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Shear instabilities in the dust layer of the solar nebula III. Effects of the Coriolis
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In previous our papers (Sekiya and Ishitsu, 2000 and 2001), hydrodynamic stability of the dust layer in the solar
nebula is investigated. However, these papers neglected the rotational effects, that is, the Coriolis and tidal forces.
These forces may stabilize the shear instability of the dust layer. In this paper, the linear stability analysis with the
Coriolis and without tidal force is done in order to elucidate the effects of the Coriolis force. Our results indicate
that the growth rates of the instabilities are similar between the cases with and without the Coriolis force. However,
we found a new type of instability which resembles the Lindblad resonance. This instability only emerges if the
growth rate is similar to or smaller than the Keplerian angular frequency. The energy source of the instability is
different from that of the shear instability.

1. Introduction
In the past, planetesimals were considered to be formed by

the gravitational instability in the dust layer (Safronov, 1969;
Goldreich and Ward, 1973; Coradini et al., 1981; Sekiya,
1983). However, the occurrence of gravitational instability
is suspect because of the following reason. Imagine a fluid
element in the solar nebula consists of gas and dust aggre-
gates. Assume the aggregates are small and/or fluffy enough
to move approximately with the same velocity with the gas
due to the drag force. Then the revolution velocity of the
fluid element is determined by the balance of the gravity of
the central star, the centrifugal force, and the pressure gradi-
ent. The former two act on both the gas and dust aggregates.
On the other hand, the latter acts only on the gas. Thus,
the revolution velocity depends on the dust to gas mass ratio
and, hence, vertical shear arises in the dust layer as dust ag-
gregates settle toward the midplane. Indeed, the balance of
these forces are written

−G M∗
r2

+ (v + vK )2

r
− 1

ρ

∂ Pg

∂r
= 0, (1)

where G is the gravitational constant, M∗ is the mass of
the central star, vK = (G M∗/r)1/2 is the circular Kepler
velocity, v is the gas velocity relative to vK , r is the distance
from the rotation axis, Pg is the gas pressure, and ρ is the
total fluid density defined by

ρ = ρg + ρd , (2)

where ρg is the gas density and ρd is the dust density. Solving
Eq. (1) by neglecting v2, we have

v = −ρg

ρ
ηvK , (3)
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where η is a non-dimensional parameter which represents the
effect of the radial pressure gradient:

η = − r

2ρgv
2
K

∂ Pg

∂r
, (4)

(Adachi et al., 1976; Nakagawa et al., 1986; Sekiya, 1998).
The ratio ρg/ρ depends on the vertical level owing to dust
settling; hence, the revolution velocity v has vertical shear.
This vertical shear may cause the shear instability, which
may develop turbulence in the dust layer. The turbulence
stirs up the dust from the midplane. Thus, the density at
the midplane cannot exceed the critical density of the grav-
itational instability (Weidenschilling, 1980). Subsequently,
many authors have investigated this issue (Weidenschilling,
1984; Cuzzi et al., 1993; Weidenschilling and Cuzzi, 1993;
Champney et al., 1995; Sekiya, 1998; Dobrovolskis et al.,
1999). They also concluded that the turbulence prevents the
dust from settling and that the formation model of planetesi-
mals through the gravitational fragmentation of the dust layer
is denied. Planetesimals are considered to have been formed
by continuous sticking of dust aggregates.

However, the shear instability in the dust layer is not un-
derstood enough. In order to elucidate the nature of the
shear-induced instability, we have performed linear calcu-
lations of the perturbation equations of the fluid mechanics
in previous papers (Sekiya and Ishitsu, 2000 and 2001, here-
after referred to as Papers I and II, respectively) under the
following assumptions: (1) The self-gravity is neglected. (2)
A mixture of gas and dust is treated as one fluid, which is a
good approximation in the case where dust aggregate sizes
are small (�1 cm). (3) The solar tidal force, which is the
sum of the radial component of the solar gravity and the cen-
trifugal force, is neglected; thus the radial shear ∂v/∂r is not
incorporated in the unperturbed state, and only z-component
of the solar gravity is taken into account, where z is the co-
ordinate perpendicular to the midplane of the solar nebula
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(z = 0 on the midplane). (4) The effects of the Coriolis
force are neglected. (5) The effects of the radial density and
pressure gradients of the unperturbed state are only incorpo-
rated in the unperturbed rotation velocity distribution v0(z).
(6) Local Cartesian coordinates (x , y, z) are used and we ne-
glect the curvature of a circle with constant values of r and
z.

