 km. Thus, we
can have sufficient coda length with the high S/N ratio to
estimate coda Q by restricting the lapse time within 30
sec. According to the single backscattering model, 30 sec
lapse time corresponds to the farthest scatterers being lo-
cated within 45 km from the station (See a confirmation of
this rule for southern California in Aki, 1996). We were
able to find 10 to 20 earthquakes meeting the above re-
quirements for each station. Each original seismogram was
band-pass filtered to 5 frequency bands: 1-2, 2-4, 4-8, 8—
16 and 16-32 Hz. A 5-second moving lapse time window,
overlapping with the neighbours by 2.5 second, was applied
to calculate P(f | ), then coda Q is calculated by fitting
Eq. (1) for each frequency band and averaged over 3 com-
ponents. For each station, we averaged coda Q over earth-
quakes for each frequency band. Totally, about 20,000 orig-
inal seismograms were analyzed. Figure 1 shows the overall
frequency-response of the Hi-net system and a representa-
tive original and band-pass filtered seismograms recorded
at station MISH, Kyushu for an M2.1 earthquake about 10
km away. The frequency dependence of coda Q is repre-
sented by the power law parameter, calculated by fitting the
relationship of Q(f) = Qo f” for each station, where Qg
iscoda Q at f = 1 Hz.

3. Results

The coda Q measured at 582 Hi-net stations by the proce-
dure described above are smoothed at 0.1 degree square in
latitude and longitude and mapped using GMT (Wessel and
Smith, 2001) as shown in Fig. 2(a)—(e) for frequency bands
of 1-2, 24, 4-8, 8-16, and 16-32 Hz, respectively. Fig-
ure 2(f) shows a map for y; the parameter of frequency de-
pendence of coda Q. The most surprising feature of Fig. 2
is the large spatial variation of coda Q within Japan for the
lower frequency bands as well as its frequency dependence.
Hoshiba (1993) measured coda Q for frequency bands of
1-2, 24, and 4-8 Hz at 16 JMA stations over Japan. How-
ever, the spatial variations were smooth partially because of
the use of long lapse-time window and partially because of
the sparseness of stations. The high-resolution coda Q map
shown in Fig. 2 could never be constructed without bene-
fits of the high density and high sensitivity of the Hi-net
stations.
3.1 The low coda Q regions at lower frequency bands

(1) The southwestern Shikoku Island and the disjoined
small areas along the Pacific coast from the Kanto-Tokai
region to southern edge of the Kii-peninsula show low coda
Q, corresponding to the epicentral area of great earthquakes
caused by the subduction of the Philippine Sea plate. It
is interesting to note that the low Q is significant only for
frequency band of 1-2 Hz, suggesting relatively larger size
of the scatterers in the area.

(2) The Shimane-Tottori area shows low coda Q at fre-
quency band of 1-2 Hz and relatively high Q for frequen-
cies higher than 4 Hz resulting in very strong frequency de-
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Fig. 2. Spatial distribution of coda Q for the 5 octave frequency bands (a)—(e) and its frequency dependence (f). The scale of Q value is shown in the
bottom of each sub-figure. The locations of the areas mentioned in the text are indexed in Fig. 3.

pendence. As well known, an Mw 6.6 earthquake occurred GPS Strain Rate
in 2000 in this area. June 1996 - May 2000
(3) The most conspicuous low coda Q region is found

for a narrow zone from Niigata to the Biwa Lake along 45N - ot
the Japan Sea coast. This low coda Q zone is significant -
for frequency bands of 1-2, and 24 Hz. This low Q

zone fits remarkably well with the zone of concentrated
deformation revealed from GPS data observed during June
1996 to May 2000 (Sagiya et al., 2000). The Mw 6.8
Niigata earthquake occurred in the low coda Q zone in
2004, a month after we recognized the coincidence of the
zone with the concentrated deformation zone.

