
Earth Planets Space, 59, 1231–1239, 2007

Using a neural network to make operational forecasts of ionospheric variations
and storms at Kokubunji, Japan
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An operational model was developed for forecasting ionospheric variations and storms at Kokubunji (35◦N,
139◦E), 24 hours in advance, by using a neural network. The ionospheric critical frequency (foF2) shows periodic
variabilities from days to the solar cycle length and also shows sporadic changes known as ionospheric storms
caused by geomagnetic storms (of solar disturbance origin). The neural network was trained for the target
parameter of foF2 at each local time and input parameters of solar flux, sunspot number, day of the year, K-
index at Kakioka. The training was conducted using the data obtained for the period from 1960 to 1984. The
method was validated for the period from 1985 to 2003. The trained network can be used for daily forecasting
ionospheric variations including storms using prompt daily reports of K-index, sunspot number, and solar flux
values available on-line.
Key words: Ionospheric forecast, ionospheric storms, neural network, foF2.

1. Introduction
Forecasting ionospheric variations including storms has

been studied for many years for high-frequency (HF) ra-
dio communications and satellite communications. There
are two kinds of variations in the ionosphere. One is pe-
riodical changes such as daily, seasonal, and solar cycle
variations and the other is a sporadic variation caused by
solar-origin disturbances. Periodical variation of the iono-
sphere is important for determiningMUF (maximum usable
frequency) of HF communication links. Delays in satellite
signals passing through the ionosphere also vary according
to the total electron content. Sporadic variations of the foF2
can be classified into three categories: ionospheric positive
and negative storms, and TID (travelling ionospheric dis-
turbances). Ionospheric storms are drastic changes in the
plasma density associated with geomagnetic storms caused
by highly variable solar winds and magnetospheric energy
inputs to the Earth’s upper atmosphere. Increase in plasma
density is called a positive storm and decrease in plasma
density is called a negative storm. Positive storms induce
extra delays in GPS radio waves, whereas negative storms
cause HF communication blackouts. In this article, we are
not concerned with TIDs, which have a period of several
hours, because it is difficult to determine the origin required
for forecasting in individual events.
The plasma density of ionosphere depends on the bal-

ance of production by photo-ionization and losses by a
chemical recombination (Yonezawa, 1966). Thus, the iono-
sphere shows a variety of periodic fluctuations caused by
the changes in the solar flux, season, and local time. Ob-
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servation of the ionosphere has been carried out over many
decades by using ionosondes all over the world including
Japan. There are empirical models based on those observa-
tions, such as IRI (Bilitza et al., 1993), predicting averaged
states of the ionosphere. However, it is not well established
to predict day-to-day variations including storms.
An important mechanism of negative ionospheric storms

is mixing of the upper and lower atmospheres caused by
atmospheric disturbances driven by energy inputs in the po-
lar atmosphere during geomagnetic storm periods (Prölss,
1995; Matuura, 1972). Mixing of the upper atmosphere
accelerates the reduction of the ionosphere due to the at-
mospheric composition changes (Matsushita, 1959) by up-
welling of the molecular-rich air, because atomic oxygen
(O) contributes the production and molecular nitrogen (N2)
contributes the reduction of the ionosphere (Torr and Torr,
1979). On the other hand, an important mechanism of pos-
itive ionospheric storms at mid latitudes is an uplift of the
ionosphere due to the upward E × B drift by penetration
of magnetospheric electric fields (Martyn, 1953) or due to
an equatorward thermospheric wind (Jones and Rishbeth,
1971; Lei et al., 2004). The vertical drift due to electric
fields or neutral air winds displaces the equilibrium posi-
tion of the peak to a new level, at which the upward forcing
balances with the downward diffusion along the magnetic
field line (Rishbeth, 1978). During such uplifts, reduction
of the ionosphere by N2 is slowed (Prölss, 1995).
There have been many attempts to predict and forecast

