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Comprehensive paleomagnetic study of a succession of Holocene
olivine-basalt flow: Xitle Volcano (Mexico) revisited
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A detailed paleomagnetic study of a young Late Holocene olivine-basalt flow from the Xitle volcano in the
southern Basin of Mexico was completed to evaluate the consistency and reliability of the record derived from
fresh well-preserved and exposed lava flows. One-hundred oriented standard paleomagnetic cores corresponding
to 10 different lava effusion episodes were collected from unit-flow V. Thermomagnetic analyses show that bulk
magnetic properties and remanence is carried in most cases by Ti-poor titanomagnetite, presumably resulting
from oxy-exsolution processes during the initial flow cooling. Unblocking temperature and coercivity suggests
pseudo-single domain magnetic grains for these (titano)magnetites. Thermal and alternating field demagneti-
zations show well-defined univectorial magnetizations. Most sites present a mean direction with small angular
dispersion around the dipolar direction for central Mexico. The overall mean direction (N = 10, Dec = 1.1◦,
Inc = 34.1◦, k = 531 and α95 = 2.1◦) is characterized by small angular dispersion and inclination close to the
dipolar value for the locality. Anisotropy of magnetic susceptibility lineation agrees with the geologically-inferred
flow direction. Various samples from the 10 lava flows were selected for Thellier paleointensity experiments be-
cause of their stable remanent magnetization and relatively low within-site dispersion. According to reliability
parameters, the obtained paleointensities are of reasonably good quality. Nine mean paleointensities range be-
tween 48.6 and 73.9 μT. The overall mean paleointensity of 59.9–7.7 μT is higher than the present-day field of
43 μT, consistent with the global data for this time-period. Most samples presented alteration during the cooling
rate test, and no correction was made to these samples. Those samples on which cooling-rate correction was
applied give a flow mean lower than the raw paleointensity data, as was expected.
Key words: Paleomagnetism, lava-flows, Xitle volcano, Mexico.

1. Introduction
The Xitle volcano is probably the youngest among more

than 200 scoria and cinder cones in the Quaternary Chichin-
autzin monogenetic volcanic field of the southern Basin of
Mexico (Herrero-Bervera et al., 1986; Urrutia-Fucugauchi
and Martin del Pozzo, 1993). Volcanic eruption began with
basaltic tephra emission, followed by several basaltic lava
flows, which flowed downslope in a northerly direction,
covering an area of c. 80 km2 (Fig. 1) (Badilla-Cruz, 1977).

The age of the Xitle eruption has remained a subject of
considerable interest. Radiocarbon dating has been applied
since the initial development of the method (Arnold and
Libby, 1951). The bulk of the samples, with good strati-
graphic control, cluster around an age of c. 2000 years BP.
A charcoal sample from the base of the section studied in
this work has given a date of 1960–65 years BP. A younger
age for the Xitle eruption of around 1670 years BP has
also been recently proposed (Gonzalez et al., 2000; Siebe,
2000).
Duration of the Xitle eruption has not been determined;

it can be similar to the historic eruptions of nearby vol-
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canoes in the Trans Mexican Volcanic Belt (TMVB), of
the order of a decade or so (e.g. the 1943–1953 Paricutı́n:
Luhr and Simkin, 1993; the 1759–1774 Jorullo eruptions:
Bullard, 1976). Delgado et al. (1998) constructed a geo-
logic map and stratigraphy for this volcano in which they
distinguished up to seven major lava flow units (Fig. 1).
In this work, I report on the study of the Ciudad Univer-
sitaria Basaltic Lava Member (BCU, Flow V; Delgado et
al., 1998), which is formed by several minor flow units of
olivine basalt. It represents the most extensive unit with
the greatest extent and thickness. This suggests that BCU
represents the convulsive phase of the eruption and had the
lowest viscosity and largest effusion rate. These lavas show
the best-preserved pahoehoe structures. A sequence of 10
lava flows was identified at an old quarry with a total aver-
age thickness of c. 35 m (Fig. 2). This flow surrounded and
covered one of the earlier pyramids and settlements in the
region (Cuicuilco archeological site). Walker (1991) per-
formed detailed observations of vesicles, structures, flow
lobes elongation, and terrain slope in order to infer the (ge-
ologically) overall flow direction (Fig. 1).
The purpose of this study is to analyze, from the paleo-

magnetic point of view, a sequence of 10 lava flows that be-
long to the Basaltic Lava Member (BCU, Flow V) present
in this section located at the far-end of the Xitle lava field
(Fig. 1).
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Fig. 1. Lava flow units identified by Delgado et al. (1998) and location of paleomagnetic sampling site (star). The large arrow indicates the
geologically-inferred flow direction. UNAM is the Universidad Nacional Autónoma de México, Ciudad Universitaria campus.

Table 1. Paleodirectional results from Xitle olivine-basalt rocks: N : Number of treated samples, n: number of samples used for calculation, Dec:
Declination, Inc: Inclination, k and α95: Precision parameter and radius of confidence cone.