For frequencies higher than 4 Hz the low Q zone appears
shifted toward the north and connecting with the low Q
areas corresponding to the volcano chain in the western
Tohoku region of Japan. This is consistent with Matsumoto 35N
and Hasegawa (1989). )
3.2 Thelow coda Q regions for higher frequency bands

(1) From north to south along the central Kyushu Island,
the low coda Q zone is significant at frequencies 2—4 and
4-8 Hz. This low coda Q zone coincides with the areas of = _W:fi:::_”
active volcanoes. 3N )

(2) The Suruga Bay area along the Pacific coast shows
Signiﬁcant low coda Q area at frequency 2-4 Hz. Fig. 3.  Spatial distribution of the strain rate revealed from the data

(3) The low coda Q zone along the Tohoku volcano chain obs?rved by the GEONET during June 1996 to May 2000 (following

Sagiya et al., 2000).
appears as small spots for frequency 2—4 Hz and becomes
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most significant for 4-8 Hz, then turns back to small spots
for 8-16 Hz.

For frequency band 16-32 Hz, as shown in Fig. 2(e), the
coda Q distribution is nearly uniform over the study re-
gion indicating that the uniform distribution of smaller scale
scatterer over the study region. However, the active volcano
regions in Kyushu and NE Japan still have relatively low
coda Q. And the coda Q along the Japan Sea coast reminds
to be lower relative to that along the Pacific Ocean coast as
revealed by Matsumoto and Hasegawa (1989).

4. The Concentrated Deformation Zone (NKTZ)
with low coda Q

Sagiya et al. (2000) discovered several regions of signif-
icantly high strain rate in Japan, as shown in Fig. 3, where
the strain rate was calculated using ground velocity ob-
served by the GPS network (GEONET) during the period
from June 1996 to May 2000.

Comparing Fig. 3 with 2(a) and 2(b), we find that all the
high strain rate regions (except the one in the Hokkaido
Island) are coincident with the low coda Q regions, the
western Shikoku, the Kanto-Tokai along the Pacific coast,
and the Niigata to Biwa-lake low O zone. The last one
is particularly interesting to us because it is a region of
large intraplate earthquakes, including the M6.8 earthquake
(138.87E, 37.29N, i = 13 km) occurred in the central
Niigata region, at Oct. 23, 2005, shortly after this coda QO
map has been constructed. We shall focus our discussion on
this zone of low coda Q and high strain rate.

The high strain rate zone along the Japan Sea coast has
been named as Niigata-Kobe Tectonic Zone (NKTZ) by
Sagiya et al. (2000). The observed difference in deforma-
tion rates between the NKTZ and its surrounding is almost
one order of magnitude (Sagiya et al., 2000). To produce
such a significant difference in deformation rate requires
a strong stress concentration in the NKTZ unless there is
strong regional variation on the stiffness/viscosity in the re-
gion. Among various models proposed by Shimazaki and
Zhao (2000), Mazzotti et al. (2000), Miyazaki and Heki
(2001), and lio et al. (2002, 2004), we are particularly in-
terested in the last one, who attributed the concentrated de-
formation to the low viscosity in weak zone(s) existing in
the lower crust of the lithosphere.

Zoback and Zoback (2002) offered a new perspective on
the role of ductile part of the lithosphere during the earth-
quakes loading processes by plate-driving forces from a
global study of tectonic stress. Assuming that the litho-
sphere consisting of 3 layers; the brittle upper crust, the
ductile lower crust, and the upper mantle, supports plate-
driving forces as a whole, they conclude that because of
the applied forces to the lithosphere would result in steady-
state creep in the lower crust and upper mantle, as long as
the three-layer lithosphere is coupled, stress will build up in
the brittle upper crust due to the creep deformation in the
layer below. Hence, the tectonically stable region is stable
because of the low deformation rate in the ductile part and
the active region is active because of the high deformation
rate in the ductile part. This model is similar to that of lio
et al. (2002, 2004) in supporting the idea of which viscosi-
ties in the ductile zone control the intraplate deformation in
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the overlying brittle part. But there is an important differ-
ence between them; the former is in the domain of global
spatial scale and geological time scale, while the latter is
in that of regional spatial scale and time scale of years to
decades. Obviously the latter is more relevant to the issue
of earthquake prediction.