In Paper I, we further assumed for simplicity that the un-
perturbed densities had constant Richardson number density
distributions. The results showed: (A) The flow is stable for
the Richardson number J � 0.22. (B) The growth time of
the shear instability is much longer than the Kepler period, as
long as the Richardson number J � 0.1. On the other hand,
the Coriolis and the tidal forces would affect the flow in time
scale on the order of the Kepler period. Thus the neglect of
these forces is not good for the constant Richardson number
density distribution with J � 0.1.

In Paper II, the linear stability analysis like Paper I was
performed, but the hybrid density distribution was used:

ρd0(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρd0(0) for |z| ≤ zd − 2hd ,

ρd0(0){1 − sin[π(z − zd + hd)/2hd ]}/2

for zd − 2hd < |z| < zd ,

0 for zd ≤ |z|,

(5)

where ρd0(0) is the dust density on the midplane, zd is the
half-thickness of the dust layer, and hd is the half-thickness
of the transition zones, where the dust density varies from
ρd0(0) to 0 sinusoidally. Here the half-thickness of the dust
layer is given by

zd = 
d

2ρd0(0)
+ hd , (6)

where we used Hayashi’s solar nebula model (Hayashi,
1981; Hayashi et al., 1985) at 1 AU as the dust surface den-
sity. The dust particles which are distributed uniformly at
first stick together to form dust aggregates. In a laminar disk,
the settling velocity vdz of dust aggregate is given by

vdz = −τ f �
2
K z, (7)

which is τ f is the frictional time of the dust aggregate. Thus,
dust aggregates grow faster in regions with larger |z|, since
the principal relative velocity of dust aggregates is induced
by difference of settling velocities of dust aggregates with
different frictional times (Weidenschilling, 1980; Nakagawa
et al., 1981). As dust aggregates grow, their settling veloci-
ties increase if the dust aggregates are compact. Thus, dust
aggregates accumulate in a certain region with an interme-
diate value of |z| (see 1000 yrs and 1300 yrs density distri-
bution in figure 2 of Nakagawa et al. (1981)). This state is
unstable for the Rayleigh-Taylor instability, and the dust den-
sity distribution is considered to be adjusted as to be constant
in the dust layer (Watanabe and Yamada, 2000). According
to results, if ρd(0)/ρg ∼ 1, the growth rate of the instabil-
ity is on the order of the Keplerian angular frequency. On
the other hand, if ρd(0)/ρg 
 1, the growth rate is much
larger than the Keplerian angular frequency. Thus, we have
expected that the Coriolis and tidal forces might not have an
important effect as long as ρd(0)/ρg 
 1.

In this paper, we remove assumption (4) above, that is,
we take the effect of the Coriolis force into account. The
hybrid dust density distributions of Paper II is adopted as the
unperturbed dust density distributions. In Section 2, the basic
equations for the linear analysis are derived. In Section 3,
calculated results are given. In Section 4, the energy source
of the instability is discussed. In Section 5, conclusions are
written.