Site Samples N/n Dec Inc K α95

flow 1 99U001-99U010 (10/9) 3.8 31.7 87 5.6

flow 2 99U011-99U020 (10/8) 0.2 34.7 351 3.0

flow 3 99U021-99U030 (10/10) 2.0 33.5 131 4.2

flow 4 99U031-99U040 (10/10) 2.7 31.7 156 3.9

flow 5 99U041-99U050 (10/8) 2.9 34.7 72 6.6

flow 6 99U051-99U061 (11/9) 356.2 30.4 309 2.9

flow 7 99U088-99U097 (10/9) 5.1 35.9 280 3.1

flow 8 99U098-99U108 (11/8) 359.1 32.8 57 7.4

flow 9 99U109-99U118 (10/7) 356.7 37.8 117 5.6

flow 10 99U119-99U126 (8/5) 2.6 37.5 393 3.9

Mean 1.1 34.1 530.5 2.1

2. Paleomagnetic Study
2.1 Sampling and laboratory procedures
In the quarry, seven flow units can be observed, with

thicknesses varying from 2 to 8 m (Fig. 2). Lava flows 3
and 4 were sampled 14 m to the left of the picture which
are interbedded between 2 and 5 lava flows. Three other

flows (flows 8, 9 and 10) are out of the quarry overlying
the others, of 1.5–3 m thickness. Samples were collected
mainly from around 1 m above the basal part of each flow
(mostly free of vesicles). This place is currently the training
camp of the PUMAS Club (UNAM soccer team).
Lava flows for the 10 effusive eruptive events were sam-
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Fig. 2. Photograph showing the lava flows at the sampling site (see flow numbers at both sides).

pled for the paleomagnetic study. One hundred samples
were drilled in the field with a portable gasoline-powered
drill and oriented with both solar and magnetic compasses,
excluding some sites in which local conditions (outcrop
characteristics and weather) banned the use of the sun com-
pass. Between 8 and 11 samples were collected at each site
(Table 1).
The natural remanent magnetization (NRM) was mea-

sured with a JR5 spinner magnetometer. The anisotropy of
magnetic susceptibility was measured using a KLY-2 bridge
(AGICO, Brno). The stability and vectorial composition
of NRM of every sample were investigated by a step-wise
alternating field (AF) and thermal demagnetization. AF
demagnetization was carried out in 8–12 steps up to 100
mT using a Schonstedt AF demagnetizer in the three-axes
stationary mode. Stepwise thermal demagnetization up to
500–550◦C using a non-inductive Schonstedt furnace was
carried out on one sample per flow.
Samples are characterized by simple univectorial (Fig. 3)

or, rarely, two-component plots. The characteristic direc-

tion (ChNRM) for each sample was calculated from the
vector plots and corresponds to the vector component go-
ing through the origin (samples for which the vector plots
did not pass through the origin were not used for the calcu-
lation of site means). Site-mean directions were calculated
by vector addition giving unit weight to sample directions.
Fisherian statistics was used to estimate dispersion parame-
ters. The overall-mean direction was calculated giving unit
weight to site-mean directions. Site-mean directions and
overall-mean direction, and associated statistical parame-
ters, are summarized in Table 1 and graphically illustrated
in Fig. 4.
2.2 Microscopy
We follow the oxidation and texture state classification of

Haggerty (1976) and Buddington and Lindsley (1964), re-
spectively. Oxidation of classifications, C1 to C7 for titano-
magnetite, and R1 to R7 for ilmenite (prefix C distinguished
primary cubic phases from primary rombohedral phases,
R), are applied to studies of rock magnetism. Titanomag-
netite can be oxidized by two mechanisms: (1) oxidation
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Fig. 3. Orthogonal vector plots of stepwise alternating field and ther-
mal demagnetizations (geographic coordinates). The numbers refer
either to the temperatures in ◦C or to peak alternating fields in mT.
•—projections into the horizontal plane, x—projections into the ver-
tical plane.

at low pressure and below 600◦C to yield a cation-deficient
spinel of the metastable titanomaghemite series, which in
some cases may convert to members of the titanohematite
series, and (2) oxidation at low to moderate pressure and
above 600◦C with the direct formation of titanohematites.
On the other hand, ilmenite intergrowths in titanomagnetite
are divided into trellis, sandwich and composite textures.
Trellis lamellae result from oxidation-exsolution, whereas

Fig. 4. Stereographic plot (zoom in) of site-mean directions for the Xitle
lavas (data and Fisherian statistical parameters are given in Table 1).

sandwich and composite ilmenites can be a product of either
oxidation or primary crystallization. The representative mi-
crophotographs shown in Fig. 5 were taken with a 50× and
125× oil immersion objective and a high-resolution digital
camera.
In general, we agree with the opaque mineral description

of samples from the lowermost part of the Xitle lava flows
by Böhnel et al. (1997), pointing to the presence of small
euhedral titanomagnetites and ilmenites, in disseminated
form or with skeletal textures. The state of oxidation of
titanomagnetites mineral series is C2, for skeletal grains,
but some subhedral grains with C3–C5 are also present.
Titanomagnetite grain sizes vary from about 1–25 μm. As
well, some samples belong to titanohematites series of sizes
up to 80 μm and R2–R3 oxidation states (Haggerty, 1976).
Representative microphotographs and a concise descrip-

tion of opaque minerals supported by observations of pol-
ished sections under reflected light and oil immersion for
selected representative samples is shown in Fig. 5, and de-
scribed below. The importance of direct oxide mineral ob-
servations is significant because of their contribution to in-
vestigate the origin of magnetization.
Sample 99U023A shows pseudomorphous euhedral and

