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Dynamic rupture propagation on a 2D fault with fractal frictional properties
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We study dynamic rupture propagation on a 2D fault with a spatially heterogeneous slip-weakening friction law
under a homogeneous stress condition. The slip-weakening distance Dc is determined based on fault topography,
characterized by the fractal dimension δ and a normalized slip-weakening distance Dc0. Assuming different
combination of these parameters, we carry out a large number of dynamic rupture simulations to discuss event
size statistics and the scaling relations of macroscopic parameters such as seismic moment, rupture velocity,
seismic energy, and radiation efficiency. All stopped events obey an approximately power-law size-number
relation. However, statistically self-similar rupture propagation is observed only for selfsimilar fault topography
with δ = 1, where the average rupture velocity is controlled by Dc0. This suggests that a power-law size-
number relation does not simply mean the self-similarity of rupture process. Both upper and lower fractal limits
in fault topography disturb the power-law statistics and the lower fractal limit results in excess of events of the
characteristic size. The facts that slow ruptures can radiate large seismic energy and that fast ruptures are not
always efficient suggest the importance of local acceleration, deceleration, and arrest of rupture. We also show
that the spatial regularity of slip-weakening distance is essential to make the above results.
Key words: Dynamic rupture, fractal topography, self-similarity, seismic energy, rupture propagation velocity.

1. Introduction
One important aspect of earthquake is similarity of phe-

nomena in wide scale range. Since Kanamori and Ander-
son (1975) pointed out geometrical similarity of earthquake
source, many studies have confirmed that most earthquakes
are similar process with scale invariants such as stress drop
and scaled energy, the ratio between seismic energy and
seismic moment. Although it is still controversial whether
the scaled energy is constant in wide scale range (e.g. Ide
and Beroza, 2001; Walter et al., 2006; Yamada et al., 2007),
the change is small, within 1–2 order, for the difference of
seismic moment by 5–10 orders.
Earthquakes occur as dynamic ruptures, frictional slip

with fracture, on fault planes, which contain various lengths
of heterogeneity. Okubo and Aki (1987) found fractal struc-
ture of fault traces, while Brown and Scholz (1985) and
Power et al. (1987) found that the topography of fracture
surfaces has power law spectra with exponents from 2 to 3.
Recently, more thorough studies on fault topography have
been carried out by wide-scale mapping of exposed fault
surfaces. Renard et al. (2006) found the difference of frac-
tal topography depending on the angle to the slip vector.
Sagy et al. (2007) also found difference of topography de-
pending on the angle to the slip vector in the broad range
from 10 μm to 120 m, and concluded that repeating fault
slip generates characteristic size in the power spectrum in
the slip direction, which evolves as the cumulative slip in-
creases. While fault slip produces characteristic structures
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in the fault topography, the fault topography also controls
the behavior of dynamic rupture propagation.
There have been many studies that dealt with dynamic

rupture process on a fault plane with heterogeneous prop-
erties. The first one was dynamic rupture simulations
on a planer fault with separated high prestress areas by
Day (1982). More realistic rupture processes have been
modeled based on the heterogeneous distribution of stress
and the assumption of a friction law, which is usually the
slip-weakening law (e.g., Olsen et al., 1997; Aochi and
Fukuyama, 2002; Guatteri et al., 2003). Ripperger et al.
(2006) provided a comprehensive study assuming various
fractal stress distributions with a uniform slip-weakening
distance. They demonstrated that the heterogeneity of stress
yields earthquakes of a limited size range. Although the
complex distribution of stress does controls earthquake rup-
ture process, the values of stress are not likely to change
greatly between small and large earthquakes, and the differ-
ence of stress may be insufficient to explain the similarity
and difference between large and small earthquakes. One
difficulty of a heterogeneous stress model with a homoge-
neous slip-weakening distance is that there exists an inher-
ent size above which rupture cannot be arrested.
It is well known from the linear fracture mechanics that

the onset and propagation of rupture are controlled by frac-
ture energy. For example, the size of the critical crack in
a homogeneously stressed medium is proportional to the
fracture energy. The propagation velocity of rupture front
is determined by energy balance between crack extension
force and fracture energy (e.g. Freund, 1998). The value
of fracture energy is on the order of 1 J/m2 in the rock
fracture/friction experiments in laboratories (e.g. Ohnaka,
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2003). On the other hand, for the natural earthquake of M 7
class, it is on the order of 1 MJ/m2 (e.g., Beroza, and Spu-
dich, 1988; Ide, 2003). This large difference of fracture
energy, rather than stress, may be essential to explain wide
scale difference and similarity of earthquake sources.
The difference of fracture energy is equivalent to the