Jin and Aki (1989, 1993) studied the temporal and spatial
correlation between coda Q ~! and seismicity in both south-
ern and central California. They defined the frequency of
earthquakes in a specified magnitude range around M., rel-
ative to the total frequency as N (M,) (in %) and found a
remarkable positive correlation between the temporal vari-
ation of Q;' and N (M,) for over 50 years in both regions.
The correlation coefficient reached its peak (around 0.8)
at the zero time shift for a choice of M, 3-3.5 for south-
ern California and 4-4.5 for central California. To explain
this observation, Jin and Aki (1989, 1993) proposed the
“creep model” in which the ductile fractures in the brittle-
ductile transition zone of lithosphere have a characteristic
size comparable with the source dimension of an earthquake
with magnitude M, (a few hundred meters for southern Cal-
ifornia and roughly a km for central California). Under
the loading of the plate-driving forces, the increase in the
density of ductile fractures increases the coda Q! and, at
the same time, generates stress concentration with the same
scale length as the size of the ductile fracture responsible
for the increase in relative frequency of earthquakes with
magnitude around M.. This model agrees with lio et al.
(2004) but requires much smaller characteristic scale length
of fractures in the lower crust weak zone than envisioned by
them. As pointed out by Iio et al. (2002), the high *He/*He
ratio and high conductivity observed in the NKTZ suggests
that the brittle-ductile transition zone in the NKTZ is weak-
ened by fluid (water) from the upper mantle, the fractures
in the ductile zone could be the fluid container. And the
strong frequency dependency of coda Q shown in Fig. 2(f)
indicates that the fractures indeed have a characteristic size.
Benites (1990) found by numerical simulations that Q;l
has a peak at kd = 2, where £ is the wave-number and d is
the length of a crack assumed as the scatterer. In the case
of NKTZ, the peak of Q' appears in the frequency band
of 1-4 Hz, corresponding scatterer’s size in the range from
a few hundred meters to a km for the S-to-S scattering.

5. The Spatial Distribution of N (M)

Recently, Aki (2004) noticed that the simultaneous posi-
tive correlation between Q;l and N (M,) obtained for the
50 year-period by Jin and Aki (1989, 1993) for Califor-
nia, was disturbed for several years before the 1952 M7.5
earthquake, Kern County, California and the 1989 M7.1
earthquake, Loma Prieta, California. Jin et al. (2004) ex-
tended the analyses of temporal variation of coda Q! and
N (M,) for central and southern California and applied a 10-
year moving time window to calculate the cross-correlation
between Q;l and N(M,). They found that the simultane-
ous correlation was disturbed before all major earthquakes
(M = 7) occurred in the study region. The disturbance
is, consistently, a delay in the fluctuation of coda 0! rel-
ative to that of N(M,) before the occurrence of a major
earthquake. According to the “brittle-ductile interaction hy-
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pothesis” of earthquake loading processes by plate-driving
forces proposed by Aki (2004), the coda Q' represents
the density of the fractures in the ductile part of lithosphere,
and N (M,) represents the response of the brittle part to the
stress induced by the ductile fracture. In the normal load-
ing process the interaction between the ductile and brittle
parts of the lithosphere is harmonic leading to the simulta-
neous positive correlation between coda Q! and N (M,).
This harmony may be disturbed because of the effect of
the change in the material property of the brittle part in the
anomalous period before a major earthquake on the load-
ing process. Unlike the loading machine in a laboratory,
the loading of plate driving forces is an internal process
and may be affected by the change in the material prop-
erty. Since the change in the brittle part is the cause for the
anomalous period, the change in N (M) must precede that
of coda Q~!. We can also simply imagine that the strain
energy stored in the brittle part of lithosphere reaching a
saturation limit and starting to flow back to the ductile part,
thus N (M.), that expresses an event in the brittle part, pre-
ceding coda Q !, that expresses an event in the ductile part.
Central to the above brittle-ductile interaction hypothesis
is the assumption that M, characteristic to a seismic region
is originated from a characteristic size of fractures in the
ductile zone of the lithosphere. However, we are not able to
study the temporal change of coda Q in Japan using Hi-net
data due its short history. To test this idea for Japan, we
compare the spatial variation of coda Q to that of N(M,)
for the period for which the coda O maps is constructed.