anhedral crystals consisting of titanomagnetite altered to
maghemite along its borders. This is a C1–C2 oxidation
state (Haggerty, 1976). Another view of the same sam-
ple (99U023B) shows titanohematite pseudomorphous of
skeletal texture, pseudobrookite lamellae and ilmenite re-
licts. Granular rutile is visible along the borders. This is an
R2–R3 oxidation state.
Sample 99U047 shows tabular primary ilmenite partly

hematized, and granular rutile homogeneously dissemi-
nated in the vitreous matrix (R1–R2 oxidation state).
Finally, sample 99U101 shows skeletal growth mor-

phologies of titanohematites and intergrown pseudo-
brookite, indicative of a progressive trend towards euhedral
morphology.
In summary, titanomagnetite seems to be the main mag-

netic carrier in the studied rocks. It is inhomogeneous with
ilmenite intergrowths showing a light gray-brown color,
sometimes fractured or with a brecciated texture. The gen-
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Fig. 5. Microphotographs representative of the opaque minerals from the lava flow V of Xitle volcano.

eral characteristics of magnetic mineralogy show deuteric
oxidation of degree C1 to C5 and R1 to R3 (Haggerty,
1976) and possible low-to-medium grade hydrothermal al-
teration. These microscopic observations under microscope
suggest that the natural remanent magnetization carried by
these grains is a thermoremanent magnetization, because
the described paragenesis typically develops at tempera-
tures higher than 600◦C (O’Reilly, 1984).

3. Rock Magnetism
3.1 Susceptibility vs temperature measurements
Low-field susceptibility measurements were carried out

in air using a Highmoore susceptibility bridge equipped
with a furnace in order to identify the magnetic miner-
als responsible for magnetization. Initial susceptibility
was recorded between room temperature and 600◦C (k-T
curves). One sample from each site was heated at a rate
of 20◦C/min and then cooled at the same rate. The Curie
temperature determined by Grommé et al.’s (1969) method
indicates, in all cases, the presence of Ti-poor titanomag-
netites (Fig. 6). A few sites show evidence of two fer-
rimagnetic phases during heating (like sample 99U100).
The cooling curves show only a single phase, with a Curie
temperature close to that of magnetite. Irreversible k-T
curves can be explained by titanomaghemite, which con-
verts to magnetite (Özdemir, 1987) during heating (samples
99U045 and 99U100).
3.2 Hysteresis measurements
Particular samples from each site were studied using the

AGFM ‘Micromag’ apparatus in fields up to 1.2 T, which

provide hysteresis curves, direct field isothermal remanent
magnetization (IRM) acquisition and back-field curves for
micro samples. Magnetic carriers are likely Ti-poor ti-
tanomagnetites that present pseudo-single domain behav-
ior. The coercivity of remanence (Hcr ) was determined
by progressively applying increasing backfield after satu-
ration. Three typical hysteresis plots are shown in Fig. 7.
The curves are quite symmetrical in all cases. The satura-
tion remanent magnetization (Jrs), saturation magnetization
(Js) and coercive force (Hc) were calculated after correction
for the paramagnetic contribution. IRM acquisition curves
were very similar for all samples (Fig. 7 right side). Judging
from the ratios of hysteresis parameters (Hcr/Hc ranges be-
tween 1.62 and 2.32 and Jrs/Js varies from 0.17 to 0.34), all
samples fall in the pseudo-single domain (PSD) grain size
region (Day et al., 1977; Fig. 8(a)), probably indicating a
mixture of multidomain (MD) and a significant amount of
single domain (SD) grains. Saturation is reached in moder-
ate fields of 200–400 mT, which points to spinels as rema-
nence carriers. Following Tauxe et al. (2002), we plot hys-
teresis parameters showing those that belong to the vortex
remanent states’ contribution to PSD hysteresis behavior, as
suggested by Williams and Dunlop (1995) (Fig. 8(b)).
3.3 Thellier paleointensity experiments
Following the paleodirectional and rock-magnetic re-

sults, altogether 69 samples belonging to each of the 10
cooling units, yielding stable, one-component magnetiza-
tion with blocking temperatures compatible to the near-
magnetite phase and with relatively high median destructive
field (MDF) values, were selected for paleointensity (PI) ex-



844 L. M. ALVA-VALDIVIA: PALEOMAGNETIC STUDY OF XITLE VOLCANO

0 400 800
Temperature (°C)

0.00

0.05

0.10

S
us

ce
pt

ib
ili

ty
 (

ar
bi

tr
ar

y 
un

its
)

99U045
FLOW 5

0 400 800

0.05

0.10

0 400 800

0.05

0.00

0.10

0 200 400 600 800

0.00

0.04

0.08

0.12

0.02

0.06

0.10

99U100
FLOW 8

99U113
FLOW 9

99U023
FLOW 3

Fig. 6. Representative continuous susceptibility curves versus temperature (arrows indicate the heating branch).

