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Local gravity from Lunar Prospector tracking data: Results for Mare
Serenitatis
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High-resolution gravity anomalies on the surface of the Moon are determined from Lunar Prospector tracking
data residuals. By means of a benchmark test the recovery method is validated with respect to the orbit
determination and gravity field recovery strategy. Tracking data for the entire extended mission of Lunar
Prospector, during which the satellite flew at an average altitude of 30 km above the lunar surface, have been
completely and independently processed and orbits have been determined. Using tracking data residuals from
these precise orbits, adjustments to the a priori gravity field model have been created for Mare Serenitatis. The
results for Mare Serenitatis with the local recovery are comparable to global recovery results, yet faster and more
efficient with a possibility to increase the resolution.
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1. Introduction
Until this date, the lunar gravity field has mainly been ex-

pressed by a global spherical harmonical representation, de-
spite the lack of tracking data over the far side of the Moon.
Such a representation requires regularisation such as taking
a priori information into account in order to have a stable
and meaningful solution. Floberghagen (2002) has shown
that the choice of this a priori information greatly affects
the complete final solution, for the far side as well as for the
near side. To extract the wealth of information about the
near side present in tracking data of the Lunar Prospector
spacecraft and to overcome problems inherent to the use of
global spherical harmonic basis functions, regional repre-
sentations become of interest. They can be used to derive
accurate and high-resolution local and regional (depending
on the size of the area) gravity anomaly maps of the near
side, which can help to understand the structure and evo-
lution of the Moon, and consequently the Earth-Moon sys-
tem, as they provide the boundary conditions for internal
processes and structure. Such a regional method also has
the advantage that it is fast and efficient.

This paper presents a high-resolution local gravity
anomaly solution for Mare Serenitatis, one of the large
mascons on the near side. Such a high-resolution solution
can for instance be used in combination with topography
to study the characteristics of mare fill and the sub-surface
structure, as was done by Watters and Konopliv (2001). The
solution presented here has been obtained by processing Lu-
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nar Prospector tracking data. These data have been pro-
cessed using the GEODYN II software package (Rowlands
et al., 1995). Residuals from orbit determination done with
this software package have been used to determine adjust-
ments in terms of gravity anomalies to the reference gravity
field model, which was LP150Q, the latest Lunar Prospec-
tor spherical harmonic solution and a result of a full-rank
inversion in one step (as opposed to its predecessor LP165P
(Konopliv et al., 2001)). A complete and independent re-
processing of Lunar Prospector tracking data using state-
of-the-art reference models allows for a comprehensive and
accurate determination of local gravity fields on the Moon.

2. Method and Benchmark Test
The recovery method uses a linear variational approach,

and is an extension of the method presented by Vonbun et al.
(1980). The method and its sensitivity with respect to var-
ious error sources are discussed in great detail in Goossens
et al. (2005) and Goossens (2005). A Doppler residual �ρ̇

can be thought to be caused by local gravity anomalies. In
a linear variational form, by using a first order Taylor ex-
pansion, the dependency of the residual on the vector of
anomalies ��g can be expressed as:

�ρ̇ = ∂ρ̇

∂ �xsat

∂ �xsat

∂��g ��g (1)

where �xsat is the 6 parameter satellite state vector consist-
ing of position and velocity and ∂ρ̇/∂ �xsat is a geometrical
partial. The vector ��g is a vector containing the gravity
anomalies for each grid point on a reference sphere with
a radius of 1738 km. The anomalies are expressed as the
magnitude of the acceleration vector and are related to the
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Fig. 1. Flow chart local gravity field recovery.

disturbing potential T in the spherical approximation by
�g = −∂T/∂r − 2T/r , where r is the radius, see e.g.
Heiskanen and Moritz (1984). The partial ∂ �xsat/∂��g de-
scribes the sensitivity of the components of the state vector
with respect to the separate anomalies per grid cell. This
sensitivity matrix can be determined by integration of the
variational equations. Previous local and regional gravity
field determination efforts (such as the recent result for the
Moon by Sugano and Heki (2004)), often used line-of-sight
accelerations, obtained by numerically differentiating the
Doppler residuals. In this paper, the Doppler residuals are
used directly, in order to avoid the delicate matters of nu-
merical differentiation, which can introduce errors on the
data, as was noted as well by Barriot et al. (1997).

This method and the data processing strategy have been
validated by means of a benchmark simulation using the
GEODYN II software. In this test case, the processing of
the actual Lunar Prospector data, and the subsequent local
gravity recovery, have been simulated. The steps that are
taken in the recovery process are schematically drawn in

Input ��g, LP150Q, l = 21 − 50 M fixed M not fixed Differences M fixed or not

Fig. 2. Input and recovered anomalies in the benchmark test for the Mare Serenitatis area. Input anomalies coming from LP150Q, l = 21−50, have an rms
of 58.34 mGal; recovered anomalies with M fixed have an rms of 55.54 mGal, and anomalies where M is not fixed have an rms of 57.09 mGal. These
values are for the central part of the anomalies only (λ = 10◦–25◦E, φ = 15◦–35◦N). Tikhonov regularisation has been used to obtain the solutions.

Fig. 1. A truth orbit has been generated using the LP150Q
lunar gravity field model up to degree l = 50, at an average
satellite altitude of 100 km. This orbit is equivalent to the
“2 day arc orbit” mentioned in Fig. 1. Orbits obtained from
spans of two days (called arc) will be used as starting point
when real Lunar Prospector data are processed. This truth
orbit will pass over Mare Serenitatis, which is located in
the area λ = 5◦–30◦E and φ = 10◦–40◦N. This will also
be the recovery area, consisting of 806 anomaly blocks of
1◦ × 1◦, where the given coordinates denote the location
of the central points of the anomaly blocks. This truth
orbit thus determines when the satellite actually crosses the
area under consideration, and it also delivers the initial state
vectors for the next step.

Simulated data will consist of two-way range and
Doppler data. Stations used are DSN stations 24, 42 and
61, with coordinates as published by DSN (Thornton and
Border, 2000). These simulated data will be used in a re-
duction run, which uses the same models, except that the
gravity field model is now used up to degree l = 20. That
means that the discrepancy between both runs represented
by l = 21–50 should be present in the final recovered
anomalies. Orbits will be determined in this reduction run
using a short-arc approach: one arc is defined as the time it
takes the satellite to travel over the recovery area on the lu-
nar surface. With the chosen area on the Moon, this results
in arcs of about ten minutes. As shown in Fig. 1, the starting
point (in time as well as in terms of the initial state vector)
for these short arcs is taken from the truth orbit. Perform-
ing orbit determination with such short arcs requires extra
efforts in order to have convergence of the orbit determi-
nation process. In Goossens et al. (2005) and Goossens
(2005) state vector estimation in short-arc orbit determi-
nation has been investigated, and by means of eigenvalue
analysis of the part of the normal matrix for the state vector
adjustment it was found that only certain combinations of
the adjustment are observable rather than the full 6 element
adjustment. In total, 3 or 4 eigenvalues were found to be
numerically close to zero, leaving only two parameters that
are actually observable. Therefore, it is chosen here to fix
3 or 4 selected Kepler elements in the orbit determination.
The Kepler elements that are kept fixed here will be the ec-
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centricity e, the right-ascending node � and the argument
of pericenter ω. The right-ascending node is chosen since
it will fix the orientation of the orbital plane. To maintain
some flexibility, the inclination, which also defines part of
the orientation of the orbital plane, is not chosen here. The
argument of pericenter is chosen together with the eccen-
tricity since they are related for near-circular orbits. The
argument of pericenter is also closely related to the mean
anomaly, especially for such short arcs. The mean anomaly
M itself can also remain fixed in order to compensate for
the fourth small eigenvalue; the effect of this is investigated.
Results from these short-arc orbit determinations are a set
of residuals and an orbit. These residuals, which carry the
information about the discrepancy in force models between
the truth orbit and the results from the reduction run, are
the data points in the local gravity field recovery, and these
orbits are used as the reference orbits along which the vari-
ational equations are integrated, cf. Fig. 1. This then yields
all the elements for Eq. (1), written in the standard form
�y = A�x , to be solved. Here, �x is the vector with the anoma-
lies (not to be confused with the state vector �xsat), �y the
vector with the data points, and A the design matrix, the
entries of which consist of the partials of Eq. (1).

Results for the benchmark simulation are shown in Fig. 2.
This figure shows both the input anomalies (those from
LP150Q for l = 21–50) as well as recovered anoma-
lies. The recovered anomalies have been obtained by ei-
ther estimating the mean anomaly M in the short-arc or-
bit determination or not. Both recovered anomalies use
Tikhonov regularisation, where the solution x̂α is obtained
by x̂α = (

AT WA + αI
)−1

AT W�y, where W is a diagonal
weight matrix for the data, using 1 m for range data and 1.0
mm/s for Doppler data, and I is the identity matrix. The reg-
ularisation parameter α was chosen to be 10+7, the optimal
value obtained from simulations. The results show that the
input anomalies can be recovered. The rms of differences
for the central part of the solution (which covers λ = 10◦–
25◦E and φ = 15◦–35◦N, and which is taken here because
boundary effects are intrinsic to local and regional recovery
methods; for an assessment of this effect, see Goossens et
al. (2005) and Goossens (2005)) between input and recov-
ered anomalies is 15.69 mGal when M is fixed and 27.06
mGal when M is not fixed. As can also be seen from Fig. 2,
the solution with M fixed resembles the input signal best;
the solution with M free shows orbital patterns. The dif-
ferences between both solutions, with either fixing or not
fixing M , are also shown in the figure. This plot shows
the largest differences occur at the boundaries and remain
limited within the central part (note the different scale used
for the differences plot). The orbital track pattern is also
clearly visible here. It should be noted however that in this
case there were no state vector differences between simu-
lated orbits and the reduction orbits, since in the reduction
run the a priori orbit was used, thus representing a best case
scenario. In reality, there will always be state vector errors
and one needs more flexibility in the orbit determination
process, which can be obtained by estimating M . There-
fore, when processing real Lunar Prospector observations,
M will not be fixed in the orbit determination. It is also
expected that this reduces the orbital track patterns.
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Fig. 3. Rms of fit for the Lunar Prospector Doppler and range residuals
after orbit determination using two-day arcs for the months January until
July, 1999.

Precise orbits need to be determined prior to the local
recovery. This has been done by processing the entire Lunar
Prospector data set for the last 7 months of the mission
(January 1999 until July 31 1999), where its altitude was
lowest at an average altitude of 30 km above the lunar
surface. Using LP150Q up to degree 150 as the reference
model and using a two-day arc length, the rms of residuals
for Doppler data was typically better than 5 mm/s, and that
for range data is at a level better than 3 m, comparable to or
better than (due to the use of a more recent a priori gravity
field model) results published by Carranza et al. (1999).
Results showing the rms of post-fit residuals per two-day
arc for the entire extended mission for both Doppler and
range data are shown in Fig. 3. Outliers appear to occur
regularly in time and might be selenographically correlated.
There is also a slight increase in rms of data fit towards the
end of the entire Lunar Prospector mission. These orbits
will deliver the initial state vector values for the short-arc
orbit determination, from which the residuals will be used
in the local recovery, cf. Fig. 1.

3. Recovery Using a Pre-Lunar Prospector A Pri-
ori Gravity Field Model

To validate the method even further, a pre-Lunar Prospec-
tor gravity field model, namely GLGM-2 (Lemoine et al.,
1997), will be used in the short-arc orbit determination. Ac-
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GLGM-2, l = 2 − 70 LP150Q, l = 2–150 GLGM-2 + adjustment adjustment

Fig. 4. This plot shows anomalies according to GLGM-2 and LP150Q, the recovered anomalies when GLGM-2 is used in the short-arc orbit
determination, and the adjustment itself, for the Mare Serenitatis area. These results use actual Lunar Prospector data. No regularisation was
used to obtain the solution. Input anomalies using GLGM-2 have an rms of 198.05 mGal, those using LP150Q 213.5 mGal, for the central part
(λ = 10◦–25◦E, φ = 15◦–35◦N). The new solution has an rms of 211.32, and the adjustment itself of 61.53 mGal.

tual Lunar Prospector data will be used in this test so it is not
a simulation where the recovered anomalies can be checked
against a truth model. The advantage of using GLGM-2
is that this model is completely independent from Lunar
Prospector data. The model will be used up to its maxi-
mum degree of 70. Such a test can show that the recovery
method is capable of extracting the high-frequency gravity
field information present in the actual data. The results are
shown in Figure 4. They have been obtained without regu-
larisation, and the mean anomaly M has not been fixed in
the short-arc orbit determination.

Figure 4 shows that the new result for the anomalies of
Mare Serenitatis using GLGM-2 as a priori model resem-
bles the anomalies of the LP150Q model very well. Note
that the new result was made entirely independent from the
LP150Q model; this model is shown here for comparison
since it is created using Lunar Prospector data. The im-
provement in resolution between the GLGM-2 model and
the new result is clearly visible. In the adjustment itself a
ring structure of anomalies of roughly the same size of the
mascon can be seen, surrounded by negative adjustments.
This same ring structure can also be seen when the differ-
ences in anomalies between those coming from LP150Q
and those coming from GLGM-2 are investigated. It can
clearly be seen that the solution at the boundary is less reli-
able.

The influence of estimating the mean anomaly M or not
has also been investigated. Differences for the results be-
tween estimating M or not are profound and can be in the
order of 30 mGal. If M is kept fixed in the short-arc orbit
determination, the adjustment has an rms for the inner part
of 82.34 mGal, which is much larger than the 61.53 mGal
that is found when M is not fixed. Not fixing M reduces the
chance of leakage of spurious signals into the adjustments.

In conclusion, the results show that the recovery method
is indeed capable of extracting the high-frequency signal
from the actual tracking data. Moreover, by using an older
a priori model, the strength and information content of the
Lunar Prospector data is made clearly visible, cf. Figure. 4.

4. Results for Mare Serenitatis
With the recovery method validated by different means,

the final adjustment for the Mare Serenitatis area can be
created. To show the area under study, Fig. 5 displays
the topography of Mare Serenitatis, taken from a Digital
Elevation Model created using the Clementine laser ranging
instrument LIDAR (Smith et al., 1997). This figure shows
that the areas near the margins of the mare are lower than
the centre. East/west trends in the topography across the
basin however show a less prominent central topographic
high (Watters and Konopliv, 2001).

Data residuals from short-arc orbit determination from
7 months of Lunar Prospector tracking data are used. Per
month there are roughly 52 tracks (or arcs) over the selected
area, resulting in 52 normal matrices per month that need to
be formed. The normal matrices are formed using LP150Q
up to degree 150 as the reference gravity field model. All
adjustments will be relative to this model. Few of these
tracks were found to be unstable, leading to an unrealisti-
cally high Doppler data fit for that track (in the order of
10+3 mm/s). These outliers were discarded. All other nor-
mal matrices were included. The average Doppler data fit
over the tracks was found to be 2.5 mm/s, with very few out-
liers of around 17.0 mm/s. Since range data are more scarce
and noisier (Konopliv et al., 2001), only Doppler data resid-
uals are used.

The new solution for Mare Serenitatis and the adjustment
itself are shown in Fig. 6. Again, this solution was obtained
without the use of a priori information. The new solution is
very similar to the a priori anomaly field as was shown in
Fig. 4. This can also be seen in the plot for the adjustment it-
self, since this is relatively flat. Nevertheless, an increase in
resolution is visible, and the ring of negative anomalies sur-
rounding the mascon appears to be more continuous, espe-
cially at the Southern border, which suggests that the high-
frequency features have some physical reality. This can also
be seen in the adjustment plot, where along the border of
the mascon some anomaly adjustments larger than the aver-
age value surrounding them can be found. Considering the
boundary effects present on such a solution, the ring feature
might be better addressed using a larger recovery area. The
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Fig. 5. Topography of Mare Serenitatis from the Clementine LIDAR in-
strument in a 0.25◦ × 0.25◦ grid. Elevations are in meters above a ref-
erence spheroid with a radius of 1738 km and a flattening of 1/3234.93,
corresponding to the flattening of the selenoid.

adjustment itself does not show any clear, new concentra-
tion of anomalies, but it can be seen that inside the mascon,
around the area λ ≈ 20◦E, φ ≈ 25◦N, there is an increase
in resolution. This is also visible when the adjustment itself
is inspected, since the anomalies are larger there. The post-
fit Doppler residuals have also been investigated, showing
a slight improvement in rms of fit of 0.13 mm/s on an av-
erage level of 2.55 mm/s. This also shows that the adjust-
ments are relatively flat and that the a priori model LP150Q
already contains most of the gravity information present in
the data. The remaining residuals might be due to either un-
modelled ionospheric effects, or unmodelled effects of the
spacecraft spin rate, see e.g. Konopliv et al. (2001). When
compared to a similar solution as obtained by Sugano and
Heki (2004), it is noticeable that in that solution a striped
pattern is visible inside the mascon. Such a pattern can not
be confirmed by either the global models or the local ad-
justment as presented here.

The results so far did not make use of a priori informa-
tion. However, downward continuation of errors at satellite
altitude leads to amplified errors in the solution, which then
requires the use of a priori information in order to limit the
effect of downward continuation. Simulations have shown
that in case low-altitude data are used, a priori informa-
tion is not a pre-requisite in order to obtain good solu-
tions (Goossens, 2005; Goossens et al., 2005). Neverthe-
less, this has been investigated by adding an a priori co-
variance matrix for the anomalies, as was done by e.g. Bar-
riot and Balmino (1992). This covariance matrix consists
of a commission part, by including anomaly covariances
coming from either the LP75G (Konopliv et al., 1998) co-
variance matrix (when LP150Q is used as a priori gravity
field model) or from the GLGM-2 covariance matrix (when
GLGM-2 is the a priori gravity field model), and an omis-
sion part, by including an isotropic and homogeneous co-
variance function which makes use of a Kaula rule for the
Moon of 1.5 · 10−4/ l2, e.g. Lemoine et al. (1997), where l
is the harmonic degree. This a priori covariance matrix thus
describes the expected statistical behaviour of the anoma-

Fig. 6. New result for Mare Serenitatis and the adjustment itself, obtained
from Lunar Prospector tracking data. The rms of the new solution for
the central part (λ = 10◦–25◦E, φ = 15◦–35◦N) is 214.36 mGal; for
the adjustment it is 25.87 mGal. Both values are for the central part
(λ = 10◦–25◦E, φ = 15◦–35◦N).

lies at the surface. With the full a priori covariance matrix
C�g thus constructed, the solution x̂β can be computed from

x̂β =
(

AT WA + β C−1
�g

)−1
AT W�y, where β is the weight

of the a priori information. The weight β has been deter-
mined by minimising the differences in rms between solu-
tions obtained using either LP150Q or GLGM-2 as a priori
gravity field model. The smallest rms of differences will
thus provide an optimal solution in the sense of the most
consistent one when different a priori models are used. The
results of this search are depicted in Fig. 7, where the rms
of differences is plotted versus the regularisation parame-
ter. This figure was created by searching for the parameter
β that would minimise the rms of differences, by first start-
ing with values close to β = 1 and then gradually changing
the parameter until the minimum was found. This Figure
shows that β = 10−6 produces the smallest rms of differ-
ences between the solutions of 22.67 mGal, versus an rms
of differences of 29.25 mGal when no a priori information
is used. Both these differences are within the formal errors
coming from either LP75G or GLGM-2 covariance, where
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GLGM-2 as a priori model, versus the regularisation parameter β.

it should be kept in mind that for the LP models a note is
given that the real error in the selenopotential is probably a
factor of two higher (Konopliv et al., 2001), due the negli-
gence of systematic effects (Floberghagen, 2002). The dif-
ferences between solutions using a priori information with
β = 10−6 and using no a priori information (both using
LP150Q as a priori gravity field model) are in the order of
10−4 mGal. These solutions are mostly determined by the
data themselves, which is already seen from the low weight
of the a priori information. The figure also shows that for
β = 1 the differences between both solutions are biggest.
This is mostly because the solution using GLGM-2 as a pri-
ori model is severely damped when this value is used for β.
This is much less the case for the solution using LP150Q as
a priori model. This, and the small value of β can indicate
that further calibration of the a priori information might be
required, but it should be kept in mind that the a priori infor-
mation applied so far is based on information from global
models which already required a priori information (in the
form of a Kaula rule) themselves. Furthermore, it should
also be kept in mind that overweighting the a priori infor-
mation leads to dampening the amplitudes of the anomalies
(Barriot and Balmino, 1994).

5. Conclusions
It has been demonstrated that the local recovery method

can be applied to create high-resolution local gravity fields
on the Moon. Processing the Lunar Prospector data in a pre-
cise orbit determination in order to create the residuals from
which the anomalies are estimated, allows a comprehensive
and detailed local gravity field determination. Results for
Mare Serenitatis showed the possibility to increase the res-
olution of current global gravity field models. Without a
priori information a good solution can be obtained. The
weight of a priori information in the form of an full covari-
ance matrix was determined by comparing two solutions us-
ing different a priori gravity field models. This weight was
found to be very small, showing the solution mostly relies
on the data themselves.
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