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Detecting horizontal gradient of sound speed in ocean
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We propose a new approach to monitor the horizontal gradient of sound speed in ocean for its correction on
seafloor positioning using the GPS/acoustic technique. The new method requires five seafloor transponders to
solve five parameters: δx, horizontal position of a transponder array; δt , a common delay in traveltimes due to
the stratified component of sound speed; ∇∇∇∇∇∇∇∇t , the gradient of traveltime delays among the transponders associated
with the sound speed gradient. We also numerically evaluate the geometrical strength of the five transponders’
layout and observation point to avoid possible trade-off among the parameters.
Key words: GPS/Acoustic technique, seafloor geodesy, sound speed, inverse problem.

1. Introduction
Since the seafloor positioning technique was presented

(Spiess, 1985) and demonstrated (Spiess et al., 1998), sev-
eral research groups have developed observation systems at
regions attracting their interest. Most of the up-to-date sci-
entific products related to the monitoring of crustal defor-
mation near plate boundaries and coseismic displacements
are reported by Gagnon et al. (2005), Fujita et al. (2006),
Kido et al. (2006a), Tadokoro et al. (2006), Matsumoto
et al. (2006), and Chadwell and Spiess (2007), among oth-
ers.
The details of the system differ among the research

groups; however, the essence is in common: seafloor po-
sition is indirectly observed through acoustic ranging be-
tween three or more seafloor transponders and a surface
transducer, which is usually equipped on a research vessel
or a floating buoy and whose position is monitored by the
kinematic GPS technique. In the present analytic scheme,
sound speed in the ocean is assumed to be laterally stratified
and its vertically averaged quantity is simultaneously solved
with the position of the seafloor transponder array (Fujita et
al., 2006; Kido et al., 2006b; Sugimoto et al., 2006). With
this scheme, violation of the sound speed stratification im-
mediately reflects the apparent position of the transponders
or their array.
Several causes of the violation are expected, depending

on their time-scales. Short time-scale but steadily period-
ical undulation may be generated by an internal gravita-
tional wave, which is the oscillation of stratified density
interface(s) within the ocean excited by tidal flow over to-
pographic high or surface wind forcing. Propagation of this
internal wave can be revealed in detail by recent technolo-
gies, such as remote-sensing from the space, and even using
acoustic reflection signals with a seismic exploration tech-
nique (Holbrook and Fer, 2005). In contrast, long and un-
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steady temporal variation may be due to the advection of
anomalous seawater driven by tidal flow or oceanic current
and, sometimes, the change in the current axis itself. The
former undulation does not affect the apparent array posi-
tion for its short time-scale after taking the temporal aver-
age, while the latter has a possibility to make a significant
error in the positioning.

2. Describing Sound Speed Structure
Inferring sound speed, the description of its horizontal

gradient is not straightforward. First, we define δt , the total
delay of traveltime for the vertical path due to change in
laterally stratified sound speed, as

δt =
∫ Z

0
δs(z)dz =

N∑
n=1

δsn(zn − zn−1) , (1)

where δs(z) is the deviation of slowness from a reference
depth profile from surface (z = 0) to the bottom (z = Z ).
The right-hand term is its discretized expression from the
surface (z0 = 0) to the bottom (zN = Z ). δs(z) at z >

1000 m is negligible in most cases. We assume that any
horizontal variation in sound speed has a wavelength that is
long enough to be approximated by linear functions. Here
we consider two extreme cases, as shown in Fig. 1(a, b).
In Fig. 1(a), slowness sn in each layer does not change
in the horizontal and, alternatively, the layer depth zn can
linearly change with x . In this case, total delay in traveltime
(normalized to vertical component through cos ξk) between
surface transducer at x0 and k-th seafloor transponder at xk
purely due to the set of inclined layers is expressed as

xk−x0
zN

N−1∑
n=1

(sn−sn+1)zn
∂zn
∂x

= ∇t · (xk−x0) . (2)

In Fig. 1(b), sn itself changes with x while zn remains
unchanged. Delay in the n-th layer is

∫ zn
zn−1

∂sn
∂x

xk−x0
zN

zdz and
then the total delay can be written as

xk−x0
2zN

N∑
n=1

(z2n−z2n−1)
∂sn
∂x

= ∇t · (xk−x0) . (3)
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Fig. 1. Horizontal gradient of sound speed structure for two extreme cases:
(a) only the depth of each layer zn changes and (b) only the slowness sn
changes with x .

In both of these extreme cases, the delay is expressed by
the linear function of the horizontal distance xk−x0 with a
constant denoted by ∇t , which is the effective contribution
of the sound speed gradient on traveltime. This justifies the
use of the linear expression of the gradient in the observa-
tion equation in the next section.

3. Observation Equation
As described in Spiess (1985), only a single but simulta-

neous acoustic ranging to three transponders can determine
relative displacement of a transponder array in the condi-
tions that: sound speed is laterally stratified; the transpon-
der array is rigid and can move only horizontally. In other
words, array displacement can be monitored as a time-
series, even with temporally varying sound speed.
In the general two-dimensional (horizontal) case, the ob-

servation equation at a certain time is defined as follow:

[
tobsk − tcalk (x0 , xk+δx , s0(z))

]
cos ξk

−δt − ∇∇∇∇∇∇∇∇t · (xk−x0) = 0 (k = 1, 2, ..., K ) (4)

where tobsk and tcalk respectively are observed and synthetic
traveltimes to k-th transponder. xk is the initial position of
k-th transponder accompanied by displacement vector δx,
which is common for all the transponders as well as δt and
∇∇∇∇∇∇∇∇t . s0(z) is the depth profile of reference slowness for syn-
thetic calculation. The equation is identical to Eq. (1) in
Kido et al. (2006a), with the exception for the additional
term of horizontal gradient. In Eq. (4), the number of un-
knowns is five: δx = (δx, δy), δt , and ∇∇∇∇∇∇∇∇t = (∇tx , ∇ty ). As
such, at least five transponders (K=5) are required to solve
the five parameters, while only three transponders are nec-
essary for the traditional assumption of laterally stratified
sound speed.

4. One-dimensional Case
In the evaluation of response of vertically normalized

traveltime tk by cos ξk against δx, δt , and ∇∇∇∇∇∇∇∇t , we first
consider a simple one-dimensional case, which, for exam-
ple, accounts only for east-west component using linearly
aligned three transponders (K=3). The partial derivative of
tk with respect to δx can be obtained by simple geometric

Fig. 2. Illustration of change in the vertical component of slant range due
to horizontal shift of the linearly aligned three seafloor transponders by
δx .

construction (Fig. 2), as well with respect to δt and ∇t by
their definition in Eq. (4):

∂tk
∂δx

=s0 sin ξk cos ξk,
∂tk
∂δt

=1,
∂tk
∂∇t

= xk−x0 (5)

Here we define a response matrix R, whose elements are
partial derivatives of tk and are normalized by vertically
averaged reference slowness s̄0 or seafloor depth Z for non-
dimentionalization:

R = (
rδx rδt r∇t

)
, (6)

where

rδx =
(

∂t1
∂δx

,
∂t2
∂δx

,
∂t3
∂δx

)T

· 1

s̄0
(7)

rδt =
(

∂t1
∂δt

,
∂t2
∂δt

,
∂t3
∂δt

)T

(8)

r∇t =
(

∂t1
∂∇t

,
∂t2
∂∇t

,
∂t3
∂∇t

)T

· 1

Z
(9)

R is a 3×3 square matrix to solve linearized observation
equation with 
tk , the changes in tk :

R (s0δx, δt, Z∇t )
T = (
t1, 
t2, 
t3)

T (10)

R depends on the observation point x0. When response vec-
tors, rδx , rδt , and r∇t , are not linearly independent, the equa-
tion is no longer able be solved. Trade-off between individ-
ual pair of parameters can be evaluated using the length of
their cross product because it becomes zero when two vec-
tors are in the same direction. It is clear that |r∇t ×rδx | indi-
cated by the thin blue line in Fig. 3 is zero at the center of
the array (x0=x2). This means that one can not distinguish
δx from ∇t at this observation position, while δt is well
resolved. The degree of total geometrical strength can be
diagnosed by way of a well-known quantity κ(R), the con-
dition number of the matrix R (e.g., Golub and Van Loan,
1996):

κ(R) = ‖R‖2‖R−1‖2 = σmax(R)

σmin(R)
, (11)

where ‖R‖2 is the L2-norm of the matrix R, and σmax(R)

and σmin(R) the maximum and minimum singular values
of R, obtained through singular value decomposition. This
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Fig. 3. Plot of the reciprocal condition number κ−1(R) for evaluation
of the geometrical strength (thick line) in the case of seafloor depth
Z=2 km and three transponders equidistantly aligned at x=−2, 0, 2 km,
respectively. L2-norms of cross product between response vectors (thin
lines) are also shown to diagnose trade-off between individual pair of
the parameters. Only x0≥0 is plotted for it symmetry.

quantity represents the degree of the propagation of travel-
time error into estimate of the parameters. Reciprocal con-
dition number κ−1(R) is 1 for the idealized problem and
zero for the extremely ill-condition. κ−1(R) is plotted with
a thick line for varying x0 in Fig. 3. The best condition is
observed at a position departs from the center of the array
(x0=x2), which is in accordance with the behavior of the
three cross products.

5. General Two-dimensional Case
The arguments introduced in the previous section can be

easily extended to a two-dimensional case. The displace-
ment of transponders and the gradient of sound speed split
into vectors of two horizontal components, as in Eq. (4).
The total number of parameters increases to five, which re-
quires five transponders (K = 5) as well. The number of
cross product pairs is 5C2=10 and it is not practical to di-
agnose all the combinations. Therefore, we evaluate only
the condition number in the two-dimensional case. The re-
sponse matrix R given in Eq. (6) is extended to a 5×5-square
matrix, which consists of rδx , rδy , rδt , r∇tx

, and r∇ty
for five

transponders (k=1, ..., 5). rδx and rδy are easily formulated
with a geometrical construction in the analogy with the one-
dimensional case and the other vectors come from Eq. (4).
There is a variety of choice to arrange five transponders

on the two-dimensional seafloor. We employ here four ex-
amples to evaluate geometrical strength κ−1(R) for varying
observation point x0, as shown in Figs. 4(a–d). Better con-
ditions are expected at x0 with larger κ−1(R). The largest
value of 0.095 is observed in the L-shaped layout, which
is not so small compared to the largest value of 0.12 in
the one-dimensional case. The areas of poor geometrical
strength lie distant from the array and along the regions of
trade-off between δx and ∇∇∇∇∇∇∇∇ t , which is similar to the one-
dimensional case. To distinguish these two parameters, it is
important to observe traveltimes at a region having different
incident angles and directions to transponders.

Fig. 4. Plot of κ−1(R) as a geometrical strength for varying observation
point at x0 = (x0, y0). Four sets of layout using five transponders
(open circles) are examined. Seafloor depths are set to 2 km with an
exception for (d) Kumano-nada, with an actual depth of 2030 m at this
site. Smaller κ−1(R) (blue region) indicates position of ill-condition.

6. Discussion
We have proposed an idea to simultaneously solve the po-

sition of transponder array δx, the common and individual
component of traveltime delays, δt and ∇∇∇∇∇∇∇∇t , which respec-
tively reflect the stratified component and gradient of the
integrated sound speeds. Using this method, we can distin-
guish ∇∇∇∇∇∇∇∇t from δx, while both effects are projected onto only
δx in the past analytic scheme.
Introducing six or more transponders will give redun-

dancy in the problem and hence results in higher geomet-
rical strength. On the one hand, it is impractical to em-
ploy higher-order representation of horizontal sound speed
variation with these extra transponders since the problem is
then ill-posed with too many parameters. This is the dif-
ference with the ocean acoustic tomography (Munk et al.,
1995), which can efficiently exploit multipath information
due to reflections at the surface and refraction in the SOFAR
channel. The linear representation in this study may not be
adequate for small-scale structure in sound speed, such as
warm or cold eddies, that irregularly appear in the sea sur-
face. However, these local anomalies hardly keep their po-
sition and may pass over the survey site in a relatively short
time.
In contrast to the local anomalies, long-lived and long-

wavelength anomalies contribute a serious error in apparent
position of the transponder array, when the horizontal gra-
dient of sound speed is not taken into account. In the tradi-
tional survey, we usually continue measurements for more
than 1 day or sometimes up to a couple of days in order
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to take temporal average of the apparent position for long
enough period to eliminate the above effect. The linear ap-
proximation employed in this study is adequate to represent
such a horizontally large-scale feature. If we distinguish
the effect from the apparent position using the new ana-
lytic scheme, we can significantly reduce the survey time.
This is crucial, especially for semi-realtime monitoring of
the crustal displacement using an on-line seafloor cable of
the DONET project in the future (Kawaguchi et al., 2007).
There are two kinds of error which deteriorate the anal-

ysis. One is transducer position associated with kinematic
GPS error or attitude monitoring of the buoy, and the other
is traveltime reading due to noise in acoustic signals. The
former causes systematic error depending on its origin. It
should be noted that the former error separately affects the
parameter estimation. Theoretically, with exact traveltimes,
error in the horizontal component of transducer position-
ing is directly and only projected onto δx while the vertical
component only affects δt . This behavior is due to the verti-
cal normalization using incident elevation angles in describ-
ing any parameters. In contrast, the latter simultaneously
affects the estimate in all the parameters.
Here we consider the detectable level of the parameters in

terms of propagation of traveltime errors. When Eq. (10) is
symbolically denoted as Rm = d, the propagation of errors
in traveltimes δd to the parameters δm can be written as

R(m + δm) = d + δd (12)

δm = R−1δd (13)

Using a pulse-compressed acoustic signal of 10 kHz in fre-
quency and the correlating technique of transmitted and
received signals, which are widely used in this field, we
achieve an accuracy in traveltime detection better than
10 μs and hence 5 μs for a one-way traveltime as far as
the correct peak in correlogram being identified. Applying
normally distributed errors of 5 μs standard deviation to δd,
we statistically obtain standard deviations of the individual
parameters in δm from Eq. (13) that are 2.74 and 2.57 cm in
δx and δy, 2.92μs in δt , and 3.18 and 4.15μs/km in∇∇∇∇∇∇∇∇tx and
∇∇∇∇∇∇∇∇ty for the case of the maximum κ−1(R)=0.087 in Fig. 4(d)
at (x0, y0) = (400, −200) m. The randomicity of δd ele-
ments will statistically cancel their effect, which results in
the smaller propagation error in δt than the given errors in
δd. For example, 4.15 μs/km in ∇∇∇∇∇∇∇∇ty corresponds to roughly
2.5 cm of mis-positioning in δy through Eq. (5) when ∇∇∇∇∇∇∇∇ty
is projected onto δy in the traditional analytic scheme. The
fluctuation of the apparent position in our past survey (Kido
et al., 2006a) indicates a much larger horizontal gradient.
In addition, because of the random nature in the traveltime
error, its effect on the parameter estimation decreases after
taking a time average for a certain period. Therefore, we
consider that detecting ∇∇∇∇∇∇∇∇t is possible when measurements
are made at a proper position suggested in Fig. 4. We em-
phasize again that the positioning error in the transducer
does not affect the∇∇∇∇∇∇∇∇t while it is superimposed on δx and δt .
We also applied the analyses to the traditional survey de-

sign of three transponders of an equilateral triangle array
for stratified sound speed. The best observation position is
found at the center of the array, where κ−1(R) = 0.35. Al-
though κ−1(R) is roughly four times larger than that for the

five transponders shown above, the error propagations are
improved only by half for δx and are nearly unchanged for
δt . Our past analysis in the traditional scheme well resolved
δt in comparison with in situ sound speed measurements
(Kido et al., 2006b). This also encourages the feasibility of
this research.
In practice, our research group has five transponders at

Kumano-nada, Japan (Kido et al., 2006a) as indicated in
Fig. 4(d). This site was intended to form two arrays, a
square in the west and a triangle in the east, in the tradi-
tional analytic scheme of stratified sound speed. For this
reason, we have not made traveltime measurement to the
five transponders all together. We plan to carry out simulta-
neous ranging to the five transponders in the next survey to
confirm the idea proposed in this paper.
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