periments.
PI measurements were completed using the Thellier

method (Thellier and Thellier, 1959) in its modified form
(Coe et al., 1978) combined with controlled heatings (so-
called pTRM checks). Heating and cooling was done in
air using a Magnetic Measurements thermal demagnetizer
(MMTD80). The experiments were carried out in two steps.
For the first set of 10 pilot samples (i.e. one sample per site),
11 temperature steps were distributed between room tem-
perature and 540◦C and the laboratory field set to 40 μT.
For the second set of samples (59 in total) only eight tem-
perature steps were applied since their unblocking tempera-
ture spectra were already well identified and the laboratory
field set to 30 μT.
PI data are reported on the NRM-TRM plot of Fig. 9 and

the results are given in Table 2. NRM-TRM plots with
the TRM normalized by the maximum TRM, were used
in order of clarity. We accepted only determinations that
fulfill the following criteria: (1) determinations obtained
from at least four NRM-TRM points corresponding to an
NRM fraction larger than 1/3 (Table 2), (2) quality factor
(Coe et al., 1978) of five or more, and (3) positive ‘pTRM’
checks, i.e., the deviation of ‘pTRM’ checks were less than
15%. Directions of NRM remaining at each step obtained

from the PI experiments are reasonably linear and point to
the origin (Fig. 9). No deviation of remaining directions
NRM towards the direction of applied laboratory field was
observed. Finally, 56 samples, coming from nine individual
basaltic lava flows, yielded acceptable PI estimates. The
flow-mean PI is 59.9±7.7 μT, higher than the present-day
field. For these samples, the NRM fraction f used for
determination ranged between 0.34 to 0.94 and the quality
factor q from 5.1 to 78.5. They constitute the ‘hard core’ of
the PI data set and are represented in bold in Table 2.
Thellier PI experiments have yielded moderately dis-

persed PI values (Fig. 9) from the historically observed ge-
omagnetic intensity. Although samples yielded technically
high quality PI results, the obtained values are significantly
different from the actual value of about 43 μT.
In order to investigate an alternative cause for the disper-

sion/scatter of the PI values obtained, the cooling rate (CR)
dependence of TRM was investigated following a modified
procedure to that described by Chauvin et al. (2000). Seven
to 10 samples were used from all the 10 lava flows for the
CR experiment.
TRM gained during the last step of the Thellier experi-

ment (550◦C) was subsequently designated as TRM1. At
the same temperature, a new TRM (TRM2) was given to all
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Fig. 7. Examples of hysteresis curves measured with a MicroMag system. SIRM of small rock chips (right side).

1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

PSD

SD

10 20 30 40

0.1

0.2

0.3

0.4

M
r/M

s

Hcr/Hc

Hc (mT)

CSD
flower

USD

vo
rt

ex

USD/S
P

S
qu

ar
en

es
s 

(M
r/M

s)

(a) (b)

Fig. 8. (a) Magnetic hysteresis parameter ratios plotted in a Day diagram (Day et al., 1997); (b) Modified from Tauxe et al. (2002).
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(a)

Fig. 9. Representative NRM-TRM plots in which, in order of clarity, the TRM is normalized by the maximum TRM. (A) First set (10 pilot samples, i.e.
one sample per site) of samples with the laboratory field set to 40 μT. (B) Second set of samples (59 in total) with the laboratory field set to 30 μT.

samples using a long cooling time (∼12 hrs). Finally, a third
TRM (TRM3) was created using the same cooling time (of
about 45 min) as that used to create TRM1. The effect of
cooling rate upon TRM intensity was estimated by calcu-
lating the percentage variation (R12) between the intensity
acquired during short and a long cooling times (TRM1 and
TRM2), whereas variation in TRM acquisition capacity was
estimated as a percentage variation (R13) between the in-
tensity acquired during the same cooling time (TRM1 and
TRM3). Cooling rate correction of raw PI values is based

on the premise that R13 should be lower than 15%.
Unfortunately, most of the samples presented values of

R13 greater than 15%, and no cooling rate correction was
made to these samples. Those samples to which CR cor-
rection was applied gave a flow mean lower than the raw PI
data, as was expected (Table 3).
3.4 Anisotropy of magnetic susceptibility
Essentially, the magnetic susceptibility of titanomag-

netite grains depends on their shape. For irregular grains
except single domain grains, it is maximum when mea-
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sured parallel to the longest axis and minimum when par-
allel to the shortest. The AMS of a titanomagnetite-bearing
rock consequently indicates the spatial arrangement and
preferred orientation of its titanomagnetite grains and is a
powerful tool for investigating its fabric. For most lava
flows that have been examined by the AMS technique, the
anisotropy has been ascribed to the preferred shape align-
ment of magnetite or maghemite, both of which are cubic

and typically occur in nearly equidimensional grains (e.g.,
Baer et al., 1997; Palmer and MacDonald, 1999). As a con-
sequence, the degree of magnetic anisotropy due to the pref-
erential alignment of long axes of these grains is small. For
most sizes of these accessory grains of magnetite, the easy
axis of a grain magnetization (its Kmax axis) corresponds to
the long dimension of the grain, whereas the direction of the
least susceptibility (the Kmin axis) corresponds to the short
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Table 2. Paleointensity results from the Xitle Volcano. n is the number of NRM-TRM points used for paleointensity determination, Tmin-Tmax is the
temperature interval used, f , g and q are the fraction of extrapolated NRM used, the gap factor and quality factor (Coe et al., 1978), respectively.
FE ± σ(FE ) is the individual paleointensity with associated error. FE ± s.d. is the site mean paleointensity with standard deviation. Accepted
determinations are shown in bold (see also text). ∗ after the sample number indicate that they are pilot samples.