2. Formulation
We assume that dust aggregates are small and/or fluffy

enough to couple well with the gas. Further, the half thick-
ness of the dust layer is much smaller than the scale height
of the disk gas and the gas density is nearly constant. Thus,
the dust-gas mixture is treated as incompressible one-fluid.
Hydrodynamic equations for dust-gas mixture in the local
Cartesian co-ordinate system rotating with the local Kepler
angular velocity �K are given omitting the tidal force, by

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (8)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0, (9)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ

∂ P

∂x
+ 2C�K v, (10)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ

∂ P

∂y
− 2C�K u, (11)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ

∂ P

∂z
− �2

K z, (12)

where x and y represent the radial and azimuthal co-
ordinates, and (u, v, w) are the (x , y, z) components of the
velocity, and P is the pressure. Parameter C in Eqs. (10) and
(11) is equal to unity in the real Keplerian disk. We calcu-
lated cases where 0 ≤ C ≤ 1 in order to elucidate the effects
of the Coriolis force.

In order to carry out linear calculation, we assume that the
unperturbed state is steady and uniform in x and y directions:

∂

∂t
= ∂

∂x
= ∂

∂y
= 0. (13)

We also assume the unperturbed velocity has only azimuthal
component (y-direction):

u0 = w0 = 0. (14)

From Eqs. (10) and (12), we have

1

ρ0

∂ P0

∂x
= 2C�K v0, (15)

and

1

ρ0

∂ P0

∂z
= −�2

K z, (16)

respectively, where unperturbed density is defined by

ρ0(z) = ρg + ρd0(z). (17)
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The unperturbed azimuthal velocity is calculated from a
given dust density distribution ρd0 and a given value of η

by using Eq. (3):

v0 = −ρg

ρ0
ηvK . (18)

The radial pressure gradient ∂ P0/∂x in our model is then
given by Eq. (15). Note that the value of ∂ P0/∂x is not equal
to the value of ∂ Pg/∂r in Eqs. (1) and (4) for C �= 1. We
solve the case C < 1 in order to elucidate the effect of the
Coriolis force. Only the case with C = 1 is realistic, and
then ∂ P0/∂x = ∂ Pg/∂r .

Linearizing Eqs. (8)–(12) and using Eqs. (15) and (16), we
have

∂u1

∂x
+ ∂v1

∂y
+ ∂w1

∂z
= 0, (19)

∂ρ1

∂t
+ v0

∂ρ1

∂y
+ dρ0

dz
w1 = 0, (20)

∂u1

∂t
+ v0

∂u1

∂y
= − 1

ρ0

∂ P1

∂x
+ 2C�K

v0

ρ0
ρ1 + 2C�K v1,

(21)

∂v1

∂t
+ v0

∂v1

∂y
+ dv0

dz
w1 = − 1

ρ0

∂ P1

∂y
− 2C�K u1, (22)

∂w1

∂t
+ v0

∂w1

∂y
= − 1

ρ0

∂ P1

∂z
− �2

K z

ρ0
ρ1. (23)

We assume η, �K , vK , ρg and ∂ P0/∂x have constant values
in the regime of the local approximation.

Here linear stability analysis is carried out in terms of
same method as Paper I, II. We assume that perturbed quan-
tities have the form as

f1(x, y, z, t) = f̂1(z) exp[i(kx x + ky y − ωt)]. (24)

If ωI (the imaginary part of ω) is positive, the mode is unsta-
ble, and the growth rate is given by ωI . Equations (19)–(23)
is rewritten (We omit ˆ in the following equations)

ikx u1 + ikyv1 + dw1

dz
= 0, (25)

−iω̄ρ1 + dρ0

dz
w1 = 0, (26)

−iω̄u1 = −ikx
1

ρ0
P1 + 2C�K

v0

ρ0
ρ1 + 2C�K v1, (27)

−iω̄v1 = −iky
1

ρ0
P1 − dv0

dz
w1 − 2C�K u1, (28)

−iω̄w1 = − 1

ρ0

d P1

dz
− �2

K z

ρ0
ρ1, (29)

where

ω̄ = ω − kyv0(z). (30)

From Eq. (26), we have

ρ1 = 1

iω̄

dρ0

dz
w1. (31)

From Eqs. (27), (28), and (31), we have

u1 =
[
(kx ω̄ + 2iCky�K )

P1

ρ0

+2C�K

(
v0

ρ0

dρ0

dz
+ dv0

dz

)
w1

] (
ω̄2 − 4C2�2

K

)−1
,

(32)

and

v1 =
[
(kyω̄ − 2iCkx�K )