blue, and yellow represent where the N (M) % is larger than, smaller than

We use JMA catalog for earthquakes with M > 2.0 oc-
curred during January 2001 to July 2004 in the study region
with focal depth less than 40 km. For each Longitude (E;)
and Latitude (NV;) node, we count the earthquakes occurred
within the grid of (E; & 1°; N; £ 1°) with magnitude ranges
of 2-2.5, 2.5-3.0, 3.0-3.5, 3.54.0, 4.0-4.5, and 4.5-5.0,
respectively. The increment of (E;, N;) is 1° from (128.5°;
29.5°) to (143.5°; 42.5°) and overlaped with the neighbours
by 0.5°. The percentage of earthquakes in each magnitude
range within each grid is plotted at (E;, N;) as shown in
Fig. 4. For each M. we calculate the average N over the
whole region as N(M,) with standard error o. The red,
blue, and yellow indicate where the calculated N (M,) is
larger than [N(M,) + o], smaller than [N (M,) — o], and
within [N (M,) £ o], respectively. The spatial variation of
N(M,) for M, ranges 2-2.5 and 2.5-3 are very small, less
than 20%, and it jumps suddenly to a factor of 3 for M, > 3.
Since the jump is abrupt and the variability is similar for all
magnitude ranges greater than 3.0, such a jump in variabil-
ity may not be attributed to the smaller sample size. We
believe that this jump is real, and corresponds to a simi-
lar jump in variability found for the coda Q map when the
frequency at which coda Q was measured crossed 4-8 Hz.
Coda Q maps showed a large spatial variation for frequen-
cies lower than 4-8 Hz, while those for higher frequencies
suddenly become uniform throughout Japan. This obser-
vation is consistent with the brittle-ductile interaction hy-
pothesis in which the dominant frequency at which coda QO
change occurs should be inversely related to M.
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Fig. 5. The temporal change of N(M.)% with different M. in the
hypocentral area of the 2004 Mid Niigata M6.8 earthquake.

The red colored grid in Fig. 4 represents N (M,) higher
than the mean by more than one standard error, and the blue
represents N (M,) lower than the mean by more than one
standard error. The yellow represents N (M.) within one
standard error from the mean. Comparing Fig. 4 with Fig. 2,
we can find some anomalously low coda Q area which
also shows an anomalously high N (M,.). For example, the
low coda Q area in southwestern Shikoku and Shimane-
Tottori area corresponds to the high N (M,) for M. 3 to 3.5.
In the context of the brittle-ductile interaction hypothesis,
this indicates that the ductile fracture size under the area
is several hundred meters. The coda Q measured for the
same time period is low indicating that the coda Q! and
N (M, = 3-3.5) is currently coincident. Of course, a snap
shot of coda Q and N (M,.) maps cannot tell if it is in the
normal or abnormal period.

Here we present a very limited observation related to the
NKTZ region. The JMA catalog with uniform magnitude
determination goes back to 1995 for the NKTZ region. Fig-
ure 5 plots the temporal variation of N (M,) for M, ranges
of 2.5-3, 3-3.5, 3.54, and 4-4.5, from the top to the bot-
tom, respectively, for earthquakes occurred in the region
150 km around the epicenter of the M6.8 central Niigata
earthquake. N(M,) for M. = 3-3.5 appears to increase
from the late 2002 while N (M. = 4-4.5) decreases at the
same time. If M, applicable to the Niigata area is 4—4.5,

this observation combined with the low coda Q shown in
Fig. 2 implies an anomalous period for the Niigata area in
the context of the brittle-ductile interaction hypothesis. Ob-
viously we need to accumulate more data on coda Q and
N (M,), specially, for its temporal variations.

6. Conclusion Remarks

(1) We constructed high spatial resolution coda Q maps
of Japan using the Hi-net data for frequency bands of 1-2,
2-4, 4-8, 8-16, and 16-32 Hz. In general, the low coda
O regions in the lower frequencies are correlated with high
seismic areas of both subduction and the intraplate earth-
quakes, and the low coda Q areas for the higher frequencies
are correlated with the areas of quaternary volcanoes.

(2) We gave special attention to the spatial coincidence
between the zone of low coda Q in 1-2 and 24 Hz bands
with the high strain rate zone called NKTZ found from the
GPS data. This is consistent with the brittle-ductile inter-
action hypothesis of earthquake loading by plate-driving
forces proposed by Aki (2004) on the basis of three inde-
pendent studies; global study of tectonic stress by Zoback
and Zoback (2002), regional study of Tio et al. (2002, 2004),
and the observed correlation between coda Q and N (M)
by Jin and Aki (1989, 1993). The occurrence of the Mw
6.8 central Niigata earthquake within the NKTZ in 2004
encourages further studies along this line.