Site Sample n Tmin-Tmax f q g FE ± σ (FE ) FE ± s.d.
Flow 1 99U002A 5 200-480 0.43 4.8 0.74 71.3 ± 4.8 57.9 ± 6.7

9U004A 5 200-480 0.47 3.7 0.71 63.8 ± 6.2
9U005A 6 200-520 0.53 5.8 0.72 71.1 ± 6.5
9U006C* 7 20-450 0.46 6.4 0.81 52.3 ± 3.1
9U007A 6 200-520 0.6 6.4 0.76 54.9 ± 5.4
9U008A 6 200-520 0.59 6.1 0.76 55.5 ± 4.6
9U009A 6 200-520 0.55 5.4 0.73 57.6 ± 5.1
9U010A 7 20-520 0.64 7.3 0.8 56.2 ± 3.8

Flow 2 99U011A 6 20-480 0.36 7.5 0.75 64.5 ± 2.2 60.8 ± 8.1
9U012A 6 20-480 0.69 6.5 0.71 60.1 ± 4.1
9U013A 7 20-520 0.71 6.7 0.68 62.2 ± 3.8
9U014A 7 20-520 0.67 6.9 0.7 61.5 ± 3.5
9U015D* 8 20-475 0.58 8 0.72 43.6 ± 2.2
9U016A 7 20-520 0.72 5.4 0.69 64.8 ± 5.2
9U017A 5 300-520 0.73 5.1 0.63 71.6 ± 6.3
9U018A 7 20-520 0.81 8.6 0.74 66.1 ± 4.4
9U019A 8 20-550 0.64 6.8 0.82 53.2 ± 3.8

Flow 3 99U021A 8 20-550 0.65 16.1 0.84 65.6 ± 2.2 61.6 ± 3.2
9U022A 8 20-550 0.57 10.2 0.83 58.5 ± 2.4
9U023D* 10 20-500 0.52 14.7 0.84 64.2 ± 1.9
9U026A 8 20-550 0.91 19.4 0.84 57.6 ± 2.3
9U027A 8 20-550 0.73 14.8 0.66 62.4 ± 2.0
9U029A 8 20-550 0.53 6.2 0.74 61.1 ± 3.7
9U030A 6 200-520 0.36 4.3 0.75 59.4 ± 5.1

Flow 4 99U031A 6 200-520 0.41 6.6 0.82 66.8 ± 3.3 66.7 ± 4.0
9U032A 5 200-480 0.36 4.8 0.74 59.7 ± 5.4
9U033A 7 20-520 0.73 8.8 0.79 69.8 ± 4.4
9U034A 7 20-520 0.73 8.5 0.78 72.1 ± 4.8
9U035D* 8 20-450 0.28 2.9 0.79 61.0 ± 4.6
9U037A 7 20-520 0.49 7.2 0.81 62.1 ± 3.2
9U039A 7 20-520 0.64 12.2 0.83 62.4 ± 2.6
9U040A 7 20-520 0.69 6.1 0.68 66.8 ± 5.1

Flow 5 99U041A 8 20-550 0.76 13.2 0.83 69.8 ± 3.6 55.2 ± 10.1
9U042A 7 20-520 0.76 15.2 0.79 51.2 ± 1.8
9U043A 7 20-520 0.75 11.4 0.76 53.2 ± 2.5
9U044A 7 20-520 0.64 7.4 0.76 46.4 ± 2.6
9U045A 5 200-480 0.43 4.7 0.8 54.3 ± 4.8
9U047C* 8 20-475 0.24 2.4 0.8 72.8 ± 5.6

Flow 6 99U051A 6 200-520 0.69 10.6 0.72 64.2 ± 2.7 62.6 ± 4.6
9U052A 8 20-550 0.94 17.9 0.81 65.2 ± 2.7
9U053A 7 20-520 0.55 5.6 0.78 59.4 ± 5.1
9U054A 6 20-480 0.34 2.8 0.69 64.7 ± 6.4
9U055A 8 20-550 0.64 8.3 0.82 58.8 ± 3.4
9U056A 8 20-550 0.61 13.2 0.83 55.7 ± 2.1
9U058A 6 200-520 0.39 3.9 0.76 53.2 ± 3.8
9U060A 8 20-550 0.52 9.1 0.82 66.2 ± 3.1
9U061C* 8 20-500 0.34 8.9 0.78 68.5 ± 2.0

Flow 7 99U091A 8 20-550 0.64 22.1 0.78 44.3 ± 0.9 48.6 ± 7.9
9U091D* 9 200-500 0.36 3.2 0.8 91.6 ± 8.1
9U092A 8 20-550 0.58 7.5 0.79 61.3 ± 3.8
9U093A 7 20-520 0.58 10.2 0.79 50.9 ± 2.3
9U095A 7 20-520 0.76 19.2 0.69 42.1 ± 1.1
9U096A 7 20-520 0.5 13.5 0.79 44.2 ± 1.6

Flow 8 99U098A 7 200-550 0.89 78.5 0.79 47.3 ± 0.4 52.0 ± 8.1
9U099A 6 300-550 0.65 26.9 0.72 50.6 ± 0.8
9U100A 6 300-550 0.71 8.9 0.78 49.1 ± 2.9
9U104A 6 200-520 0.62 9.8 0.77 50.6 ± 2.3
9U105D* 6 20-500 0.43 8 0.7 45.6 ± 1.7
9U107A 6 300-550 0.54 10.1 0.76 69.8 ± 2.9
9U108A 7 200-550 0.55 5.8 0.79 50.9 ± 3.1