difference of slip-weakening distance, Dc, of the slip-
weakening friction law, if the stress state is uniform, which
is a fairly feasible assumption compared to the variety
of fracture energy. Assuming wide difference in slip-
weakening distance, Ide and Aochi (2005) have simulated
dynamic rupture propagation on a planer fault. They pre-
pared a heterogeneous distribution of Dc using a random
distribution of discrete orders of circular patches. Each
patch has a uniform Dc, which is proportional to the patch
size. Circular patches obey a power-law size-number re-
lation, with a small number of large patches and many
small patches. They successfully simulated many events
of spontaneous rupture propagation and termination with-
out special stopping mechanisms such as unbreakable bar-
riers. They found some features similar to real earthquakes:
(1) power law size-number statistics, (2) statistically self-
similar rupture propagation, (3) subshear average rupture
velocity with local super shear rupture velocity, and (4) so-
called initial phases preceding the main moment release.
Despite of this success, there are still many things un-

solved. One important problem is the relation between
physically observable irregularity of a fault system and het-
erogeneity in slip-weakening distance and fracture energy.
In this study, we propose a relation between fault topog-
raphy and Dc distribution. This relation makes continu-
ous heterogeneity unlike discrete order patches in Ide and
Aochi (2005). By changing parameters that characterize
fault topography, we simulate dynamic rupture and calcu-
late macroscopic parameters such as seismic moment, seis-
mic energy, and rupture propagation velocity. We also in-
vestigate special cases with some characteristic lengths, as
observable in real fault surfaces. To make the problem
simple, we consider only 2D antiplane (mode III) and in-
plane (mode II) problems. From a numerous simulations
of dynamic rupture propagation, we show that power-law
size-number statistics is commonly observed for stopped
events. However when the topography is not self-similar,
most events break the whole model space and power-law
statistics for stopped events does not guarantee the self-
similarity of dynamic rupture propagation. Irregular topog-
raphy sometimes accelerates or arrests rupture propagation,
and such local changes of propagation velocity are impor-
tant to calculate energy efficiency of earthquakes.

2. Relation between Fault Topography and Slip-
Weakening Distance

When shear slip occurs between two contacting surfaces
under high normal stress, asperities on surfaces suffer abra-
sion or other inelastic deformation before the frictional
stress between these surfaces reaches a certain dynamic
level. Assuming irregular surfaces and abrasion mecha-
nism, Matsu’ura et al. (1992) showed that the characteristic
displacement for the decrease of frictional stress, Dc, scales
with the characteristic wavelength of surface irregularity,

Fig. 1. The definition of irregularity size L and slip-weakening dis-
tance Dc in this study. We measure L at any point on the fault sur-
face, as the length to the first intersecting point between the surface and
macroscopic rupture propagation direction (horizon) from the hypocen-
ter (star). Examples of estimated L at four points are shown. At each
point on this surface, fault slip is governed by the slip-weakening fric-
tion law as shown with a slip-weakening distance Dc , which is propor-
tional to the locally determined L .

Table 1. Parameter values.

Minimum boundary element length 	x0 1.0 m

Minimum time step (mode III) 	t0 0.5	x0/β

(mode II) 0.5	x0/α

Yield stress τy 5 MPa

Initial stress τ0 3 MPa

P-wave velocity α 6000 m/s

S-wave velocity β 3464 m/s

Rigidity μ 30 GPa

λc. The proportionality between Dc and λc has been con-
firmed by several laboratory experiments of rock friction
and fracture as summarized by Ohnaka (2003). However,
this relation is not directly introduced into numerical simu-
lation to model heterogeneity of earthquake faults. If there
is no characteristic length in surface topography, which is
often observed for real faults and fracture surfaces, we can-
not define Dc. Moreover, the relation between λc and Dc

has been confirmed only macroscopically, while numerical
simulation needs spatial distribution of frictional property.
Therefore, we further assume that each point on the irreg-
ular fault has a local Dc, which is proportional to the ir-
regularity size. This relation is not proved by Matsu’ura
et al. (1992) or Ohnaka (2003), but we will see later that
the macroscopic value of Dc in Matsu’ura et al. (1992) and
Ohnaka (2003) is considered as the appearance of the max-
imum Dc when there is the limitation on the irregularity
size.
This study uses a practical definition of irregularity size

based on surface topography as illustrated in Fig. 1. The
size is measured as the distance to the first intersecting point
between the surface and macroscopic rupture propagation
direction (horizon) in the direction of rupture propagation.
Once the first rupture point, the hypocenter, is selected, we
can measure the irregularity size, L , at any point on this
surface. Slip-weakening distance Dc is given as Dc =
Dc0 × L , where Dc0 is the proportionality constant. In
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Fig. 2. (a)–(e) (top) Examples of topography (top) and distribution of irregularity size, L , (bottom) for different fractal dimensions δ and characteristic
wavelengths λL and λS , if any. (f) Power spectra of topography (a)–(e). (g) The number of point on the trace N (L) where irregularity size is larger
than L (cumulative number). Five solid lines correspond to the examples (a)–(e). Gray solid, dashed, and dotted lines are proportional to L−0.5,
L−0.25, and log(Lmax/L), respectively.