P1

ρ0

+
(

−iω̄
dv0

dz
+ 4C2�2

K

iω̄

v0

ρ0

dρ0

dz

)
w1

]

· (
ω̄2 − 4C2�2

K

)−1
. (33)

Substituting Eqs. (32) and (33) into Eq. (25), we have

P1 = − iρ0

k2ω̄

{
(ω̄2 − 4C2�2

K )
dw1

dz

+
[

2iCkx�K

(
v0

ρ0

dρ0

dz
+ dv0

dz

)

+ky

(
ω̄

dv0

dz
+ 4C2�2

K

ω̄

v0

ρ0

dρ0

dz

)]
w1

}
. (34)

Substituting Eqs. (31) and (34) into (29), we get

d2w1

dz2
+ F

dw1

dz
+ Gw1 = 0, (35)

where

F = 1

ρ0

dρ0

dz
+ ky

ω̄

dv0

dz

+ 1

ω̄2 − 4C2�2
K

[
2iCkx�K

(
v0

ρ0

dρ0

dz
+ dv0

dz

)

−ky

(
ω̄

dv0

dz
− 4C2�2

K v0

ω̄ρ0

dρ0

dz

)]
, (36)

G = 1

ω̄2 − 4C2�2
K

{−k2ω̄2

+ 2iCkx�K

(
1

ρ0

d2ρ0

dz2
v0 + 2

ρ0

dρ0

dz

dv0

dz
+ d2v0

dz2

)

+ ky

[
ω̄

(
1

ρ0

dρ0

dz

dv0

dz
+ d2v0

dz2

)
− ky

(
dv0

dz

)2

+4C2�2
K

ω̄ρ0

(
v0

d2ρ0

dz2
+ ω

ω̄

dv0

dz

dρ0

dz

)]

+ ky

ω̄

dv0

dz

[
2iCkx�K

(
v0

ρ0

dρ0

dz
+ dv0

dz

)

+ky

(
ω̄

dv0

dz
+ 4C2�2

K

ω̄

v0

ρ0

dρ0

dz

)]

−k2 1

ρ0

dρ0

dz
�2

K z

}
, (37)

where
k2 = k2

x + k2
y .
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Only odd solutions for w1 are considered like Papers I
and II since even ones are always stable according to our
calculations. Thus, the boundary conditions are

w1 = 0 at z = 0. (38)

Outside the dust layer, from Eqs. (35) to (37), we have

d2w1

dz2
− K 2w1 = 0, (39)

where

K 2 = k2ω̄2

ω̄2 − 4C2�2
K

. (40)

We select a root K whose real part is positive. Then the outer
boundary condition, i.e., w1 → 0 for z → ∞, is satisfied by
the solution,

w1 ∝ exp(−K z). (41)

From Eq. (41), we have

dw1

dz
+ Kw1 = 0 for z > zd . (42)

From Eqs. (34) and (42), we get

P1 = − iρg(ω̄
2 − 4C�2

K )

k2ω̄

dw1

dz
= iρg(ω̄

2 − 4C�2
K )K

k2ω̄
w1.

(43)

At the boundary between the dust and the gas layers, P1 and
w1 must be continuous. Thus Eqs. (34) and (43) read

dw1

dz
+

{
K + 1

ω̄2 − 4C2�2
K

[
2iCkx�K

(
v0

ρ0

dρ0

dz
+ dv0

dz

)

+ky

(
ω̄

dv0

dz
+ 4C2�2

k

ω̄

v0

ρ0

dρ0

dz

)]}
w1 = 0 at z = zd .

