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An imaging of buried anomalies, using multi-sheet inversion
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The objective of this paper is to construct a stable inversion scheme to determine the conductance of a buried
inhomogeneous layer masked by sedimentary cover. We employ a model which incorporates a surface sheet of
conductance S1(x, y) and a buried sheet of conductance S2(x, y). The buried sheet is embedded at a depth d in a
layered earth of conductivity σ(z). The σ(z), d and S1(x, y) are assumed to be known. We determine S2(x, y) by
inverting the monochromatic horizontal electromagnetic (EM) field measured at the earth’s surface. To do this, we
use Price’s matching conditions at the sheets and a stable continuation of EM field from the earth’s surface onto the
buried sheet. Employing synthetic data we demonstrate that the designed inversion scheme generates a reasonable
image of the buried structure. The scheme is fast, since it doesn’t require any forward modelling.

1. Introduction
One of the most challenging problems in geoelectrics is de-

veloping reliable and stable approaches of imaging inhomo-
geneous underground structures using electromagnetic (EM)
data. Obviously, a rigorous inversion within fully three-
dimensional (3-D) earth’s models (Eaton, 1989; Madden
and Mackie, 1989; Oldenburg and Ellis, 1991; Lee and Xie,
1993; Alumbaugh, 1993; Newman, 1995) is best suited for
adequate imaging. However the rigorous inversion stands in
need of repeated 3-D forward modelling and so it appears
to be very time-consuming procedure. To reduce computa-
tional loads quasi 3-D earth’s models are often considered.
One of the useful simplified 3-D models being exploited for
both modelling and inversion is a multi-sheet model (Singer
and Fainberg, 1985).

In this paper, using the multi-sheet model, we develop a
novel approach of imaging conductors underlain by a sed-
imentary layer of known conductance. The model is com-
posed of a surface and a buried conducting sheet embedded
in a layered earth (Fig. 1). Our approach is conceptually
close to that by Avdeev et al. (1986) however it exploits a
new, stable (but still adequate) approximation of a downward
continuation of the surface EM field.

To test our imaging approach, synthetic EM data are in-
verted. Two kinds of excitation were considered: a grounded
electric dipole and a plane wave. We show that a trustwor-
thy image of the buried sheet is recovered for both kinds of
excitation.

2. Inverse Problem Formulation
Let’s consider the multi-sheet model to be used (Fig. 1).

The model consists of a surface sheet of conductance S1(x, y)

and a buried sheet of conductance S2(x, y). The buried sheet
is embedded at a depth d in a layered earth of conductivity
σ(z). The surface sheet contacts with insulating half-space
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z ≤ 0 (air). The magnetic permeability is assumed to be μ0

everywhere. The model is excited by a monochromatic cur-
rent jext (x, y, z; ω) of frequency ω. The time harmonic de-
pendence is exp(−iωt), where i = √−1. We now consider
the inverse problem formulation. We suppose the following
things as known: horizontal electric Eτ (x, y, 0, ω) and mag-
netic Hτ (x, y, 0, ω) fields at the earth’s surface (z = 0); the
conductivity σ(z); the conductance S1(x, y); and the depth d.
The problem is then to find the conductance S2(x, y), which
is an inverse problem. A limitation of this inverse prob-
lem formulation is related to the fact that adequate spatial
coverage and simultaneous EM measurements are required.
Another limitation is that the frequency ω must be small
enough that approximation of inhomogeneous structures by
thin sheets is valid. It means that we assume that the electric
field Eτ varies only negligably across both surface and buried
sheets (Price, 1949).

3. Basic Concepts of the Inverse Problem Solution
3.1 Determination of buried sheet conductance

In this subsection we assume for the moment that the elec-
tric Eτ (x, y, d, ω) and magnetic Hτ (x, y, d − 0, ω) fields at
the roof of the buried sheet (z = d − 0) are known. Then
S2(x, y) can be found as follows (Avdeev et al., 1986, 1994).
Given Eτ (x, y, d) and σ(z), we determine Hτ (x, y, d + 0)

beneath the buried sheet (z = d + 0) as

n × Hτ (x, y, d + 0)

=
∫

Y (x − x ′, y − y′; σ(z)) Eτ (x ′, y′, d) dx ′dy′. (1)

Here n = −ez is the upward unit vector; the sign ‘×’ denotes
the vector product; and, the 2×2 dyadic tensor Y (x, y; σ(z))
has a form (Avdeev et al., 1989)

Y=−(n × ∇τ ) ⊗ (n × ∇τ ) �0

[
Y t (k, d)

k

]

−∇τ ⊗ ∇τ �0

[
Y p(k, d)

k

]
, (2)
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Fig. 1. An example of a multi-sheet model composed of the surface and
buried sheets embedded in layered earth.

where spectral functions Y t and Y p are respectively induc-
tion and galvanic admittances of the layered earth beneath
the buried sheet; the sign ‘⊗’ stands for the tensor product

of vectors, a ⊗ b =
(

ax bx ax by

aybx ayby

)
; the sign ‘∇τ ’ denotes

horizontal gradient, ∇τ = (∂x , ∂y); and where the notation
�0 denotes the Hankel transform

�0[ f ](r) = 1

2π

∫ ∞

0
f (k)J0(kr)dk. (3)

Here J0 is the Bessel function of the first kind and of order

zero; r =
√

x2 + y2; k =
√

k2
x + k2

y ; and kx , ky are the

spatial wavenumbers.
With Hτ (x, y, d + 0) determined and Hτ (x, y, d − 0),

Eτ (x, y, d) assumed to be known, one can get S2(x, y) from
Price’s matching condition (Price, 1949)

n × Hτ (x, y, d − 0) − n × Hτ (x, y, d + 0)

= S2(x, y) Eτ (x, y, d). (4)

Thus, if we know the Eτ and Hτ at the roof of the buried
sheet, z = d −0, we readily obtain the conductance S2(x, y).
However the fields are actually assumed known at the surface,
z = 0, rather than at z = d −0. So the problem is to continue
the fields from the surface down to the roof of the buried sheet.
3.2 Stable approximation of the downward continued

EM field
Our solution of this problem is as follows. The Eτ (x, y,

+0)beneath the surface sheet be identical to Eτ (x, y, 0) at the
surface (z = 0). At the earth’s surface the Price’s matching
condition can be rewritten as

n × Hτ (x, y, +0)=n × Hτ (x, y, 0)

−S1(x, y) Eτ (x, y, 0). (5)

With a knowledge of S1(x, y), this equality gives the mag-
netic field, Hτ (x, y, +0), beneath the surface sheet.

Let’s next suppose for the moment that σ(z) = σ0 =
Const, when 0 < z < d, i.e., the layered earth sandwiched
between surface and buried sheets consists of only one layer
of conductivity σ0. Following the Appendix (see transforms
(A.13) and (A.14)), the downward continued electric field is

Eτ (x, y, d)

=
∫

Q(1)(x − x ′, y − y′) Ěτ (x ′, y′, d) dx ′dy′, (6)

where

Ěτ (x, y, d)=Eτ (x, y, 0)

+
∫ (

iωμ0 Q(2) + 1

σ0
Q(3)

)
(x − x ′, y − y′)

·Hτ (x ′, y′, +0) dx ′dy′. (7)

Formula (A.15) for kernel Q(1) reflects a dramatic numerical
instability of transform (6), since the kernel involves the fac-
tor cosh(æd) which exponentially increases when k tends to
infinity. However sometimes it is very plausible to assume
that

æd � 1. (8)

If this assumption is valid then cosh(æd) ≈ 1, and so, follow-
ing formula (A.15), Q(1)(x − x ′, y − y′) ≈ δ(x − x ′, y − y′),
where δ is Dirac’s delta-function. In this case transform
(6) degenerates into the identity Eτ = Ěτ and thus one can
choose field Ěτ (x, y, d), determined by transform (7), as
the desired stable approximation of the downward continued
electric field. In a similar way transform (A.18) defines the
stable approximation of the downward continued magnetic
field

Ȟτ (x, y, d − 0)

= Hτ (x, y, +0)

+
∫ (

σ0 Q(2) + 1

iωμ0
Q(3)

)
(x − x ′, y − y′)

·Eτ (x ′, y′, 0) dx ′dy′. (9)

It should be noted that in practice the assumption (8) may be
considered as valid when

d � L , d � C. (10)

Here C =
√

2
ωμ0σ0

is a skin depth, and L is the smallest

horizontal size of the surface and buried inhomogeneities.
Now, in the general case, when the earth between surface

and buried sheets consists of a stack of more than one homo-
geneous layer, transforms (7) and (9) are to be recursively
applied for each layer of the stack.

4. Imaging of a Buried Sheet Conductance
Summing up, the overall inversion scheme involves the

following three steps.
Step 1. By Prices’ condition (5), we derive the horizontal

magnetic field beneath the surface sheet, z = +0.
Step 2. By transforms (7) and (9), we continue the hori-

zontal electric and magnetic fields to the roof of the buried
sheet, z = d − 0.
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Fig. 2. The buried sheet conductance (left panel) of the multi-sheet model (right panels) used for imaging.

Step 3. By transform (1), we derive the horizontal mag-
netic field beneath the buried sheet, z = d + 0, and, at last,
determine S2 of equation (4) as

S2(x, y)= 1∣∣∣Eτ (x, y, d)

∣∣∣2

·
(

n × Hτ (x, y, d − 0) − n × Hτ (x, y, d + 0)
)

· E∗
τ (x, y, d). (11)

Here superscript ‘∗’ means complex conjugation. We take
the in-phase part of the right side of equality (11) as a desired
S2(x, y), and use its out-of-phase part as a measure of consis-
tency of our multi-sheet imaging. To perform convolutions
over the (x, y)-plane in (1), (7) and (9) we use the numerical
scheme described in (Avdeev et al., 1997).

To perform Hankel transforms of type (3) we use the FHT
code of Christensen (1990) which is based on the technique
of Johansen and Sorensen (1979).

5. Numerical Examples
We constructed a multi-sheet model to test our inversion

scheme. It consists of a three-layered earth with surface and
buried sheets (Fig. 2). The surface sheet contains a 16 ×
16 km2 anomaly of conductance 200 S. Everywhere out of
the anomaly the surface sheet conductance is 100 S. The
buried sheet is placed at depth of 1 km and also contains a
16 × 16 km2 anomaly of conductance 500 S. This anomaly
is 15 km shifted along y-axis with respect to the surface
anomaly. Everywhere out of the anomaly, the buried sheet
conductance is 250 S. The geoelectric parameters of the

three-layered earth are as follows: the top layer conductivity
σ0 = 10−3 S/m, and thickness d = 1 km, the middle layer
with σ1 = 10−3 S/m and d1 = 20 km, and the lower half
space with σ2 = 10−1 S/m.

We adopted a numerical mesh of Nx × Ny = 64 × 96
cells for each sheet, with a cell size of 1 × 1 km2 and with
the centre (x = 0, y = 0) coinciding with the centre of the
surface anomaly. Two kinds of excitations of 10 s period
were considered: a y-polarized plane wave and a y-directed
electric dipole grounded at the centre of the surface anomaly.
We calculated the horizontal electric and magnetic fields at
the earth’s surface using a 3-D integral equation solution
(Avdeev et al., 1997). Then we applied our inversion scheme
to those data. Our numerical experiments discovered that for
the case of dipole excitation it is better to use the scattered
EM field rather than the total field. Here scattered field means
a difference between total and background fields, where the
background one is a field for the same model but without
a buried sheet. Clearly, the background field can be readily
calculated, since σ(z) and S1(x, y) are assumed to be known.
Figures 3 and 4 demonstrate the images obtained for the plane
wave and for the dipole excitations. It is seen that for both
excitations the in-phase parts of the images quite correctly
reproduce the location, shape and conductance of the buried
anomaly. Maximal in-phase conductances, 502 S for plane
wave excitation and 505 S for dipole excitation, are very
close to the true conductance, 500 S, of the buried anomaly.
Out-of-phase conductances are small, not exceeding a few
percent of the in-phase conductance. This result indicates
the reliability of the multi-sheet inversion.
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Fig. 3. The 0.1 Hz MT image of the model in Fig. 1. The left panel shows the in-phase part of the buried sheet conductance S2, while the right panel
presents the out-of-phase part.

Fig. 4. The 0.1 Hz HED image of the model in Fig. 1. The left panel shows the in-phase part of the buried sheet conductance S2, while the right panel
presents the out-of-phase part.
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6. Conclusion
In this paper we have proposed a stable and fast inver-

sion scheme of imaging underground structures. As an ex-
ample, this scheme takes 12 s on a Pentium-100 MHz per
frequency and per excitation to invert 64 × 96 array of EM
data. The reason for its speed is that the inversion doesn’t
need forward modelling. However this merit appears to be
counterbalanced by the fact that a spatial coverage and simul-
taneity of EM measurements are required. We believe that
our inversion scheme may have various useful geophysical
applications, such as the detection of crustal anomalies, EM
monitoring of seismotectonic processes and of hydrocarbon
reservoir changes, and mapping of pollution zones.
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Appendix. EM Field Downward Continuation
Across a Homogeneous Layer