other words, Dc0 is a normalized slip-weakening distance,
determined by inelastic properties of surrounding material.
When we assume a slip-weakening friction law, in which
frictional stress τ f is written as,

τ f (	u) =
{

τy(1 − (	u/Dc)) 	u < Dc

0 	u ≥ Dc
, (1)

the critical size of a stable 2D crack is given by
1.158μ∗Dc/τy where μ∗ = μ (shear modulus) for mode III
and μ/(1 − ν) for mode II, with ν being Poisson’s ra-
tio (Uenishi and Rice, 2003). Since a propagation crack
must be larger than this size, the size L is larger than
1.158μ∗Dc0L/τy . Therefore, Dc0 is on the order of τy/μ

∗,
which is 1.67 × 10−4 with τy and μ of 5 MPa and 30 GPa,
respectively, which we assume in this study (Table 1).
We consider various types of fault surface topography

each of which is characterized by a power spectrum and
random phase in the wavenumber domain. Figure 2 shows
examples of topography and corresponding distributions of
local irregularity size determined based on the above defi-
nition and used in the following simulations. It should be
noted that these distributions have some regularity as a natu-
ral result of our assumption. The irregularity size has a local
maximum at every convex or concave peak of topography,

and irregularity size is shorter than this value within the cor-
responding distance. We will discuss the effect of this reg-
ularity later. Figures 2(a), 2(b), and 2(c) show examples of
topography that have power spectra of power law with the
exponents γ of 2.0, 2.5, and 3.0, respectively. There is no
characteristic length except for the interval of grid points
and size of model space. The relation between the expo-
nent γ and the fractal dimension of a self-affine fractal δ,
δ = (5− γ )/2, indicates that these examples have the frac-
tal dimensions of 1.5, 1.25, and 1.0, respectively.
While a power-law spectrum without characteristic size

is statistically suggested by many previous studies in a wide
scale range, individual spectra of topography usually have
some characteristic sizes. The characteristic size in low-
frequency wavelength, a fractal limit for long size, deter-
mines the slip-weakening distance as shown by numeri-
cal model (Matsu’ura et al., 1992) and rock experiments
(Ohnaka, 2003). Figure 2(d) show an example of topogra-
phy that has a fractal limit λL , where no longer irregularity
than λL exists. In this case, λL determines the maximum
size of L and hence the maximum Dc. We also consider a
limit for short length, λS . In the field observation of Sagy
et al. (2007), power spectra of topography measured along
exhumed faults approaches to the slope of white noises in
the short wavelength limit. Figure 2(e) is an example of
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this type, where the amplitude is flat at shorter wavelength
than λS . In this case, the difference is hard to recognize vi-
sually because of the small amplitude of short-wavelength
irregularity.
Figures 2(f) and 2(g) summarize the spectral shapes and

the size-frequency statistics of irregularity size for the ex-
amples shown in Figs. 2(a)–(e). The relation between irreg-
ularity size L and its cumulative number is approximated ei-
ther by a power law, L1−δ(δ �= 1), or by a logarithmic decay,
log(Lmax/L), where Lmax is the total model size. There-
fore, density of the number of irregularity of size L , dN(L),
is proportional to L−δ . Based on fractal topography cal-
culated by δ, λL , λS , and randomly generated phase in the
wavenumber domain, we obtain distribution of irregularity
size, which is multiplied by Dc0 to generate the distribu-
tion of slip-weakening distance Dc. For each combination
of δ, λL , and λS , we prepare 10 samples of topography for
statistical discussion.

3. Calculation of 2D Dynamic Rupture Propaga-
tion

Although we assumed irregular surface topography, this
is not exactly used in the following calculation. It is theo-
retically possible to exactly calculate dynamic rupture prop-
agation on highly heterogeneous interface including large
change of normal stress as demonstrated by Aochi and
Fukuyama (2002), but it costs too much and statistical in-
vestigation with a large number of case studies is practically
impossible. In this study, we neglect surface geometry and
normal stress change, and consider heterogeneity only in
the distribution of slip-weakening distance proposed in the
previous section. Fault is a line in a 2D infinite medium, on
which slip occurs in inplane (mode II) or antiplane (mode
III) direction.
To simulate realistic earthquakes that range at least from

M 0 to M 8, we have to model approximately 4 order dif-
ference in the length scale. Therefore the total model space
should have about 105 discrete elements. Moreover statisti-
cal investigation requires numerous examples and thus fast
computation. As an efficient method for this purpose, we
adopt the renormalized boundary integral method (BIM)
developed by Aochi and Ide (2004), in which renormal-
ization connect slip distributions on two different scales.
While Aochi and Ide (2004) and Ide and Aochi (2005)
demonstrated the efficiency of the method in 3D, this study
uses a rather simple 2D version with the BIM representation
of Cochard and Madariaga (1994) and Tada (1996). A unit
model space consists of 64 boundary elements in space. For
the i-th element in space and the j-th in time, the stress T i j

and the slip rate V i j are calculated solving the discretized
elastodynamic equation,