foF2 using neural networks (Altinay et al., 1997; Can-
der and Lamming, 1997; Williscroft and Poole, 1996).
Neural networks, a kind of artificial intelligence meth-
ods, are widely used to describe complicated non-linear
input/output relationships. In particular, multi-perceptron
neural networks using the error back propagation algorithm
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are very useful for modelling complicated phenomena be-
cause of their ability of non-linear function approximation
(Rumelhart et al., 1986). Recently, they are applied to pre-
dicting the F-layer parameters in South Africa (McKinnell
and Poole, 2004), short-term prediction of foF2 (Wintoft
and Cander, 1999), short-term prediction of foF2 in Rus-
sia (Barkhatov and Renynov, 2004), temporal and spatial
forecasting (Tulunay et al., 1999), foF2 storm forecasting
in Europe (Wintoft and Cander, 2000), a global model for
foF2 (Oyeyemi et al., 2005a), and global forecasting up to
5 hours in advance (Oyeyemi et al., 2005b). However, there
is as yet no practical method to predict daily variations or to
forecast ionospheric storms specific to the Japan’s area.
In this work, we developed an operational tool for fore-

casting foF2 values 24 hours ahead at Kokubunji (35◦N,
139◦E), Tokyo using daily activity parameters easy to ac-
cess. The prediction is executed once a day between 0900
and 1200 JST (0000 and 0300 UT) when the geomagnetic
activity index for the previous UT day becomes available.
In this regard, there could be several indices describing ge-
omagnetic activity such as, Kp, Ap, Dst, and AE. We chose
the K-index issued by Kakioka magnetic observatory, be-
cause of its quick availability. To find the most influen-
tial local time of the K-index enhancement in ionospheric
storm developments, we analyzed past ionospheric storms
occurred in a period of 11 years by using a superposed
epoch analysis. The result was used to optimize the inputs
to the neural network.

2. Operational Forecast Model
2.1 Error back propagation algorithm
The feed forward neural network with the error back

propagation (Rumelhart et al., 1986) is a method mapping
multivariable inputs to multivariable outputs. This type of
neural network has an ability of nonlinear functional ap-
proximation (Kolmogorov, 1957; Funahashi, 1989). That
is, the network extracts features from a data set and learns
the association between the inputs and the outputs. The
error back propagation algorithm is suitable for predicting
natural phenomena for which long-term observational data
are available. The network consists of three or more lay-
ers. They are the input layer, hidden layer(s), and output
layer. Each layer consists of units, and units in one layer
are connected with units in the next layer with ‘weights’.
The process of determining the weights is called ‘learning’.
The time for learning and the performance of the trained
network depend on the number of layers and the number of
units. There is, however, no conclusive way to determine
appropriate numbers of layers and units. Once those num-
bers and weights are fixed, the target parameters for a new
input data set are quickly obtained. The neural network we
chose consists of three layers: a pair of input/output layers,
and single hidden layer. The output layer has only one unit
corresponding to the target parameter of foF2. Details of the
input and target parameters are described in next section.
The number of units in the hidden layer is determined on a
trial-and-error basis. The learning procedure is the same as
that described by Haykin (1999).

2.2 Target
The aim of our operational model is to provide a useful

prediction for a variety of fields of radio application such
as HF communication/broadcast and advanced GPS appli-
cations. The ionospheric critical frequency, foF2, is one
of the most important factors describing ionospheric condi-
tions, and it is directly connected with the maximum usable
frequency of HF communication links. Total electron con-
tent (TEC) that specifies the propagation delay of the GPS
signals is another important factor. In the meantime, a data
set that covers a sufficiently long period is required for the
neural network learning, say several times of the solar cy-
cle period. In this regard, bottomside sounding, which pro-
vides foF2, has been conducted for more than 60 years at
Kokubunji, Tokyo. On the other hand, a reliable database
for TEC is available only after ∼1998 over Japan created
by using the GPS Earth Observation Network (GEONET).
This is not a sufficient length for the neural network learn-
ing. Fortunately, TEC is mostly determined by the maxi-
mum electron density of the F layer, and TEC variations can
be inferred from foF2 variations to some extent. Thus, we
chose foF2 as a target parameter of the neural network pre-
diction. The leaning of the network was made by using foF2
data for two solar cycles, and the validation of the learning
result was made by using the data from another solar cycle.
For the efficiency of the learning, the daily variations are not
explicitly learned, but the learning process was individually
run for each hour, with only one target parameter.
2.3 Input parameters
For an effective prediction of foF2, factors that cause the