(44)

3. Results
The effects of the Coriolis force are examined by varying

the value of parameter C from 0 to 1. The growth rate of
the instability is on the order of �K when the system does
not rotate, i.e. C = 0 (see Paper II). We expected the effect
of the Coriolis force was significant when the growth rate
of the instability was small. Figure 1 shows the growth
rate of the instability with the most unstable wave number
(hereafter called “the peak growth rate”) as a function of C
with ρd0(0)/ρg = 1, kx = 0 and hd/zd = 0.5. As the value
of C approaches 1, the peak growth rate decreases some
extent but is rather insensitive to the parameter C , contrary
to our expectation. Figure 2 displays the growth rate as a
function of the azimuthal wave number for C = 1 and 0,
with kx = 0, ρd0(0)/ρg = 1 and hd/zd = 0.5. As seen
from Figs. 2, the dependency of the growth rate on wave
number is different for a different value of C . When C = 0,
the growth rate have a peak at log(k2

yη
2r2) = 1.72 and

kx = 0. As C increases, the peak wave number increases.
For C = 1 the slope of the curve in Fig. 2 changes abruptly

0 0.5 1
0

0.1
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0.3

0.5

1

1.5

2

C

ω Ι
 /Ω

K

hd/zd=0.5

ρd0(0) / ρg=1

log(k
y 2η

2r 2)

kx=0

Fig. 1. The growth rate ωI of the mode with the most unstable wave
number as a function of the Coriolis parameter C in the case where
ρd0(0)/ρg = 1 and hd/zd = 0.5 is shown by the solid curve. The most
unstable mode has the radial wave number kx = 0. The most unstable
azimuthal wave number ky squared which is normalized by η2r2 is shown
by the dotted curve.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

log(ky
2η2r2)

ω Ι
 /Ω

K

hd/zd=0.5

kx=0

ρd0(0) / ρg=1

C
=1C

=0

Fig. 2. The growth rate of instability ωI as function of the azimuthal wave
number squared for C = 1 (solid line) and C = 0 (dotted line), with
kx = 0, ρd0(0)/ρg = 1 and hd/zd = 0.5.

at log(k2
yη

2r2) = 1.8 and the eigenvalue with ωI > 0 does
not exist for log(k2

yη
2r2) > 2.2.

In the case of C = 0, ωI approaches zero gradually as
kx increases (see Fig. 3). On the other hand, in the case
of C = 1, the growth rate ωI has a finite positive value
for kx < kxc, and ωI = 0 for kx > kxc, where kxc is the
critical radial wave number, and the position of the peak at
fixed log(k2

yη
2r2) departs from kx = 0, as seen in Fig. 4. In

any rate, as the wave number kx increases, the instability is
stabilized. This is very important for the stability in the case
including the effect of the tidal force, which will be written
in our subsequent paper.
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Fig. 3. The growth rate ωI of the mode as a function of radial and azimuthal wave number kx and ky in the case where C = 0, ρd0(0)/ρg = 1 and
hd/zd = 0.5.
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Fig. 4. Same as Fig. 3, but for C = 1.

Dotted and solid curves in Fig. 5 show the peak growth
rates as functions of ρd0(0)/ρg for C = 0 and 1, respectively.
As dust settling proceeds, the difference in the growth rate by
C decreases. In the case where the growth rate is much larger
than �K , the Coriolis force has little effect on the instability,
as we have expected in Papers I and II.

It must be noted that neglecting the self-gravity of the fluid
is invalid when its density approaches the critical density of
the gravitational instability. The self-gravity would prevent
the shear instability since it makes the Richardson number J
increase. Here, we calculated the growth rates as functions of
the wave number ky at the critical density (ρd0(0)/ρg = 260)

and ρd0(0)/ρg = 100 as references (Fig. 6). The growth
rate is very large, and we expect that the tidal force, which
is neglected in this paper, would have little effect in these
cases.

Dotted and solid curves in Fig. 7 show the peak growth
rates as functions of hd/zd for C = 0 and 1, respectively.
When the transition zone of the dust layer hd is very thin, the
Coriolis force has little effect because the shear instability
itself is so strong.