In this Appendix we derive an explicit form for the horizon-
tal EM field continuation from the earth’s surface, z = +0,
down to a depth, z = d − 0. Maxwell’s equations within the
homogeneous layer (0 < z < d) of conductivity σ0 read

∇ × H = σ0E,

∇ × E = iωμ0H.
(A.1)

Let’s perform the Fourier transform

Eτ (kx , ky, z) =
∫

Eτ (x, y, z)e−i xkx −iyky dxdy, (A.2)

of horizontal electric field Eτ into (kx , ky)-domain. In this
domain we decompose Eτ (k, z) as

Eτ = −�t n × ik
k

− �p ik
k

, (A.3)

via scalar potentials �t
(k, z) and �p

(k, z). Here k =
(kx , ky), and k = |k|. Similarly we decompose horizontal
magnetic field Hτ (k, z) as

n × Hτ = −�t n × ik
k

− �p ik
k

. (A.4)

Substituting decompositions (A.3) and (A.4) into Maxwell’s
equations (A.1) transformed beforehand into (kx , ky)-

domain, and gathering terms involving vectors n×ik
k and ik

k
we derive the system{

∂z�
t = iωμ0�t

∂z�
t = æ2

iωμ0
�t

,
(A.5)

with respect to �t , �t , and the system{
∂z�

p = −æ2

σ0
�p

∂z�
p = −σ0�p

,
(A.6)

with respect to �p, �p. Here æ2 = k2 − iωμ0σ0. System
(A.5) is equivalent to the second order differential equation

∂2
z �t = æ2�t

. (A.7)

The solution of this equation at depth z = d − 0 can be
written via the solution at depth z = +0 as

�t
(k, d − 0)=cosh(æd) �t

(k, +0)

+ 1

æ
sinh(æd) ∂z�

t
(k, +0). (A.8)

From (A.5) we have ∂z�
t
(k, +0) = iωμ0�t

(k, +0), and
thus equation (A.8) reads

�t
(k, d − 0)

= cosh(æd)

(
�t

(k, +0) + iωμ0

æ
tanh(æd) �t

(k, +0)

)
.

(A.9)

In a similar way we derive

�p
(k, d − 0)

= cosh(æd)

(
�p

(k, +0) − æ

σ0
tanh(æd) �p

(k, +0)

)
.

(A.10)

From decompositions (A.3) and (A.4) it follows that

�t = n×ik
k · Eτ , �t = n×ik

k · n × Hτ ,

�p = ik
k · Eτ , �p = ik

k · n × Hτ .
(A.11)

Substitutions of (A.11) into (A.9), (A.10) and consequent
substitutions of the results into (A.3) give

Eτ (k, d − 0) = cosh(æd)

·
(

Eτ (k, +0)

− iωμ0
tanh(æd)

æ
(
n × ik

k
) ⊗ ik

k
Hτ (k, +0)

− 1

σ0
æ tanh(æd)

ik
k

⊗ (
n × ik

k
) Hτ (k, +0)

)
. (A.12)

Ultimately, transforming (A.12) into the (x, y)-domain, we
obtain the downward continued electric field

Eτ (x, y, d − 0)=
∫

Q(1)(x − x ′, y − y′)

·Ěτ (x ′, y′, d − 0) dx ′dy′, (A.13)

where

Ěτ (x, y, d − 0)

= Eτ (x, y, +0)

+
∫ (

iωμ0 Q(2) + 1

σ0
Q(3)

)
(x − x ′, y − y′)

·Hτ (x ′, y′, +0) dx ′dy′, (A.14)

and where
Q(1) = �0[k cosh(æd)], (A.15)
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Q(2) = −(n × ∇τ ) ⊗ ∇τ �0

[
tanh(æd)

kæ

]
,

Q(3) = −∇τ ⊗ (n × ∇τ ) �0

[
æ tanh(æd)

k

]
.

(A.16)

Definitions of tensor product ⊗ and of Hankel transform �0

are presented in Subsection 3.1.
In a similar way we derive the downward continued mag-

netic field

Hτ (x, y, d − 0)=
∫

Q(1)(x − x ′, y − y′)

·Ȟτ (x ′, y′, d − 0) dx ′dy′, (A.17)

where

Ȟτ (x, y, d − 0)

= Hτ (x, y, +0)

+
∫ (

σ0 Q(2) + 1

iωμ0
Q(3)

)
(x − x ′, y − y′)

·Eτ (x ′, y′, 0) dx ′dy′. (A.18)
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