(3) Modeling and monitoring the earthquake loading pro-
cess in a seismic region is essential for earthquake predic-
tion. Modeling the loading process is, however, not a sim-
ple task because the individual earthquake is not an isolated
system and a variety of interactions among the model el-
ements exist in a broad area. At each stage of the devel-
opment of loading process, we expect numerous possible
scenarios for the future course. Therefore, we need mod-
els that could be effectively constrained and adjusted by as
many as available monitored data. The brittle-ductile inter-
action hypothesis is only one of them. We need many such
models that can be constrained and adjusted by a variety of
observations for a reliable earthquake prediction.

Acknowledgments. This work was not possible without the Hi-
net data. We are grateful to those who made continuous efforts to
develop and maintain the Hi-net system and its database. Special
thanks are due to Prof. T. Sagiya of Nagoya University for offering
the strain rate map and constructive suggestions. Our appreciation
also goes to Dr. K. Obara of NIED not only for his excellent work
as the chief of the Hi-net but also for his encouragement and sug-
gestions in processing the huge data set used in the present study.
The constructive suggestions form the 2 anonymous referees are
deeply appreciated. All the figures are made using the GMT soft-
ware by Wessel and Smith (2001).

References

AKki, K., Analysis of seismic coda of local earthquakes as scattering waves,
J. Geophys. Res., 74, 615-631, 1969.

AKki, K., Attenuation of shear waves in the lithosphere for frequencies from
0.05 to 25 Hz, Phys. Earth Planet. Inter., 21, 50-60, 1980.

AKki, K., Attenuation and scattering of short-period seismic waves in the
lithosphere, in Identification of Seismic Sources-Earthquake or Under-
ground Explosion, edited by E. S. Husebye and S. Mykkeltveit, pp. 515—
541, D. Reidel, Dordrecht, Holland, 1981.

AKki, K., Scale dependence in earthquake phenomena and its relevance
to earthquake prediction, Proc. Natl. Acad. Sci., USA, 93, 3740-3747,
1996.



A.JIN AND K. AKI: CODA QO MAP IN JAPAN

AKki, K., A new view of earthquake and volcano precursors, Earth Planets
Space, 56, 689-714, 2004.

Aki, K. and B. Chouet, Origin of coda waves: Source, attenuation and
scattering effects, J. Geophys. Res., 80, 3322-3342, 1975.

Bager, S. and J. Mitchell, Regional variation of Lg coda Q in the conti-
nental United States and its relation to crustal structure and evolution,
PAGEOPH, 153, 613-636, 1998.

Benits, R., Seismological applications of boundary integral and Gaussian
beam methods, PhD thesis, MIT, Massachusetts, 1990.

Felher, M., M. Hoshiba, H. Sato, and K. Obara, Separation of scattering
and intrinsic attenuation for the Kanto-Tokai region, Japan, using mea-
surements of S-wave energy versus hypocentral distance, Geophys. J.
Int., 108, 787-800, 1992.

Frankel, A. and L. Wennerberg, Energy-flux model of seismic coda: Sep-
aration of scattering and intrinsic attenuation, Bull. Seismol. Soc. Am.,
77, 1223-1251, 1987.

Gusev, G. G., Vertical profile of turbidity and coda Q, Geophys. J. Int.,
123, 665-672, 1995.

Hoshiba, M., Separation of scattering attenuation and intrinsic absorption
in Japan with the multiple lapse time window analysis from full seismo-
gram envelope, J. Geophys. Res., 98, 15,809-15,824, 1993.

lio, Y., T. Sagiya, Y. Kobayashi, and I. Shiozaki, Water-weakened lower
crust and its role in the concentrated deformation in the Japanese Is-
lands, Earth Planet. Sci. Lett., 203, 245-253, 2002.

Tio, S., T. Sagiya, and Y. Kobayashi, Origin of the concentrated deforma-
tion zone in the Japanese Islands and stress accumulation process of
intraplate earthquakes, Earth Planets Space, 56, 831-842, 2004.

Jannaud, L. R., P. M. Adler, and C. G. Jacqin, Spectral analysis and inver-
sion of codas, J. Geophys. Res., 96, 18,215-18,231, 1991.