It turns out that in the case of the Coriolis force alone,
the shear instability starts to grow before the dust density
reaches the critical value of the gravitational instability by
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ω Ι

 /Ω
K

hd /zd=0.5

ρd0(0) / ρg

C
 =
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C
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kx=0

Fig. 5. The growth rate ωI of the mode with the most unstable wave number
as functions of the ratio of dust to gas on the midplane for C = 1 (solid
curve) and C = 0 (dotted curve) in the case where hd/zd = 0.5.
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102
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log(ky
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Fig. 6. The growth rate of instability ωI as a function of the azimuthal
wave number squared for the critical density (ρd0(0)/ρg = 260, solid
curve) and ρd0(0)/ρg = 100 (dotted curve) in the case where C = 1 and
hd/zd = 0.5.

dust settling.

4. Discussion
The results in the previous section can be explained by

means of energy equations. Multiplying Eq. (27) by ρ0u∗
1/2

and taking the real part, we have

2ωI
1

4
ρ0|u1|2 = 1

2
kx�(P1u∗

1) + C�K v0�(ρ1u∗
1)

+ C�K ρ0�(v1u∗
1). (45)

This equation gives the radial part of the perturbed energy
budget. Three terms on right-hand side denote powers due to
perturbed pressure gradient, unperturbed pressure gradient
(see Eq. (15)) and the Coriolis force. Multiplying Eq. (28)
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ρd0(0) / ρg=1

C = 0
C
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Fig. 7. The growth rate of instability ωI as a function of hd/zd for
C = 1(solid curve) and C = 0 (dotted curve) in the case where
ρd0(0)/ρg = 1.

0 4 8 12
0

0.1

0.2

z/
ηr

hd/zd=0.5

kx=0

ρd0(0) / ρg=1
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UR

C=1

Fig. 8. The radial, azimuthal and vertical parts of the perturbed kinetic
energy density, in the case for C = 1 where log(k2

yη
2r2) = 1.99, with

kx = 0, ρd0(0)/ρg = 1 and hd/zd = 0.5. The horizontal line denoted by
CR shows the co-rotation sheet. The horizontal lines denoted by UR and
LR show the upper and lower resonances, respectively.

by ρ0v
∗
1/2 and taking the real part, we have

2ωI
1

4
ρ0|v1|2 = 1

2
ky�(P1v

∗
1) − 1

2
ρ0

dv0

dz
�(w1v

∗
1)

− C�K ρ0�(u1v
∗
1). (46)

This equation gives the azimuthal part of the perturbed en-
ergy budget. Three terms on right-hand side denote pow-
ers due to the perturbed pressure gradient, the unperturbed
shear dv0/dz and the Coriolis force. Multiplying Eq. (29)
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Fig. 9. Each term in the right hand side of the radial energy equation (Eq.
(45)), in the case for C = 1 where log(k2

yη
2r2) = 1.99, with kx = 0,

ρd0(0)/ρg = 1 and hd/zd = 0.5.
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Fig. 10. Same as Fig. 9, but for azimuthal energy equation (Eq. (46)).

by ρ0w
∗
1/2 and taking the real part, we have

2ωI
1

4
ρ0|w1|2 = −1

2
�(

d P1

dz
w∗

1) − 1

2
�2

K z�(ρ1w
∗
1). (47)

This equation gives the vertical part of the perturbed energy
budget. Two terms on the right-hand side denote powers due
to the perturbed pressure gradient and z-component of the
gravity of the central star.

As described in Paper I, when C = 0, the azimuthal part
of perturbed kinetic energy is supplied by the vertical shear
dv0/dz at the co-rotation sheet where ω̄ = 0 and transported
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Fig. 11. Same as Fig. 9, but for the vertical energy equation (Eq. (47)).