Flow 9 99U109A 8 20-550 0.49 5.3 0.76 69.1 ± 4.3 73.9 ± 9.9
9U109D* 9 20-500 0.44 6.3 0.79 90.8 ± 5.1
9U110A 8 20-550 0.55 5.3 0.79 76.1 ± 6.3
9U111A 8 20-550 0.52 6.3 0.79 77.9 ± 5.2
9U112A 7 20-520 0.51 5.4 0.74 65.3 ± 4.9
9U114A 7 20-520 0.53 2.8 0.74 73.4 ± 9.2
9U115A 7 20-520 0.51 3.5 0.72 75.3 ± 8.3
9U118A 6 200-520 0.39 9.1 0.74 64.5 ± 2.1

Flow 10 99U121D* 7 20-400 0.34 3.3 0.71 43.2 ± 3.2
Mean All Sites 59.9 ± 7.7
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Table 3. Paleointensity results after cooling-rate (CR) correction. R12 is defined as the percent difference between the TRM acquired with short CR vs
TRM2 acquired with long CR. R13 is defined as the percent variation in TRM acquisition capacity.

Flow No. Sample PI [μT] R12 R13 PI [μT]

Raw CR-corr

3 99U022A 58.5 0.095 0.905 52.9

3 99U030A 59.4 0.071 0.929 55.2

4 99U031A 66.8 0.063 0.937 62.6

4 99U032A 59.7 0.075 0.925 55.2

4 99U037A 62.1 0.037 0.963 59.8

5 99U045A 54.3 0.022 0.978 53.1

6 99U054A 64.7 0.150 0.850 55.0

6 99U056A 55.7 0.037 0.963 53.6

6 99U058A 53.2 0.060 0.940 50.0

9 99U108A 50.9 0.026 0.974 49.6

9 99U110A 76.1 -0.072 0.928 70.6

9 99U111A 77.9 0.126 0.874 68.1

9 99U112A 65.3 0.039 0.961 62.8

9 99U114A 73.4 0.082 0.918 67.4

9 99U118A 64.5 -0.027 1.027 66.2

s.d.

Mean Flow 4 62.9 ± 3.6 59.2 3.7

Mean Flow 6 57.9 ± 6.0 52.9 2.6

Mean Flow 9 68.0 ± 10.0 67.0 2.9

Mean 62.9 ± 5.0 59.7 7.1

dimension.
The magnetic fabric of lava is owing to several factors,

including petrofabric formed during flow. The shear pro-
duced by flow creates the orientation or alignment of min-
erals related to the flow conditions. For a normal magnetic
fabric, mean magnetic foliation (plane perpendicular to the
minimum axis Kmin) is mostly close to the flow plane. It
often exhibits a small difference in orientation (imbrication
angle) relative to the flow plane (Knight and Walker, 1988).
Depending on the part of the flow, it could be dipping, rel-
ative to the flow plane, upflow in the lower part of the flow
or downflow in the upper part. The maximum axis (Kmax)
is mainly found (Cañon-Tapia and Pinkerton, 2000) either
parallel (flow emplaced on a significant slope) or perpen-
dicular (flow emplaced on a very weak slope) to the flow
direction.
The orientation of the maximum and minimum axes of

the AMS ellipsoid is presented in Fig. 10 for all sites. In
Fig. 10, it is shown that Kmax = K1 is mean on an equal
area stereoplot that, together with Kmin = K3, the mean
data of Fig. 10, suggests that Kmin and Kmax axes are dis-
tributed on normal planes. The roughly west-east flow di-
rection is clearly indicated by the mean magnetic foliation
(plane perpendicular to the minimum axis Kmin) together
with the parallel plane of the maximum axis (Kmax) that
suggests emplacement of the lava flows on a significant
slope.

4. Discussion and Conclusions
The magnetic characteristics of typical samples are sum-

marized in Figs. 6–8 and are described as follows:

(1) Characteristic remanent magnetization (ChRM) direc-
tions were isolated by means of principal-component
analysis (Kirschvink, 1980), and flow mean directions
were calculated from 5 to 10 samples per flow. Most
of the studied samples carry a single and stable compo-
nent of magnetization. Often a minor secondary com-
ponent, probably of viscous origin, was present but
easily removed up to 20 mT or 250◦C. The larger part
of remanent magnetization in most cases was removed
at temperatures below 500◦C which suggests that Ti-
poor titanomagnetite is responsible for the remanent
magnetization. Site-mean inclinations vary from 30.4
to 37.8◦, and site-mean declinations vary from 356.2 to
5.1◦ (Table 1). The overall mean direction calculated
from 10 sites is N = 10, Dec = 1.1◦, Inc = 34.1◦,
k = 531 and α95 = 2.1◦. Overall and site-mean
directions are distributed close to the dipolar direc-
tion (Inc = 35.3◦). The overall mean direction has
very low, within-site angular dispersion of characteris-
tic NRM (ChNRM) directions, as expected for young,
fresh basalts with univectorial remanences.

(2) Variation of low-field susceptibility with high temper-
ature showed, in some cases, the presence of a sin-
gle ferrimagnetic phase with Curie point compatible
with Ti-poor titanomagnetite. However, the cooling
and heating curves are often not reversible (indicat-
ing transformation of maghemite to magnetite during
the heating). Some samples (99U100) curves show an
anomalous peak of susceptibility around 350–400◦C
on heating that may correspond to the maghemite sub-
sequently transformed to magnetite (Özdemir, 1987).