Jin, A. and K. Aki, Spatial and temporal correlation between coda Q and
seismicity in China, Bull. Seismol. Soc. Am., 78, 741-769, 1988.

Jin, A. and K. AKki, Spatial and temporal correlation between coda Q’1 and
seismicity and its physical mechanism, J. Geophys. Res., 94, 14,041—
14,059, 1989.

Jin, A. and K. Aki, Temporal correlation between coda 0~ and
seismicity—Evidence for a structure unit in the brittle-ductile transition
zone, J. Geodynamics, 17, 95-120, 1993.

Jin, A., K. Mayada, D. Adams, and K. Aki, Separation of intrinsic and
scattering attenuation in southern California using TERRAscope data,
J. Geophys. Res., 99, 17,835-17,848, 1994.

Jin, A., K. Aki, Z. Liu, and V. I. Keilis-Borok, Seismological evidence for

409

the brittle-ductile interaction hypothesis on earthquake loading, Earth
Planets Space, 56, 823-830, 2004.

Matsumoto, S. and A. Hasegawa, Two-dimensional coda Q structure be-
neath Tohoku, NE Japan, Geophys. J. Int., 99, 101-108, 1989.

Mayeda, K., K. S. Koyanagi, and K. Aki, A comparative study of scatter-
ing, intrinsic and coda Q! for Hawaii, Long Valley and central Cali-
fornia between 1.5 and 15.0 Hz, J. Geophys. Res., 97, 6643-6659, 1992.

Mazzotti, S. X., L. Pichon, and P. Henry, Full interseismic locking of the
Nankai and Japan-west Kurile subduction zones: An analysis of uniform
elastic strain accumulation in Japan constrained by permanet GPS, J.
Geophys. Res., 105, 13,159-13,177, 2000.

Mitchell, B. J. and L. Cong, Lg coda Q and its relation to the structure and
evolution of continents: A global prespective, PAGEOPH, 153, 655—
663, 1998.

Mitchell, B. J., Y. Pan, J. Xie, and L. Cong, Lg coda Q variation across
Eurasia and its relation to crustal evolution, J. Geophys. Res., 102,
22,767-22,780, 1997.

Miyazaki, S. and K. Heki, Crustal velocity field of southwest Japan: Sub-
duction and arc-arc collision, J. Geophys. Res., 106, 4305-4326, 2001.

Sagiya, T., S. Miyazaki, and T. Tada, Continuous GPS array and present-
day crustal deformation of Japan, PAGEOPH, 157, 2003-2322, 2000.

Sarker, G. and G. A. Abers, Comparison of seismic body wave and coda
wave measure of O, PAGEOPH, 153, 665-684, 1998.

Sato, H. and M. C. Fehler, Seismic Wave Propagation and Scattering in
the Heterogeneous Earth, Springer-Verlag, New York, 308 pp., 1998.
Shimazaki, K. and Y. Zhao, Dislocation model for strain accumulation in

a plate collision zone, Earth Planets Space, 52, 1091-1094, 2000.

Singh, S. K. and R. B. Herrmann, Regionalization of crustal coda Q in the
continental United States, J. Geophys. Res., 88, 527-538, 1983.

Wessel, P. and W. H. F. Smith, The Generic Mapping Tools, version 3.4
released, http://gmt.soest.hawaii.edu, 2001.

Wu, R.-S., Multiple scattering and energy transfer of seismic waves—
Separation of scattering effect from intrinsic attenuation—1. Theoret-
ical modeling, Geophys. J. R. Astron. Soc., 82, 57-80, 1985.

Zoback, M. D. and M. L. Zoback, State of stress in the Earth’s lithosphere,
International Handbook of Earthquake and Engineering Seismology,
pp- 559-568, Academic Press, Amsterdam, 2002.

A. Jin (e-mail: ajin@bosai.go.jp) and K. Aki



	1. Introduction
	2. Data and Method
	3. Results
	3.1 The low coda Q regions at lower frequency bands
	3.2 The low coda Q regions for higher frequency bands

	4. The Concentrated Deformation Zone (NKTZ) with low coda
	5. The Spatial Distribution of
	6. Conclusion Remarks
	References