0 20 40 60 80
0

0.1

0.2

z/
ηr

hd/zd=0.5

kx=0

ρd0(0) / ρg=1

ρ0|u1|
2/4

ρ0|v1|
2/4

ρ0|w1|
2/4

log(ky
2η2r2)=1.71

CR

C=1

Fig. 12. Same as Fig. 8, but for log(k2
yη

2r2) = 1.71.

into the vertical part of perturbed kinetic energy through
pressure. The vertical part of perturbed kinetic energy is
lost by the work done by the z-component of the central star
gravity �2

K z. On the other hand, when C = 1, energy trans-
port between radial and azimuthal directions occurs through
the Coriolis force around new resonances (hereafter called
merely “resonance”). These are resonances of a wave with
the oscillation due to the Coriolis force. This resonance re-
sembles the Lindblad resonance, which is the resonance with
is the oscillation due to both the Coriolis and the tidal forces.
The positions of resonances are given by

�(ω̄2 − 4C2�2
K ) = 0. (48)
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Fig. 13. Same as Fig. 8, but for log(k2
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2r2) = 1.77 and kxηr = 14.5.
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Fig. 14. Same as Fig. 8, but for ρd0(0)/ρg = 10 with log(k2
yη

2r2) = 4.09
and kx = 0.

At the resonance, a fluid element rotates around a guiding
center. The latter orbit is circular (in our local analysis, a lin-
ear motion in y-direction). Figure 8 shows radial, azimuthal
and vertical parts of the kinetic energy distribution for C = 1
at wave number log(k2

yη
2r2) = 1.99, kx = 0 where growth

rate has the peak value for ρd0(0)/ρg = 1 and hd/zd = 0.5.
Radial and azimuthal parts of energy concentrate around the
upper resonance. The reason why the kinetic energy is small
at the lower resonance compared to the upper one is prob-
ably due to the boundary conditions. Figures 9 to 11 show
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Fig. 15. Each term in the right hand side of the radial energy equation (Eq.
(45)), in the case for C = 1 where log(k2

yη
2r2) = 4.09, with kx = 0,

ρd0(0)/ρg = 10 and hd/zd = 0.5.
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Fig. 16. Same as Fig. 15, but for the azimuthal energy equation (Eq. (46)).

each term in the right hand sides of Eqs. (45) to (47) with
the same parameters as Fig. 8, respectively. As for the x-
direction, C�K v0�(ρ1u∗

1) is the term to gain energy from the
unperturbed pressure gradient ∂ P0/∂x (see Eq. (15)). This
is interpreted as a kind of the baroclinic instability (see e.g.
Drazin and Reid, 1981). The term C�K ρ0�(v1u∗

1) loses en-
ergy by converting radial to azimuthal parts of the kinetic
energy through the Coriolis force. The term kx�(P1u∗

1)/2 is
always zero because kx = 0. As for the y-direction, the
−(dv0/dz)�(w1v

∗
1)/2 gets energy from the vertical shear

when C = 0 (see figure 21 of Paper I). In the case C = 1



N. ISHITSU AND M. SEKIYA: INSTABILITIES IN THE DUST LAYER III 925

0 2 4 6 8
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
z/

ηr

hd/zd=0.5

kx=0

ρd0(0) / ρg=10

- ℜ[(dP1/dz)w1*]/2

− Ωk
2zℜ[ρ1w1*] /2

log(ky
2η2r2)=4.09

UR
CR

LR

C=1

Fig. 17. Same as Fig. 15, but for the vertical energy equation (Eq. (47)).

with ρd0(0)/ρg = 1 and hd/zd = 0.5 (see Fig. 10), how-
ever, it rather loses energy except for the region around the
co-rotation. As for the vertical part, almost same result as
C = 0 holds except that the term −�[(d P1/dz)w∗

1]/2 gains
the energy at resonances in the case of C = 1 (see figure 21
of Paper I and Fig. 11). Thus, the Coriolis force plays role
to suppress the shear instability but causes the baroclinic in-
stability, so that the instability obtains more energy than we
expected.

The slope of the curve of the growth rate becomes gentle
for log(k2

yη
2r2) < 1.8 (see Fig. 2). This is because both up-

per and lower resonances disappear in the density transition
zone as seen in Fig. 8 with log(k2

yη
2r2) = 1.71 in contrast

to Fig. 11 with log(k2
yη

2r2) = 1.99. Thus, the efficiency
of transportation of energy from the radial part to azimuthal
part decreases.