ionospheric electron density variation must be supplied to
the input layer as many as possible. An important require-
ment for our operational model is the quick availability of
the input parameters. There might be two categories of in-
put parameters, one causes periodic changes of the iono-
sphere and the other does sporadic changes or ionospheric
storms. Figure 1 presents an example of long term variabil-
ity of foF2 in the top panel along with monthly mean so-
lar activity indices, the sunspot number in the middle panel
and the F10.7 index in the bottom panel, for the period from
1990 to 2004. The F10.7 index indicates the intensity of ra-
dio noise at 2.8 GHz (wave-length: 10.7 cm). The sunspot
number is the solar activity index having a long history. In
the figure, solar cycle, annual, and semiannual variations of
foF2 are clearly seen. In addition to those periodic varia-
tions, a day-to-day scattering is recognized. Figure 2 ex-
pands the foF2 variability for the one year period of 2001 in
the bottom panel along with the daily geomagnetic activity
index

∑
K in the top panel, where

∑
K is the daily sum of

the Kakioka’s magnetic disturbance index. Large dropouts
of foF2 from the smoothed seasonal variation can be seen
several times. Some of those dropouts are correlated with
the geomagnetic activity, but others are not. Details of the
input parameters are described below.

2.3.1 Solar cycle variation After several trials, we
decided to use both F10.7 (http://www.drao-ofr.hia-iha.nrc-
cnrc.gc.ca/icarus/www/daily.html) and the sunspot number
(http://sidc.oma.be/) as proxies of the solar activity. In
Fig. 1, it is noted that their variations are not exactly the
same; for example, the maximum of F10.7 in the latter half
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Fig. 1. Variation of foF2, F10.7 and SSN for one solar cycle from 1990 to 2005.
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Fig. 2. Variation of
∑

K and foF2 for one year in 2001.

of the period appeared in 2002, whereas that of sun spot
number did in 2001. As both the daily indices fluctuate too
much to learn the neural network efficiently, we took aver-
ages over preceding 3 days and the 27-day solar rotational
period for F10.7 and sunspot number. Therefore, the solar
activity are represented by 4 inputs: 3-day and 27-day aver-
ages of the solar flux and the sun spot number.

2.3.2 Seasonal variation The day of year (DOY)
from 1 to 365 is used to learn seasonal variations. DOY
was expressed as a combination of DOY1 and DOY2, both
normalized between 0 and 1, so that the data would contin-
uously change at the end and start of the year as follows.

DOY1 =
(
sin

(
DOY · 2π

365

) + 1
)

2
(1)

DOY2 =
(
cos

(
DOY · 2π

365

) + 1
)

2
(2)

(DOY = 1, 2, · · · 365)
2.3.3 Sporadic variation Most non-repeated varia-

tions are associated with geomagnetic disturbances. We
chose the K-index at Kakioka (36◦N, 140◦E), Japan,
(http://www.kakioka-jma.go.jp/) which is one of the sta-
tions used for derivation of the planetary geomagnetic ac-
tivity index, Kp. Besides the K-index, there are several ge-
omagnetic indices that represent geomagnetic disturbances,
such as AE (the auroral electrojet index) and Kp indices.
Although the AE index that represents the intensity of en-
ergy injection into the polar region is suitable for consider-
ing upper atmospheric disturbances, the data do not cover
a period long enough for the neural network learning. The
planetary Kp index is derived by calculating a weighted av-
erage of K-indices from a network of geomagnetic obser-
vatories. Unfortunately, most observatories do not report
their data in real-time. However, the K-index of Kakioka
is updated daily and is promptly reported on-line. The K-
index ranges from 0 to 9 in a quasi-logarithmic scale, and
it is related to the most disturbed horizontal magnetic field
components relative to a quiet day during a three-hour in-
terval; 8 data are recorded each day. The Kakioka data also
cover a sufficiently long period.
For the efficiency of the learning, K-indices were pre-