850 L. M. ALVA-VALDIVIA: PALEOMAGNETIC STUDY OF XITLE VOLCANO

N

2

4

6

F1

F2

F3

F4

F5

F6

8
9

1

2

3

4

5

6

K3K1 F10

F9

10

7

F7

F8

Fig. 10. Equal area projection (lower hemisphere) of the directions of the principal susceptibilities measured in the lava flows. Kmax = K1 (squares),
Kmin = K3 (circles) mean for all 10 lava flows. Dashed line indicates the best fitting plane calculated from the principal component analysis for K1
and K3. Density distribution was calculated using a Starkey Fixed Circle.

Table 4. Previous paleointensity results from the Xitle volcano.

Site PI (μt) Samples Reference

JM 59.2±11.0 9 Morales (1995)

XI 60.0±9.6 6 Urrutia-Fucugauchi (1996)

CU 72.6±14.2 51 Böhnel et al. (1997)

S9 76.6±23.3 6 Gonzalez et al. (1997)

MX 58.3±9.5 17 Böhnel et al. (2003)

GT 43.5±9.8 8 Alva (unpublished)

NG 56.1±5.9 8 Nagata et al. (1965)

LA 59.9±7.7 56 This study

Mean 60.71±10.2 All data

Nevertheless, both experimental and theoretical stud-
ies (Heider and Dunlop, 1987; Özdemir and Dunlop,
1989; Nishitani and Kono, 1989) show that chemical
remagnetization by maghemitization has the same di-
rection as the original TRM. Thus, paleodirections
were most possibly non-affected by this alteration and
they can be used for determining magnetic polarities
and mean paleodirections.

(3) Hysteresis measurements at room temperature were
performed on all studied sampled-sites (Fig. 7). The
curves are symmetrical in all cases. Near the origin,
no potbellied and wasp-waisted behavior (Tauxe et al.,
1996) was detected, which probably reflect very re-
stricted ranges of the opaque mineral coercivities. For
all samples, small pseudo-single-domain grains seem
to be responsible for remanence, judging from hystere-
sis parameters values (Day et al., 1977; Fig. 8A). This
probably suggests a mixture of MD and a significant

amount of SD grains. Let us note that if some super-
paramagnetic fraction also exists in these samples, the
measured coercive force and saturation magnetization
are somewhat lower and larger, respectively, than those
ferrimagnetic fractions alone.

(4) The AMS study indicates that the mean maximum
susceptibility parallels the geologically-inferred (west-
east) flow direction in all 10 units. Deviation of the
local motion from that of the unit as a whole resulted
from a negligible or varying slope (Fig. 10).

(5) Earlier PI studies of the Xitle lava flow disclose in-
tensely varying mean paleointensities (Table 4), rang-
ing from 58 to 77 μT (Böhnel et al., 1997, 2003;
Gonzalez et al., 1997; Nagata et al., 1965; Morales-
Contreras, 1995; Morales et al., 2003; Urrutia-
Fucugauchi, 1996). All of these studies were per-
formed on single or several lava flows exposed at dis-
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tinct places over the flanks of the volcano. PI re-
sults of the complete succession of 10 lava flows (this
study), according to reliability parameters, are of rea-
sonable quality. The site mean intensities range from
48.6± 7.9 to 73.9± 9.9 μT. The mean value obtained
for nine sites is 59.9 ± 7.7 μT, which is consistent
with the global data for this time-period. Common to
all studies is that the PI was higher than the present
field intensity of 43 μT. This is in general conformity
with archeomagnetic results from the USA (Sternberg,
1989) and other data from the rest of the world (McEl-
hinny and Senanayake, 1982), which show that pale-
ointensities around 2000 BP were 30–40% higher than
today. The GT mean archeointensity determination
(Table 4) comes from Maya pottery collected in the
Kaminaljuyú area (Guatemala) that belong to an age
∼100 BC (manuscript in preparation).

In summary, the characteristic magnetic directions de-
termined in this study seem to be of primary TRM ori-
gin. This is supported by the thermomagnetic investigations
which show that the remanence is carried, in most cases,
by Ti-poor titanomagnetite, resulting from oxy-exsolution
of original titanomagnetite during the initial flow cool-
ing. Unblocking temperature spectra and relatively high
coercivity suggest small pseudo-single domain magnetic
structure grains as being responsible for remanent mag-
netization. The single-component linear demagnetization
plots observed in the majority of cases and susceptibility-
temperature curves throughout the 10 lava flows suggests
that they should be suitable for PI experiments.
Since the last decade, several studies have shown that

the standard Thellier method sometimes gives incorrect PIs
(e.g. Kosterov and Prèvot, 1998; Tanaka and Kono, 1991;
Calvo et al., 2002; Biggin and Thomas, 2003; Yamamoto
et al., 2003; Kissel and Laj, 2004; Mochizuki et al., 2004;
Chauvin et al., 2005; Pan et al., 2005). Possible causes
for this could be local magnetic anomalies, multidomain
effects, irreversible physical changes in PSD grains, and
thermal alteration due to laboratory heating.
In order to decipher the most plausible source and to find

the solution to this problem, research has reached diverse
conclusions and/or suggestions as follows: (1) Biggin and
Thomas (2003) conclude that pTRM checks, and other cri-
teria, can be passed by samples that yield significantly erro-
neous PI estimates and can be failed by samples that record
the paleofield faithfully, so, the need for further intensive PI
studies is clear; (2) Biggin et al. (2003) found that there is
no geomagnetic reason for the anomalously high dispersion
of the PI data sets. They suggest non-ideal factors influ-
encing the individual results, and amongst these possible
factors/findings are (a) variation of the cooling rate through
the flow. This can directly affect the intensity of the TRM
(and so the PI estimate) in different parts of the flow (Fox
and Aitkin, 1980). Also, cooling history is significant in
defining the magneto-mineralogy and domain state of the
rock which PI estimation can be extremely sensitive to. (b)
A small measured dispersion for a small number of sam-
ples is no guarantee that the mean is representative of that
for the flow as a whole. (c) Suggest sampling maximiz-
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Fig. 11. Previous paleointensity determinations of the Xitle lavas.