T i j = P0000V i j +
j−1∑
k=0

∑
l

Pi jkl V kl , (2)

and the discretized version of the constitutive Eq. (1),

T i j = F
(
V i j

)
, (3)

Pi jkl is a kernel matrix representing interaction between the
boundary elements. When the slipped area reaches the edge

of the unit model space, we renormalize the slip rate of n-
th scale (V i j )n to the values of the next scale (V i j )n+1 by
averaging as,

(
V i j

)n+1 =
((
V 2i−1,2 j−1

)n + (
V 2i,2 j−1

)n
+ (

V 2i−1,2 j
)n + (

V 2i,2 j
)n) /

4, (4)

Each renormalization doubles the model space maintaining
the number of elements. Using 64 spatial elements and 12
nested scales, we prepare a wide model space, 64 × 211 =
131072 unit elements of the finest scale. We confirmed that
different settings, for example more spatial elements and
less nested scales, 128 × 45 unit elements, make similar
results. While a wider model is slow, it can reduce numer-
ical noises that arise during renormalization, which some-
times reactivates once stopped rupture propagation. How-
ever, such strange behavior does not occur frequently and
do not affect the result in a statistical sense.
We assign physical dimensions and units, to make easy

comparison to real phenomena. The values are summarized
in Table 1. As noted above, the stress field, initial, yield,
and residual stress are uniform everywhere except for the
initial rupture area. To start spontaneous rupture, we in-
troduce a finite length of ‘nucleus’ where the initial stress
level is the residual level at the beginning of calculation.
The location of the center of the nucleus, the hypocenter,
is selected randomly on the fault and around the hypocenter
(location i = 0) the stresses of 7 elements are reduced. This
artificially introduced nucleus has infinite rupture propaga-
tion speed within itself and this effect remains visible un-
til the rupture grows 3–5 times of the initial size. Then, a
dynamic rupture propagates and stops, leaving a heteroge-
neous stress distribution. Before the next calculation from
the different location, we reset the stress to the initial homo-
geneous state. Therefore, this calculation includes no long-
term stress loading process. In practice, we select 1000
starting points for each combination of topography and Dc0.
Since we use 10 different shapes, we have 10000 realization
of dynamic rupture in total for each set of δ, λL , λS , and
Dc0.
Figure 3 represents an example of dynamic rupture prop-

agation (event) on a 2D antiplane fault. These are spatio-
temporal distributions of slip-rate on all scales. The rupture
propagates from a nucleus satisfying the slip-weakening
friction law with heterogeneous Dc. The slip-rate is renor-
malized to the next scale when the rupture front reaches the
edge of the model space. After 8 iterations of renormal-
izations, this event eventually stops on the ninth scale. We
calculate several macroscopic parameters that characterize
dynamic behavior of each event. The seismic moment is the
integration of the slip-rate V i j with time and along the fault,
multiplied by the rigidity, μ,

M0 = μ	x	t
∑
i j

V i j , (5)

where 	x and 	t are the spatial and the temporal sizes of
boundary element, respectively. While the seismic moment
is measured on each scale during the growth of one event
using (5), we use the final value of the seismic moment
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Fig. 3. An example of dynamic rupture of mode III. Each panel (scale 1–8) represents spatio-temporal distribution of slip rate on that scale till the
rupture front reaches one edge of the model space. Each distribution is renormalized to the small part of the distribution on the next scale as shown by
a purple square. The largest panel shows slip-rate distribution in the final scale (scale 9) till the end of whole calculation. Calculated average rupture
velocity Vr is shown by an orange bold line.

when we discuss size-number statistics. The moment mag-
nitude corresponds to the seismic moment as,

Mw = logM0 + C, (6)

where the constant C is selected to set the moment mag-
nitude of an initial nucleus as 0. Because we consider 2D
faults, the coefficient before the log moment is 1, instead
of 1.5 for 3D natural earthquakes. Our nucleus size is 7 m
and it is comparable to the typical size of M 0 natural earth-
quake of about 10 m. We discuss the rupture propagation
velocity as the average of rupture propagation velocities
from a fixed start point, the hypocenter, weighted by the
values of slip rate. Practically, it is given as,

Vr =
∑

i j |V i j ([i] − 0.5)|2∑
i j |V i j |2([i] − 0.5)( j + 0.5)

	x

	t
. (7)

The summation is taken for all boundary elements. It
should be noted that this value represents average velocity
of rupture propagation and local propagation velocity can
be much faster or slower.
The seismic energy Es and the total fracture energy EG

are useful parameters to compare with real earthquakes.
They are calculated using the expression of Kostrov (1974),

with slip 	u(x, t) and stress τ(x, t) along the fault,

Es = 1

2

∫ ∞

−∞
(τ (x, 0) − τ(x, ∞))	u(x, ∞)dx − EG,

(8)

EG = −
∫ ∞

0

∫ ∞

−∞

(
∂

∂t
τ(x, t)

)
	u(x, t)dx dt. (9)

These equations are discretized as demonstrated by Ide
(2002, 2003) and written at the end of calculation (time j)
as

Es = 	t	x
∑
i

[
j∑

k=0

V ik

] (
T i0 − T i j

)
/2 − EG, (10)

EG = 	t	x
∑
i

j∑
l=1

(
2

l−1∑
k=0

V ik + V il

) (
T i,l−1 − T il

)
/2.

(11)

Figure 4 graphically shows the amounts of the seismic en-
ergy and the fracture energy calculated using these equa-
tions.
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Fig. 4. Slip-stress diagram to show the locally calculated fracture energy
and the contribution to seismic energy. Stress changes with slip along
A-B-C-D-E. Fracture energy is estimated locally at any time, while
seismic energy is measured after the rupture termination by integration
of local contribution across fault area. When slip is less than Dc , at point
X, fracture energy is given by the hatched area BXX′ and the negative
contribution to seismic energy is the area ABX.When slip exceed Dc , at
point E, fracture energy is BOC (=AOD) and the contribution to seismic
energy is ADE.

4. Statistical Properties of Rupture Events
4.1 Topography without characteristic length
Using the macroscopic parameters defined in the previ-

ous section, we study the statistical features of dynamic rup-
ture for topography without characteristic length as shown
in Figs. 2(a)–(c).
Figures 5(a) and (b) show the number of events of mag-

nitude M and those of magnitude larger than M (cumula-
tive number), respectively, for mode III rupture with com-
binations of three fractal dimension δ and three normalized
slip-weakening distance Dc0. The cumulative number de-
creases as the rupture grows, but remains constant above
some size especially for δ = 1.25 and 1.5. Large population
of large events of M 8 means that there are significant num-
bers of events that do not stop spontaneously and break the
whole model space. We refer to this type of events as non-
stopping events and distinguish them from spontaneously
stopped events. Relative ratio between large and small
events depends on Dc0. A large Dc0 yields large average
slip-weakening distance and large fracture energy, which
effectively stop rupture propagation and reduce the prob-
ability of large events. When Dc0 is larger than 6 × 10−4,
no rupture propagation occurs because the size of initial nu-
cleus is much smaller than the critical length.
When δ = 1, most events stop spontaneously and the cu-

mulative size-number relation approximately obeys a power
law with a steep slope for a large Dc0. This behavior is
clearer in the non-cumulative plot (Fig. 5(a)) where we can
exclude the contribution of initial nucleus smaller than M 1
and non-stopping events larger than M 7. Except for these
small and large events, all stopped events from M 1 to M 7
seem to obey a power law size-number statistics even for
δ = 1.25 and 1.5.

Mode II events behave almost similarly to the mode III
ones. Figures 5(c) and 5(d) show the results for mode II,
where only the direction of slip is different from the con-
figuration of mode III shown in Figs. 5(a) and 5(b). The
major difference is the value of Dc0. Since the crack exten-

Fig. 5. Size (moment magnitude) and number statistics of events for
various combinations of δ and Dc0. (a) Number of events from Mw
to Mw + 0.5 for mode III. (b) Cumulative number of events larger than
Mw for mode III. (c) Number of events from Mw to Mw + 0.5 for mode
II. (d) Cumulative number of events larger than Mw for mode II. Circle,
triangle, and square symbols represent the fractal dimension δ of 1.5,
1.25, and 1.0, respectively. Solid black, dashed black, and gray lines
connect the values for different values of the normalized slip-weakening
distance Dc0 as shown in each panel.

sion force of a mode II crack is smaller than that of mode
III at a slower rupture velocity (e.g., Freund, 1998), smaller
fracture energy is required to stop rupture propagation.
The linear relation between magnitude and log number

suggests the self-similarity of rupture as Ide and Aochi
(2005) demonstrated. To check it, we monitor the change
of rupture propagation velocity during an event growth. If
the self-similarity holds, the rupture looks similarly at any
moments of rupture propagation and the rupture velocity
is constant. Figure 6(a) summarizes the magnitude and rup-
ture velocity at every scale for all events in mode III calcula-
tion. We neglect values in the smallest scale, because the ef-
fect of initial nucleus is dominant and the estimated rupture
velocity is quite high. Except for these small events, rupture
propagation velocity changes almost monotonically. When
the fractal dimension δ is 1, the velocity is almost constant,
while it is accelerated to the terminal velocity, the S wave
velocity, for δ �= 1. We can conclude that the rupture prop-
agates statistically self-similarly only when δ = 1, namely
on a self-similar fault surface. Although the stopped events
usually show power-law size-number statistics, the rupture
growth for δ �= 1 is not self-similar. Since a normalized
slip-weakening distance Dc0 is proportional to the average
fracture energy, large Dc0 results in slow rupture in average.
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Fig. 6. Comparison between moment magnitude Mw and rupture velocity
Vr measured for each scale, from the second to the 12th scales. We
neglect the first scale. Each symbol shows the average value at the
end of calculation on the scale with an error bar showing the standard
deviation. Circle, triangle, and square symbols represent the fractal
dimension δ of 1.0, 1.25, and 1.5, respectively. Solid black, dashed
black, and gray lines connect the values for the different normalized
slip-weakening distance Dc0 as shown in the bottom of each panel. (a)
Mode III (antiplane) calculation, where the terminal velocity is shear
wave velocity. (b) Mode II (inplane) calculation, where the terminal
velocity is 1.73 of shear wave velocity.

Fig. 7. Circles connected by a line show the change of rupture velocity
during a non-stopping event of mode II rupture. This is calculated for
δ = 1, and Dc0 = 0.5×10−4 (black circles with solid line) and 1×10−4

(gray circles with dashed line). Five events are randomly selected for
each Dc0.

Figure 6(b) shows the result for mode II crack, where super
shear rupture propagation is possible, and terminal velocity
is the P wave velocity as shown by Andrews (1976). How-
ever, the rupture propagation velocity remains subshear for

Fig. 8. Moment magnitude and scaled energy, the ratio between seis-
mic energy and seismic moment, of all stopped events except for those
stopped on the first scale. (a) Mode III and (b) mode II. Each symbol
shows the average value at the end of calculation on the scale with an
error bar showing standard deviation. Circle, triangle, and square sym-
bols represent the fractal dimension δ of 1.0, 1.25, and 1.5, respectively.
Solid black, dashed black, and gray lines connect the values for the dif-
ferent normalized slip-weakening distance Dc0 as shown in the bottom
of each panel.

self-similar rupture with δ = 1.
Even under a selfsimilar condition with δ = 1, rupture

often propagates at a local propagation velocity much faster
than the average value. Figure 7 shows magnitude and
rupture velocity during 10 randomly selected non-stopping
events in mode II. Each rupture experiences different rup-
ture velocity at different size. Nine out of ten events in
Fig. 7 propagate at a subshear rupture velocity in the final
scale, but some of them experience super shear propagation
during the growth. Two events propagate at the velocity of
about

√
2β, which is the velocity at which super shear rup-

ture can propagate stably.
Figure 8 shows the ratio of seismic energy to seismic

moment (scaled energy) for nine combinations of δ and
Dc0. Averages and standard deviations are calculated for
log scaled energy. Since seismic energy can be measured
after the termination of the rupture, this figure includes only
stopped events, all except for the events that stopped on the
first scale. When a ruptured area is small, the seismic en-
ergy is determined mainly by Dc0, because the rupture is
stopped by small scale heterogeneity almost irrelevantly to
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Fig. 9. Comparison between moment magnitude Mw and rupture velocity
Vr measured for each scale, from the second to the 12th scale, calculated
for the case with λL . We neglect the first scale. Each symbol shows the
average value at the end of calculation on the scale with an error bar
showing the standard deviation. Circle, triangle, and square symbols
represent results using λL of infinity (no limit), 1.3 × 104 m, and
1.3 × 103 m, respectively. Solid black, dashed black, and gray lines
connect the values for the different normalized slip-weakening distance
Dc0 as shown in the bottom of each panel.

large scale fractal structure and δ. The difference between
Figs. 8(a) and 8(b) arise mainly from the difference of Dc0,
rather than due to the difference of rupture modes. Topog-
raphy with larger δ tends to produce energetic events as rup-
ture grows. It is not surprising that scaled energy is constant
for the case δ = 1 because rupture propagates self-similarly
at any moment. Moreover, even for non-self-similar cases
of δ �= 1, the scaled energy looks constant if Dc0 is small.
This suggests that the self-similarity of rupture process is
not guaranteed only by the constant scaled energy, which is
often observed for natural earthquakes.
4.2 Topography with characteristic length
Next we consider the situation where topography has a

characteristic length that defines a longer or shorter limit
of power law regime in spectrum. Since mode II and III
give essentially the same behavior in the previous section,
we focus on the simple mode III problem and fix δ to 1.
Therefore rupture propagates statistically self-similarly if
there is no characteristic length.
Figure 9 shows the relation between rupture propagation

velocity and seismic moment when topography has longer
limit of fractal, λL . As shown in Fig. 2(d), such topog-
raphy has no irregularity larger than λL . Therefore, once
a rupture grows beyond a characteristic size, it is acceler-
ated to the terminal velocity and break whole model space.
This is a well-known behavior of traditional dynamic rup-
ture simulations with a constant Dc. The characteristic size
is about Mw 4 for λL of 1.3 × 103 m and Mw 6 for λL of
1.3 × 104 m. The actual acceleration starts from a little
smaller size probably due to the effect of inertia. To stop
such rupture, we have to introduce some special mecha-
nisms such as unbreakable barriers and a wide unstressed
area, which are often assumed in many previous studies of
dynamic rupture propagation.
There can be a limit for shorter wavelength of irregular-

ity λS , below which topography looks like white noise as
shown in Fig. 2(e). Although the difference of topography

Fig. 10. Size (moment magnitude) and number statistics for topography
with short wavelength limit λS . (a) Number of events from Mw to
Mw + 0.5. (b) Cumulative number of events larger than Mw. Circles
show the relations without λS , for comparison. Squares and triangles
represent λS = 44 m and 130 m, respectively. Solid black, dashed
black, and gray lines connect the values for the different normalized
slip-weakening distance Dc0 as shown in each panel.

is hard to see in larger scale, the average value of Dc is small
and the chance of rupture arrest is much smaller. Hence,
most events are non-stopping event. Figure 10 shows size-
number relation for λS = 44 m and 130 m. Nevertheless
we observe a peak in non-cumulative size-number relation
(Fig. 10(a)) that rises from Mw ∼ 1.3 or 2.2 corresponding
to either λS , and falls gradually. The rupture is best stopped
at this size, which is a characteristic size of this system.
Similar behavior is expected for any concave sections of to-
pography spectra. Sagy et al. (2007) found similar concave
section in the topography spectra in the slip direction of
mature faults, which is known to have characteristic earth-
quakes in the magnitude-frequency distribution of seismic-
ity (e.g., Stirling et al., 1996). The peaks in Fig. 10(a) may
represent such characteristic earthquakes.

5. Discussion
5.1 Radiation efficiency
The radiation efficiency ηR represents the efficiency of

seismic energy radiation compared with the total release of
potential energy minus frictional loss. It is calculated for
each event in this study using the seismic energy Es and the
fracture energy EG defined in Eqs. (8)–(11) as,

ηR = Es/(Es + EG). (12)

The radiation efficiency of mode III crack propagating self-
similarly at a constant rupture velocity VR is given as (e.g.
Freund, 1998):

ηR = 1 −
√

(1 − VR/β)/(1 + VR/β). (13)

Figure 11 compares average rupture velocity and radiation
efficiency for all the stopped events larger than Mw 1.5.
Generally ηR is larger for fast ruptures as the analytic ex-
pression predicts, but the increase ratio is slower than pre-
dicted. This behavior is interpreted as follows. Slow rup-
tures tend to radiate more energy than the self-similar crack
because they include small-scale fast ruptures that excite
seismic energy more efficiently. On the other hand, fast
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Fig. 11. Comparison between rupture velocity and radiation efficiency
for stopped events larger than Mw 1.5. A circle represents average
values measured for each 0.1 bin of rupture velocity. Open and black
circles are for Dc0 = 1 × 10−4 and 2 × 10−4, respectively. Error bars
represent the standard deviation for each group. A dashed curve shows
the analytic solution for a mode III self-similar crack propagating at a
constant velocity.

ruptures radiate seismic energy efficiently during the rup-
ture propagation. However they have to consume some
fracture energy to be arrested, which reduces total seismic
efficiency. This suggests that for any stopped earthquake,
radiation efficiency cannot be as large as 80–90% and frac-
ture energy required to stop the rupture is comparable to
seismic energy.
5.2 Spatial distribution of Dc

Although the distribution of slip-weakening distance Dc

is determined based on random topography, it has some reg-
ularity due to the definition of Dc as shown in Fig. 2. This
regularity is essential for the statistical self-similarity and
power-law size-number relation described so far. If the spa-
tial distribution of Dc is random, namely if the original dis-
tribution is mixed up randomly in space, the behavior of
the rupture propagation is quite different. Figure 12 shows
size-number relations for several random Dc distributions
compared with the previously mentioned size-number re-
lations of regular distribution. Random distributions yield
less large events than relatively regular distributions, sug-
gesting the regularity introduced in this study promotes rup-
ture growth. No power-low section is observable for ran-
dom distribution with δ = 1, but visible with δ = 1.5 below
a limiting size.
The relations in Fig. 12 are explained analytically to

some extent. As shown in Fig. 2(g), the size-number rela-
tions of L has a density function dN(L) proportional to the
negative power of the fractal dimension δ. We assume that
the probability density function of Dc, p(x), is proportional
to x−δ , and for the case δ �= 1,

p(x) = 1 − δ

(Dmax)1−δ − (Dmin)1−δ
x−δ, (14)

where Dmax and Dmin are the maximum and the minimum
value of Dc. Since the stress condition is homogeneous,
fracture energy is proportional to Dc. Rupture propagation
is arrested if fracture energy is larger than the energy release
rate of the crack, which scales as the length n	x . Therefore
there is a critical value of Dc above which the rupture is

Fig. 12. Size (moment magnitude) and number statistics of rupture events
to compare difference of spatial distribution of Dc . Cumulative numbers
of events larger than Mw are shown for (a) δ = 1 and (b) δ = 1.5.
Black and gray lines show results for random distributions and relatively
regular distributions, respectively. Different types of line represent the
different values of normalized slip-weakening distance Dc0 as shown in
each panel.

arrested, which is proportional to n and we write Dstop =
An. The probability that rupture propagation of length n	x
is stopped at one end is

Pn =
∫ Dmax

Dstop

p(x) dx = (Dmax)
1−δ − (An)1−δ

(Dmax)1−δ − (Dmin)1−δ

∼ (An/Dmin)
1−δ − (Dmax/Dmin)

1−δ. (15)

The above probability is valid only for small cracks, n <

Dmax/A and Pn = 0 for n > Dmax/A, which means that
rupture cannot be arrested above this size. When there are
Nn events of length n	x , the number of events of length
(n + 1)	x , Nn+1 is, considering both ends,

Nn+1 = Nn(1 − (Pn)
2) = N1

n∏
i=1

(
1 − (Pi )

2
)
. (16)

When δ = 1.5, and 1 
 n 
 Dmax/A,

log Nn ∼ log N1 +
n−1∑
i=1

log

(
1 − Dmin

Ai

)

∼ −Dmin

A
log n + const. (17)

Since log n is proportional to the magnitude, log N de-
creases linearly as Mw increases. When n exceeds Dmax/A,
the slope becomes flat, indicating there are no stopped event
above this size.
This simple calculation shows that not only size-number

distribution of slip-weakening distance is important to con-
sider rupture behavior on a heterogeneous fault plane. Def-
inition of Dc in Fig. 1 introduces regularity into the spa-
tial distribution of Dc. With this definition, once a rupture
breaks an element of large Dc, it can propagate at least the
size of the corresponding irregularity. This mechanism pro-
motes rupture propagation and provides completely differ-
ent size-frequency statistics from that in a spatially random
Dc model.
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6. Conclusion
Earthquakes are dynamic ruptures starting from very

small area that has not been identified from seismic ob-
servation. They propagate radiating seismic energy within
complex media with various size of heterogeneity. To re-
alize statistical representation of such processes, we simu-
late dynamic propagation of rupture on a plane where frac-
ture energy is distributed heterogeneously. To keep prob-
lems simple, we consider 2D in-plane (mode II) and anti-
plane (mode III) problems with a homogeneous stress con-
dition. Nevertheless, the rupture behavior is diverse be-
cause of the heterogeneous distribution of fracture energy,
or slip-weakening distance Dc, which is assumed based on
the fractal topography of fault plane. We define Dc as a
value that is proportional to the locally measured size of
topographic irregularity. Therefore we have two parameters
that characterize distribution of Dc, the fractal dimension of
topography δ and the normalized slip-weakening distance
Dc0. We also consider the maximum and the minimum frac-
tal limits of this distribution as special cases. Carrying out
a large number of dynamic rupture simulations, we discuss
the size-number statistics of events and the scaling relations
between macroscopic parameters such as seismic moment,
seismic energy, fracture energy, and average rupture propa-
gation velocity.
Most ruptures spontaneously stop and the size-number

statistics of these events is approximately power law when
δ = 1, for Dc distribution based on self-similar topogra-
phy. The exponent of power depends on normalized slip-
weakening distance Dc0, and a smaller Dc0 results in many
large events because the average fracture energy is small.
Dc0 also controls the average rupture velocity, which is sta-
tistically scale invariant. During rupture propagation, rup-
ture velocity is variable and sometimes locally exceeds the
S-wave velocity in mode II rupture. These are similar char-
acteristics observed in the previous dynamic models using
circular patches by Ide and Aochi (2005). When the fractal
dimension δ > 1, most events do not stop and are acceler-
ated to the terminal rupture propagation velocity. However,
even for δ > 1, the size-number statistics of stopped events
is approximately a power law. These stopped events for
δ > 1 show size dependence of the ratio of seismic energy
to seismic moment, scaled energy, while the dependence is
weak when δ = 1. This suggests that we may observe dif-
ferent scaling of scaled energy when scale-dependence of
irregularity is different.
If there is the upper fractal limit of wavelength in frac-

tal topography, there is no large irregularity that can stop
propagating rupture above this limit and all events become
unstopping events, which is unlikely in natural earthquake
environment. On the other hand, a lower limit determines a
characteristic size of event in size-number statistics, which
may be correspond to characteristic earthquakes observed
in some mature fault systems. The power spectrum of
topography of a natural fault has some concave sections,
which may act like a fractal limit and make characteristic
behavior of earthquakes.
The rule to determine Dc distribution adopted in this

study is just a candidate that connects natural fault system
and Dc distribution. Although this uses a continuous topog-

raphy, it is not a typical appearance of natural fault system
and we need to consider other complexity such as branches
and steps in future. Nevertheless, as we show in the discus-
sion, the regularity of spatial distribution of Dc is a key to
consider rupture in heterogeneous media and this may hold
for other kind of heterogeneity, too. Characteristics such as
δ-dependent scaling of scaled energy and relatively small
radiation efficiency can be explained by a fundamental en-
ergy balance and will persist in more complex simulations.
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