processed based on the analysis of past storm events. Iono-
spheric storms arise after geomagnetic storm onsets (Mat-
sushita, 1959). However, developments of ionospheric
storms depend on the local time of magnetic storm onset
and progress after it. To reveal the local time effect on iono-
spheric storms, superposed epoch analysis was conducted
of the K-index variations for significant ionospheric storms.
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Fig. 3. Superposed epoch analysis of 3-day K-indices variations prior to
10 significant ionospheric storms.

Fig. 4. Neural network (NN) used in this study.

To select such ionospheric storms at Kokubunji, we calcu-
lated the deviation of foF2 from the median value (27 days
centered at the day considering), 
foF2, in the period from
1992 to 2003. Thus, we found 10 big negative storms in
which the amplitude of
foF2 exceeded 4 MHz. The super-
posed variation of the K-index is shown in Fig. 3. The figure
shows that the fourth to seventh K indices (down arrows) in-
creased on the day (UT) before the severe ionospheric storm
events. In addition, there is a general tendency of increasing
in local K index during night time (Yumura, 1951). Thus,
for effective learning of the network, we defined

∑ ′K; the
sum of four K-indices from the fourth to seventh indices of
the day and from the eighth index of the day to the third
of the next day.

∑ ′K for two preceding days were used as
inputs describing geomagnetic activity, in addition to each
K indices for 2.5 days. Accordingly, the magnetic activity
input consists of 24 parameters.
2.4 Structure of the network and learning
The neural network for predicting foF2 was constructed

as shown in Fig. 4. The input layer had 30 units and the
hidden layer had 200 units. The output layer had one unit
for the target parameter of foF2. Data set for the learning
of the network should cover possible cases of parameter
variations including the solar activity and seasons. Thus
at least one solar cycle must be covered. In this study, the
learning was executed for the data set obtained from 1960 to
1984, covering two solar cycles. Before learning a variation

Fig. 5. Comparison of observed foF2 variation (middle panel) and NN
prediction (bottom panel) during one solar cycle period from 1986 to
1996. upper panel shows variations of SSN and F10.7.

range was examined for each parameters, and input and
output data were normalized to have values between 0 and
1.

3. Results and Discussion
Here, we examine the performance of the neural network

learning and describe the operational running for daily iono-
spheric storm forecasting. First, we demonstrate the repro-
ducibility of the periodically repeated variations, then dis-
cuss ionospheric storm predictions.
3.1 Periodic variations
Validation of the neural network was done using a data

set for the one solar cycle period from 1985 to 1996, which
was not included in the learning data set. To show an ability
of reproducing variations with the 11-year solar cycle, we
compared the output from the neural network with the mea-
sured foF2. Figure 5 shows hourly foF2 values observed
(middle panel) and predicted (bottom panel) by the net-
work along with the daily sunspot number and F10.7 solar
flux (top panel). In the middle and bottom panels, the en-
velopes display long term variation of the daily maximum
and minimum of foF2. Except for the slight spread for
the observed values, daily maximum/minimum envelopes
for the observed and predicted foF2 agree quite well, not
only for the solar cycle variation but also for the annual
and semiannual variations. Figure 6 shows daily variations
for selected weeks representing different seasons from the
same data set in Fig. 5. Left three panels are for the solar
minimum conditions (1985) and right three panels are for
the solar maximum conditions (1992). The blue solid line
presents the NN output and the dots are the observed foF2.
It is clear that the network reproduces the daily variations
in any season of the solar minimum and maximum. The
prediction errors of the neural network are basically within
1 MHz.
Next, we compare the prediction performance of the NN
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Fig. 6. Comparison of observed foF2 variation (dots) and neural network prediction (blue line) for one week in March, August and October of 1985
(solar minimum: left) and 1992 (solar maximum: right).

Fig. 7. Correlation coefficients of observed foF2 with NN (light gray) and with IRI (dark gray) in the period from 1985 to 1996.

and that of the empirical ionospheric model, IRI (Interna-
tional Reference Ionosphere). IRI model has tables of ssn
and ap-index internal. foF2 was obtained for given years
and dates at the location of Kokubunji with standard option.
To do this, root mean square errors (RMSE) were calcu-
lated for the two predictions. Figure 7 shows the correlation
coefficient of the NN output with the observed foF2 (light
gray bar) and those of the IRI output with the observed foF2
(dark gray bar). Near the solar maximum (1991–1992), the
correlation coefficient for the IRI prediction falls to 0.75,
but that for the NN prediction remains above 0.87. Near the
solar minimum (1985 and 1995–1996), the correlation co-
efficient for NN were less than that for IRI, although both
are above 0.9. The coefficients averaged over the one solar
cycle (1985–1996) are 0.91 for NN and 0.88 for IRI.

We also compared the local time dependence of the per-
formance through the period from 1985 to 1996 in Fig. 8.
Figure 8 is the mean errors (MEs) of the IRI (above pan-
els) and NN (below panels). It is noted that the MEs and
the deviations for IRI are larger than those for NN and
the difference is significant from noon (12 LT) to midnight
(0 LT). IRI outputs are relatively high compared to foF2, at
Kokubunji especially in solar maximum.
3.2 Magnetic activity effects
Our operational forecast model runs once a day just after

the beginning of the new UT day (0900 JST) when all in-
put parameters become available, and foF2 values are pre-
dicted up to 24 hours in advance. As the input parame-
ters contain magnetic disturbance indices, their ionospheric
effect should appear in the predicted foF2 variation, i.e.,
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Fig. 8. MEs calculated of NN (gray) and IRI (black) predictions for the period from 1985 to 1996.
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Fig. 9. Ionospheric disturbance for the period from 10 to 12 May 2002. Top panel shows K-index; middle panel compares observed (red dots) and
predicted foF2 (blue crosses connected with line), and bottom panel shows predicted ionospheric storm.
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Fig. 10. Same as Fig. 9 but for the period from 22 to 24 May 2002.

ionospheric storms. To evaluate the ability of storm pre-
diction, cases when K-indices largely increased were ex-
amined. Top panels in Figs. 9 to 14 are K-indices and the
values up to the preceding UT day were used for the pre-

diction run. The middle panels show observed (red pluses)
and predicted foF2 (blue crosses connected with line) along
with foF2 median curves (solid lines). The foF2 median
is the median value in the 27-day period centered on the
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Fig. 11. Same as Fig. 9 but for the period from 29 to 31 December 2002.
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Fig. 12. Same as Fig. 9 but for the period from 20 to 22 November 2002.

day considering. The bottom panels show the difference
between the predicted foF2 and the quiet reference, where
the quiet references were produced through another neural
network run with all K-indices artificially fixed to 1, i.e.,
magnetically quiet condition. Figures 9 to 11 exhibit nega-
tive ionospheric storms and Figs. 12 to 14 exhibit positive
storms. Individual events are examined below in more de-
tail.

3.2.1 Negative storms In Figs. 9 and 10, the iono-
spheric negative storm occurred after the geomagnetic dis-
turbance that had occurred one day before. In the example
of 22 May 2002, the K-index reached 6 in the 18–20 LT
period (fourth K-index of the day) and 7 in the 21–23 LT
period (fifth K-index of the day). The large influence of the
increase in the K-index in these local times on ionospheric
storms is consistent with the preliminary study of super-
posed epoch analysis (see Fig. 3). Figure 11 presents an-
other storm occurred on 31 December 2002, when moderate
geomagnetic disturbances (this term was in a recurrent dis-
turbance period caused by a coronal-hole rotation). Here,

Kakioka Geomagnetic Observatory classifies disturbances
with

∑
K from 18 to 23 as a minor storm (Koike, 1991).

During 28–31 December 2002,
∑

Ks are 20,16,16,11 re-
spectively. This example shows that our network can pre-
dict such a type of disturbances.

3.2.2 Positive storms In the example of 22 Novem-
ber 2002 (Fig. 12), the K-index reached 5 on 20 November
and a modest level continued for the following two days.
The ionospheric response to this disturbance was a pro-
longed positive phase, which were significant during the
daytime. The middle (blue crosses connected with line)
and bottom (red bars) panels show that the network repro-
duced the positive variations quite well. Figures 13 and 14
shows another example of positive disturbances, for which
geomagnetic storm started on 28 October 2003 and con-
tinued for three days. This extreme event is known as the
‘Halloween event’ caused by a big solar flare (X17.2) at
11:51 UT on 28 October 2003, and subsequently a geomag-
netic disturbance occurred at 6:11 UT (15:11 JST) on 29
October. The ionospheric response to this disturbance was
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Fig. 13. Same as Fig. 9 but for the period from 26 to 28 October 2003.
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Fig. 14. Same as Fig. 9 but for the period from 29 to 31 October 2003.

quite complex. The network broadly reproduced the distur-
bances.

3.2.3 Accuracy of storm forecasting In order to ex-
amine the total accuracy of storm forecasting, the daily dis-
turbance index (δobs) was defined as the mean deviation of
foF2 from the quiet reference for 12 hourly-values of foF2
in daytime, because positive disturbances during nighttime
are mostly continuation of the preceding day time distur-
bances and negative storms clearly appear during day time
when new ionization process proceeds. For this purpose,
the quiet reference was obtained by the NN run with all K-
indices fixed to 1. The ionospheric disturbance was classi-
fied into five levels: positive (δobs ≥ 1 MHz), weak-positive
(1 > δobs > 0.6), quiet (0.6 ≥ δobs ≥ −0.6), weak-negative
(0.6 > δobs > −1), and negative (−1 ≥ δobs). Similarly, for
the predicted foF2 the daily disturbance index (δNN) was de-
termined and was classified into the five levels. Figure 15
shows the score of storm forecasting by NN for the period
from 1985 to 1996. The boldface numbers mean that iono-
spheric conditions were successfully forecasted (2488 out

of 4383 days). Hatched numbers are the cases forecasts
was failed (661 out of 4383 days). The others are poor
cases (1234 out of 4383 days). Our NN model predicts
ionospheric storms based on the time history of the K-index
alone. For more accurate predictions, more parameters such
as the storm onset time and the Dst index are required.

4. Summary
An operational forecasting model of ionospheric varia-

tions and storms for the mid-latitude station, Kokubunji,
Japan was constructed. The model is based on a neural
network whose inputs are solar indices and a geomagnetic
disturbance index. Regarding the geomagnetic indices, we
performed a superposed epoch analysis for significant iono-
spheric storms. The result indicated that the fourth to sev-
enth K-indices of the day are influential on ionospheric
storms occurring on the next day. Based on this analysis and
diurnal variations of the local K value,

∑ ′K was defined as
summing up 4 indices. The NN was trained with these in-
puts using data set from 1960 to 1984, and was validated
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Fig. 15. Accuracy of storm forecast during 1985 to 1996 (4383 days).

with the data set from 1985 to 2003. The validation shows
that our neural network is capable of predicting foF2 with
an accuracy better than IRI (see Figs. 7 and 8). Through-
out the one solar cycle period (1985–1996), the average of
correlation coefficients of the NN prediction with the ob-
servations was 0.91 and that of the IRI prediction with the
observations was 0.88. Furthermore, our network can fore-
cast negative storms (see Figs. 9 and 10) and positive storms
(see Figs. 12–14) both which occur after geomagnetic dis-
turbances. The network is used not only for daily forecasts
of ionosphere but also for long-term prediction by using so-
lar activity predictions.
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