However, an upper resonance is present in the dust den-
sity transition zone for kx larger than a finite value, even if
log(k2

yη
2r2) � 1.8 (Fig. 13). Thus, the growth rate has a

peak at a certain value kx for log(k2
yη

2r2) � 1.8 (see Fig. 4).
Figure 14 shows the radial, azimuthal and vertical parts of

the energy distribution for ρd0(0)/ρg = 10 and hd/zd = 0.5
with log(k2

yη
2r2) = 4.09, kx = 0 where the growth rate has

the peak value. In the case ρd0(0)/ρg = 10, the perturbed
kinetic energy gains more energy from the vertical shear than
unperturbed pressure gradient d P0/dz in contrast to the case
ρd0(0)/ρg = 1 (see Figs. 15 to 17). Indeed, we find the radial
part of the perturbed kinetic energy becomes small compared
to the case where ρd0(0)/ρg = 1 (see Figs. 8 and 14). Thus,
the larger ρd0(0)/ρg is, the smaller the rotational effect is, as
we have expected in Papers I and II.

5. Conclusions
In this paper, the linear stability analysis of the dust layer

in the solar nebula is done including the effects of the Corio-
lis forces, but neglecting the effects of the tidal force. The
following assumptions are adopted throughout this paper:

(1) The self-gravity of the dust layer is neglected, since all
the calculations are done with the dust densities below the
critical density of the gravitational instability. (2) One fluid
model is adopted, where the dust aggregates have the same
velocity with the gas due to strong coupling by the drag
force. This assumption is good for small compact dust ag-
gregates (e.g. �1 cm at the terrestrial orbit) or for fluffy dust
aggregates whose gas friction times are much smaller than
the Kepler period, and the oscillation period and growth time
of the instability. (3) The gas is incompressible, since the
dust layer is very thin compared to the vertical scale height
of the protoplanetary disk.

The calculated results with the Coriolis force but without
the tidal force show that the dust layer is not stabilized by the
Coriolis force only. The growth rates of the instabilities are
similar in the cases with and without the Coriolis force.

The energy source of the instability is investigated. In
contrast to the case without the Coriolis force where the
energy is supplied from around the co-rotation point, the
calculations with the Coriolis force show that the energy
is supplied from around the resonance of a wave and the
epicyclic motion with the oscillation due to the Coriolis force
for ρd(0)/ρg � 1, where the growth rate of the instability
ωI � �K . For ρd(0)/ρg � 10, on the other hand, the energy
source of the instability is the vertical shear as in the model
without the Coriolis force.

Our subsequent paper will show calculations with not only
the Coriolis force but also the tidal force of the central star.

Acknowledgments. We thank Drs. Yoshitsugu Nakagawa,
Stuart J. Weidenschilling, Sei-Ichiro Watanabe, Saburo Miyahara
and Shin-Ichi Takehiro for valuable comments. Numerical calcu-
lations were performed partly at the Astronomical Data Analysis
Center of the National Astronomical Observatory, Japan.

References
Adachi, I., C. Hayashi, and K. Nakazawa, The gas drag effect on the

elliptical motion of a solid body in the primordial solar nebula, Prog.
Theor. Phys., 56, 1756–1771, 1976.

Champney, J. M., A. R. Dobrovolskis, and J. N. Cuzzi, A numerical tur-
bulence model for multiphase flows in the protoplanetary nebula, Phys.
Fluids, 7, 1703–1711, 1995.

Coradini, A., C. Frederico, and G. Magni, Formation of planetesimals in an
evolving protoplanetary disk, Astron. Astrophys., 98, 173–185, 1981.

Cuzzi, J. N., A. R. Doborvolskis, and J. M. Champney, Particle-gas dynam-
ics in the midplane of a protoplanetary nebula, Icarus, 106, 102–134,
1993.

Dobrovolskis, A. R., J. S. Dacles-Mariani, and J. N. Cuzzi, Production and
damping of turbulence by particles in the solar nebula, J. