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Kinetic effects on the parametric decays of Alfvén waves in relativistic pair
plasmas
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Parametric decays of a circularly polarized wave propagating along a constant magnetic field in an electron-
positron plasma are studied. Fully relativistic effects on the particle velocity in the wave field are considered, as
well as kinetic effects in the parallel direction, by means of a one-dimensional relativistic Vlasov equation. In
this approximation, a dispersion relation is found for the parametric decays which describes the coupling between
normal modes of the system, namely electromagnetic sideband modes and Langmuir waves.
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1. Introduction
Electron-positron plasmas are different from electron-ion

plasmas because, in the absence of a mass difference, there
are no high or low natural frequency scales (Tsytovich and
Wharton, 1978). Such plasmas are found in pulsar magne-
tospheres (Curtis, 1991; Ruderman and Sutherland, 1975;
Cheng and Ruderman, 1980), models of the primitive Uni-
verse (Tajima and Taniuti, 1990), active galactic nuclei jets
(Wardle et al., 1998; Hirotani et al., 2000; Wardle and
Homan, 2001), and laboratory and tokamak plasmas (Zank
and Greaves, 1995; Berezhiani and Mahajan, 1994). Rela-
tivistic effects are expected to play an important role in sev-
eral of these systems. An understanding of the interactions
between waves and relativistic electron-positron plasmas is
relevant to proposed pulsar emission mechanisms (Luo and
Melrose, 1992; Mahajan, 1997) and may provide insight
into structure formation in the early Universe (Berezhiani
and Mahajan, 1994).
The parametric instabilities of waves in unmagnetized

electron-positron plasmas have been studied based on fluid
theory (Gangadhara et al., 1993; Shukla et al., 1986;
Gomberoff et al., 1997; Muñoz and Gomberoff, 1998a), and
on kinetic theory (Shukla and Stenflo, 2000). Some of these
treatments include weakly relativistic effects on the particle
motion in the wave field. However, in astrophysical envi-
ronments, large particle energies are likely to be relevant.
Consequently, fully relativistic effects have also been in-
troduced (Muñoz and Gomberoff, 2002; Muñoz, 2004a,b),
although, to date all these works deal with unmagnetized
plasmas and, therefore, miss an important feature of space
and astrophysical plasmas.
A dispersion relation for the parametric decays of electro-

magnetic waves in magnetized plasmas in electron-positron

Copyright c© The Society of Geomagnetism and Earth, Planetary and Space Sci-
ences (SGEPSS); The Seismological Society of Japan; The Volcanological Society
of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sci-
ences; TERRAPUB.

plasmas have been studied with fluid theory (Muñoz and
Gomberoff, 1998b), in the weakly relativistic limit. In a
later investigation Matsukiyo and Hada (2003) improved on
that result by not assuming charge quasineutrality. They
also performed full particle electromagnetic simulations
and successfully compared their results with those result-
ing from fluid theory. However, in fluid theory important
kinetic effects such as Landau damping are not present and,
therefore, a kinetic theory is highly relevant to actually un-
derstanding the simulation results.
Thus, our aim in this work is to study the parametric

decays of Alfvén waves in magnetized electron-positron
plasmas, based on a kinetic theory and considering fully
relativistic effects. In this paper, we calculate the dispersion
relation for relativistic Alfvén waves propagating along a
constant magnetic field in a pair plasma. Detailed numerical
analysis of this dispersion relation and a comparison with
particle simulations will be the subject of a future paper.

2. The Model
The basic equations are Maxwell equations and the colli-

sionless Vlasov equation,

(
∇2 − 1

c2
∂2

∂t2

)
�A = −4π

c
�J⊥ , (1)

∇2ϕ = −4πe(np − ne) , (2)

0 = ∂ f j
∂t

+ �v · �∇ f j + q j

(
�E + 1

c
�v × �B

)
· �∇ �p f j , (3)

where �E = −�∇ϕ, �B = �∇ × �A are the electric and magnetic
fields, respectively, ϕ, �A are the electrostatic and vector
potentials, �J⊥ is the total perpendicular current, and n j

and f j (�r , �p, t) are the density and distribution function for
species j ( j = e for electrons, and j = p for positrons).
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We assume that kinetic effects are only important along
the parallel direction, so that we may approximate the dis-
tribution function in the perpendicular direction by the cold
plasma expression,

f j (z, �p, t)
= n0g j (z, pz, t)δ

(
px − p f

x

)
δ
(
py − p f

y

)
, (4)

where g j is the one-dimensional distribution function along
the z direction, normalized to unity. n0 represents the con-
stant density of each species at equilibrium. �p f denotes the
solution for the perpendicular momentum obtained from the
fluid theory. This approximation is justified as long as en-
ergy transfer along the perpendicular direction can be ne-
glected.
The density and perpendicular current density are then

given by

n j (z, t) = n0

∫ ∞

−∞
dpz g j (z, pz, t) , (5)

�J⊥(z, t) = n0
∑
j

∫ ∞

−∞
dpz

�p f
j

γ j
g j ,

= n0
∑
j

∫ ∞

−∞
dpz �v f

j g j , (6)

where

γ 2
j = 1 + (pz/mc)2 + (p f

j /mc)2 . (7)

Equations (1)–(3) can be written

(
∂2

∂z2
− 1

c2
∂2

∂t2

)
�A = −4πn0

c

∑
j

q j

∫ ∞

−∞
dpz �v f

j g j , (8)

∂2ϕ

∂z2
= −4πen0

∫ ∞

−∞
dpz(gp − ge) , (9)

0 = ∂g j

∂t
+ vz

∂g j

∂z
+ q j

(
−∂ϕ

∂z
+ 1

c
�v f
j × �B

)
∂g j

∂pz
. (10)

3. Fluid Theory for the Pump Wave
In Eq. (4) we need the particle momenta calculated from

the fluid theory, which has been obtained by Matsukiyo
and Hada (2003). For an Alfvén wave propagating along
a constant magnetic field

�B0 = B0z ẑ ,

and for a wave of the form

�A0 = A0[cos(k0z − ω0t)x̂ + sin(k0z − ω0t)ŷ] , (11)

particle momentum can be written

�p f
j = −q j

c
γ j0ξ j0 �A0 , (12)

where

γ j0 =
(
1 + p f

j
2

m2c2

)1/2

, ξ j0 = ω0

ω0γ j0 − 	 j
, (13)

and 	 j = q j B0z/mc is the gyrofrequency of species j .
Also, the following dispersion relation is obtained:

c2k20
ω2
0

= 1 −
∑
j

ω2
j p

ω0(ω0γ0 j − 	 j )
, (14)

where ω j p = (4πe2n0/m)1/2 is the plasma frequency of
species j .
Although discussion of the dispersion relation of the

pump wave is beyond the scope of this paper, we can out-
line the method of solution. Equations (12) and (13) yield
the following polynomial equation for γ j0:

γ 4
j0 + γ 3

j0

(
∓ 2

x

)
+ γ 2

j0

(
−1 + 1

x2
− η2

y2

)

+ γ j0

(
± 2

x

)
− 1

x2
= 0 , (15)

where the upper (lower) sign is for positrons (electrons),
and x = ω0/	p, y = ck0/	p, and η = k A0/B0z is the
ratio between the pump wave amplitude and the background
magnetic field.
Thus, for a given wavenumber and pump wave ampli-

tude, Eqs. (14) and (15) are a set of coupled equations which
can be solved numerically for ω0 and γ j0. We can then pro-
ceed to study the parametric decays of the given wave.

4. Kinetic Theory for the Parametric Decays
We now consider Maxwell and Vlasov equations to study

the parametric decays of the pump wave found in the previ-
ous section. We introduce the perpendicular quantities:

C⊥ = Cx + iCy . (16)

We perturb the electromagnetic field and g j , assuming an
equilibrium state consisting of a plasma composed by elec-
trons and positrons, characterized by distribution functions
g j0(pz), and a circularly polarized electromagnetic wave of
frequency ω0 and wavenumber k0, with potentials

ϕ0 = 0 , (17)

and �A0 given by Eq. (11). We will also assume

ge0(pz) = gp0(pz) ≡ g0(pz) , (18)

which is consistent with Eqs. (9) and (17). Perturbed quan-
tities are given by

δg j (pz) = g̃ j (pz)e
i(kz−ωt) + g̃∗

j (pz)e
−i(k∗z−ω∗t) , (19)

δϕ(z, t) = ϕ̃ei(kz−ωt) + ϕ̃∗e−i(k∗z−ω∗t) , (20)

δA⊥ = A+ei(k+z−ω+t) + A−ei(k−z−ω−t) , (21)

where

k+ = k0 + k , ω+ = ω0 + ω ,

k− = k0 − k∗ , ω− = ω0 − ω∗ .
(22)
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Then, to zeroth order Eqs. (8)–(10) yield:

0 = −ω2
0 + c2k20 + ω2

p

∑
j

∫
dpz

ω0

ω0γ j0 − 	 j
g j0 , (23)

which generalizes the fluid dispersion relation (14).
On the other hand, to first order, Eqs. (8)–(10) yield:(
−k2+ + ω2

+
c2

)
A+ = −4π

c
n0

∑
j

q j

×
∫ ∞

−∞
dpz(v j+g j0 + v j0g̃ j ) , (24)

(
−k2− + ω2

−
c2

)
A− = −4π

c
n0

∑
j

q j

×
∫ ∞

−∞
dpz(v j−g j0 + v j0g̃

∗
j ) , (25)

k2ϕ̃ = 4πen0

∫ ∞

−∞
(g̃p − g̃e) , (26)

0 = (−ω + vzk)g̃ j + q j

×
[
−kϕ̃ − 1

2c
(−v j+B0 − v j0B

∗
− + v∗

j−B0 + v j0B+)

]

× ∂g j0

∂pz
. (27)

The perpendicular velocities are obtained from the cold
fluid equation of motion. Perturbing the fluid equations
and using Eqs. (19)–(21), we obtain for the ω+ Fourier
component:

ṽ j k0 p j − ω+

= q j

[
− ω+
ck+

B+ + 1

c
(ṽ j B0 − Bz0v j+)

]
. (28)

In addition, from �p j = mγ j �v j ,

p j+ = mγ j0

[
γ 2
j0

2c2
v2
j0v

∗
j− +

(
γ 2
j0

2c2
v2
j0 + 1

)
v j+

]
. (29)

Equations (28) and (29) yield

v j+

{
−ω+γ j0

[
1

2
(γ j0ξ j0a0)

2 + 1

]
+ 	 j

}

− ω+γ j0
1

2
(γ j0ξ j0a0)

2v∗
j−

= q j

mc
ω+A+ − ṽ j

q j A

mc
k0(1 − γ j0ξ j0) , (30)

where we have defined the adimensional potential �a =
e �A/mc2.
A similar expression for v j− is obtained, interchanging

subscripts + and −, and changing ṽ j by ṽ∗
j .

On the other hand, from the parallel cold fluid equation
of motion we obtain:

ωγ j0ṽ j = q j

m

{
kϕ̃ + A0

2c

[
k0(v j+ − v∗

j−)

− q jξ j0

mc
(k∗

−A∗
− − k+A+)

]}
. (31)

Equations (24), (25), (26), (27), (30) (and the correspond-
ing one for v j−), and (31), are 11 algebraic equations for
the 11 unknowns A±, ϕ̃, v j±, g̃ j , ṽ j , j = p, e. The ki-
netic dispersion relation is given by � = 0, where � is the
determinant of this system of equations.
The algebra is lengthy but straightforward, and leads to

the following dispersion relation:

0 = K1+(K2−K30 − K3−K20) − K2+(K1−K30 − K3−K10)

+ K3+(K1−K20 − K2−K10) . (32)

The coefficients Kab are defined as follows:

Kn± = −k̄2± + ω̄2
±
c2

+ Ln±

+ ω2
pma0

2

∑
j

σ j

∫
dpz

1

γ j0

(
−σ jξ j0a0 + Ln0

1

k2

)

× [k0(−Ẽ j1± + Ẽ j2±) − γ j0ξ j0k̄±]
∂g j0/∂pz
ω − kvz

, (33)

Kn0 = ω2
pm

∑
j

∫
dpz

(
−σ jξ j0a0 + Ln0

1

k2

)

×
{
−k + k0σ j a0

2γ j0
(−Ẽ j10 + Ẽ j20)

}
∂g j0/∂pz
ω − kvz

(34)

K3± = ω2
pma0

2k2
∑
j

σ j

∫
dpz

× 1

γ j0
[k0(−Ẽ j1± + Ẽ j2±) − γ j0ξ j0k̄±]

× ∂g j0/∂pz
ω − kvz

(35)

K30 = ω2
pm

k2
∑
j

∫
dpz

{
−k + k0σ j a0

2γ j0
(−Ẽ j10 + Ẽ j20)

}

× ∂g j0/∂pz
ω − kvz

− 1 (36)

Lna = ω2
p

c2
F̃na , (37)

F̃na =
∑
j

∫
dpz

1

γ j0

{
Ẽ jna

[
1 − 1

2

(
ξ j0a0

)2]

− 1

2

(
ξ j0a0

)2
Ẽ jna

}
g j0 , (38)

Ẽ j1+ = 1

C j

[
ω̄+

((
ω̄− − 	 j

γ j0

(
1 − 1

2
ξ 2
j0a

2
0

))
ω

+ 1

2

(
ca0k0
γ j0

)2 (
1 − γ j0ξ j0

))
(39)

− (ca0)
2 1

2
ξ j0k̄+

k0
γ j0

(
1 − γ j0ξ j0

)
×

(
ω̄− − 	 j

γ j0

(
1 − ξ 2

j0a
2
0

))]
, (40)

Ẽ j1− = 1

C j

[
−ω̄−

(
−	 j

γ j0

1

2
ξ 2
j0a

2
0ω

+ 1

2

(
ca0k0
γ j0

)2 (
1 − γ j0ξ j0

))
(41)
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+ (ca0)
2 1

2
ξ j0k̄−

k0
γ j0

(
1 − γ j0ξ j0

)
×

(
ω̄− − 	 j

γ j0

(
1 − ξ 2

j0a
2
0

))]
(42)

Ẽ j2+ = 1

C j

[
−ω̄+

(
−	 j

γ j0

1

2
ξ 2
j0a

2
0ω

− 1

2

(
ca0k0
γ j0

)2 (
1 − γ j0ξ j0

))
(43)

+ (ca0)
2 1

2
ξ j0k̄+

k0
γ j0

(
1 − γ j0ξ j0

)
×

(
−ω̄+ + 	 j

γ j0

(
1 − ξ 2

j0a
2
0

))]
(44)

Ẽ j2− = 1

C j

[
ω̄−

((
ω̄+ − 	 j

γ j0

(
1 − 1

2
ξ 2
j0a

2
0

))
ω

−1

2

(
ca0k0
γ j0

)2 (
1 − γ j0ξ j0

))
(45)

− (ca0)
2 1

2
ξ j0k̄−

k0
γ j0

(
1 − γ j0ξ j0

)
×

(
−ω̄+ + 	 j

γ j0

(
1 − ξ 2

j0a
2
0

))]
, (46)

Ẽ j10 = −σ j c2kk0
C jγ j0

(
1 − γ j0ξ j0

)
×

(
ω̄− − 	 j

γ j0

(
1 − ξ 2

j0a
2
0

))
, (47)

Ẽ j20 = σ j c2kk0
C jγ j0

(
1 − γ j0ξ j0

)
×

(
−ω̄+ + 	 j

γ j0

(
1 − ξ 2

j0a
2
0

))
, (48)

C j =
[
−ω̄+ + 	 j

γ j0

(
1 − 1

2
ξ 2
j0a

2
0

)]

×
[(

ω̄− − 	 j

γ j0

(
1 − 1

2
ξ 2
j0a

2
0

))
ω

+1

2

(
ca0k0
γ j0

)2 (
1 − γ j0ξ j0

)]
(49)

− 	 j

γ j0

1

2
ξ 2
j0a

2
0

[
−	 j

γ j0

1

2
ξ 2
j0a

2
0ω

+1

2

(
ca0k0
γ j0

)2 (
1 − γ j0ξ j0

)]
(50)

+ 1

2

(
ca0k0
γ j0

)2 (
1 − γ j0ξ j0

)
×

[
ω̄− − 	 j

γ j0

(
1 − ξ 2

j0a
2
0

)]
. (51)

In these equations, n = 1, 2, a = ±, 0, and j = e, p, and
we have introduced k̄± = k0 ± k, ω̄± = ω0 ± ω.
In the absence of the pump wave (A0 = 0), all coeffi-

cients Kab in Eqs. (33)–(36) are zero, except

K1+ = −c2D+ , (52)

K2− = −c2D− , (53)

K30 = −ε , (54)

where

D+ = −ω2
+ + c2k2+

+ ω2
p

∑
j

∫
dpz

ω+
ω+γ j0 − 	 j

g j0 , (55)

D− = −ω∗
−
2 + c2k∗

−
2

+ ω2
p

∑
j

∫
dpz

ω∗
−

ω∗−γ j0 − 	 j
g j0 , (56)

ε = 1 − ω2
p

m

k

∑
j

∫
dpz

∂g j0

∂pz

1

kvz − ω
, (57)

are the dispersion relations of the electromagnetic sideband
waves and the Langmuir waves.
Equation (32) then yields

0 = εD+D− . (58)

Thus, in the absence of the pump wave these are the possi-
ble wave modes of the system. For A0 �= 0, these normal
modes couple, leading to the parametric decays of the sys-
tem.
On the other hand, in the unmagnetized case B0z = 0 we

have

	 j = 0 , ξ j0 = 1

γ j0
, γp0 = γe0 ≡ γ0 . (59)

If we further assume

gp0 = ge0 ≡ g0 , (60)

the dispersion relation can be written in the form:

0 = ε

[
D(0)

+ D(0)
−

+ (D(0)
+ + D(0)

− )ω2
pa

2
0c

2

(
mkI3 − I4

c

2)]
, (61)

where

D(0)
+ = −ω2

+ + c2k2+ + 2ω2
p

∫ ∞

−∞
dpz

g0
γ0

, (62)

D(0)
− = −ω∗

−
2 + c2k∗

−
2 + 2ω2

p

∫ ∞

−∞
dpz

g0
γ0

, (63)

and

I3 =
∫ ∞

−∞
dpz

1

γ 2
0

∂g0/∂pz
vzk − ω

, (64)

I4 =
∫ ∞

−∞
dpz

g0
γ 3
0

. (65)

Equation (61) is the same result previously obtained by
Muñoz (2004b) and Stenflo and Shukla (2004).

5. Nonrelativistic Temperature Limit
Solving the dispersion relation in the fully relativistic

regime is complicated by the existence of branching points
due to the γ j0 factors in the integrals. A simpler task is to
consider the limit of nonrelativistic temperatures. In this
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0.8 1.2 1.6 2.0 2.4

ck/Ωp

0.2

0.4

0.6

0.8
Im

(ω
/Ω

 ) p

Fig. 1. Imaginary part of the frequency versus wavenumber for a param-
eter region where an instability develops. vth/c = 0.1, ck0/	p = 2,
ω = 0.7812, η = 0.1, ωp/	p = 1.

case, g0 can be taken to be a Maxwellian, and contributions
from large pz can be neglected in γ j0. This greatly simpli-
fies Eqs. (33)–(36). For

g j0(pz) = 1

mvthπ
e−v2z /v

2
th , vth =

√
2kBT

m
, (66)

coefficients in Eq. (32) can be written in terms of the plasma
dispersion function, using that∫

dpz
∂g j0/∂pz
ω − kvz

= − 1

kmv2
th

Z ′
(

ω

kvth

)
. (67)

In Fig. 1 a solution for Eq. (32) for nonrelativistic temper-
atures is shown. This is only a particular instability found
in the system. A thorough discussion of instabilities will be
published elsewhere.

6. Summary
In this paper, the parametric decays of a circularly po-

larized wave propagating along a constant magnetic field in
an electron-positron plasma have been studied. The treat-
ment has been based on the relativistic Vlasov equation, so
that kinetic effects and fully relativistic effects on the parti-
cle velocity in the wave field are considered. Kinetic effects
have been considered only in the parallel direction. The dis-
persion relation for the parametric decays of the pump wave
has been found. In the absence of the pumpwave the normal
modes of the system are the sideband waves and the Lang-
muir waves. When the pump wave is present, these modes
couple, leading to the parametric instabilities of the system
(see, e.g., Matsukiyo and Hada, 2003). For an unmagne-
tized plasma, the result is compatible with previously pub-
lished results (Muñoz, 2004b; Stenflo and Shukla, 2004).
This dispersion relation can be solved numerically. Work

is in progress to solve it for non-relativistic temperatures,
where the plasma is described by a Maxwellian distribution
function, and compare the results with particle simulations.
This numerical analysis will be the subject of a future paper.
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