ing the vertical coverage of the lava flow. (3) Curved or S
shaped Arai plots from PI experiments were studied by Coe
et al. (2004). They found that using the slope of only the
lower or higher temperature NRM-TRM points would lead
to estimates that are 30–80% too high or too low. Excellent
agreement with the known regional field intensity is found
when the slopes of lines connecting the end points of the
PI experiments are used. They suggest that the curvature
of the NRM-TRM plot arises from the MD-like behavior
of magnetic grains that exhibited PSD- to MD-like proper-
ties rather than from oxyexsolution or some other physico-
chemical alteration during laboratory heating. (4) Chau-
vin et al. (2005) conclude that the best fitting line through
all points with successful pTRM checks and no CRM ac-
quisition leads to more accurate PI results than trying to
define the “straightest” line. To explain the overestimated
PI, they consider two physical processes that arise from the
much slower initial cooling of the rock in nature than heat-
ing/cooling cycles in the laboratory during Thellier experi-
ments. Cooling-rate-dependence of TRM and high temper-
ature VRM, augment the initial primary NRM arising from
the slower initial cooling of the rock in nature versus the
more rapid heating/cooling cycles during the laboratory ex-
periments. This enhanced NRM can lead to an overestima-
tion of PI determinations when only lower temperature data
are considered. Also, PI overestimation can result for PSD-
MD particles, caused by the asymmetry of TRM acquisition
and demagnetization, when only lower temperature data are
considered.
The overall mean PI result, higher than the present field

intensity, could be due to heating steps that alter the mag-
netic mineralogy, or to the criteria for selection of reliable
PI determinations based mainly on the examination of the
Arai plots.
Previous PI results of Xitle lava flows (Böhnel et al.,

1997, 2003; Gonzalez et al., 1997; Nagata et al., 1965;
Morales-Contreras, 1995; Morales et al., 2003; and Urrutia-
Fucugauchi, 1996) found very similar mean values to our
mean PI estimate (Fig. 11, Table 4). Combining all of the
previous data results in 60.7±10.2 μT (N = 8). This value
is slightly higher than our mean value. Therefore, the appar-
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ent agreement of the mean values from all the previous stud-
ies, and this study, always higher than the present-day field,
cannot be explained by experimental errors alone. At this
point, it should be mentioned that the Xitle flow probably
cooled down within a time span much shorter than the typi-
cal periods of geomagnetic intensity variations. The cooling
time of 150 days proposed by Böhnel et al. (1997) suggests
that a geomagnetic origin for the observed PI variations is
excluded. This is supported by the directional data, which
are uniform throughout the flow.
In his comprehensive review of time variation in geomag-

netic intensity, Valet (2003) indicates a permanent search
for improving data quality and, hence, reliability. However,
the reliability of determinations of absolute PI has not im-
proved significantly but much care has been taken to include
additional checks and criteria before accepting a field deter-
mination.
However, similar conclusions are reached by different

workers using distinct methodology, and following the sug-
gestion of Biggin et al. (2003) and Chauvin et al. (2005),
in order to look for an explanation of the abnormally high
dispersion of PI estimates, I tested the cooling rate depen-
dence of TRM, investigated following a modified procedure
suggested by Chauvin et al. (2000).
Unfortunately, most of the samples presented values of

R13 greater than 15%, and no cooling rate correction was
made to these samples. Those samples on which cooling-
rate correction was applied give a flow mean of 59.7 ± 7.1
lower than the raw PI data (Table 3), as was expected, but
very similar to the mean value obtained for the nine sites
59.9 ± 7.7 μT. Currently, we are investigating the possible
causes of intra-flow variation of PI on a detailed vertical
sampling of lava flow number 6 of this work. The effect of
cooling rate upon acquisition of TRM in volcanic rocks also
seems to be critical, as in archeomagnetic investigations.
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Böhnel, H., A. J. Biggin, D. Walton, J. Shaw, and J. A. Share, Microwave
palaeointensities from a recent Mexican lava flow, baked sediments and
reheated pottery, Earth Planet. Sci. Lett., 6751, 1–16, 2003.

Buddington, A. F. and D. H. Lindsley, Iron-titanium oxide minerals and
synthetic equivalents, J. Petrol., 5, 310–357, 1964.

Bullard, F. M., Volcanoes of the Earth, University of Queensland Press,
Saint Lucia, 1976.

Calvo, M., M. Orévot, M. Perrin, and J. Riisager, Investigating the reasons
for the failure of paleointensity experiments: a study on historical lava
flows from Mt Etna (Italy), Geophys. J. Int., 149, 44–63, 2002.
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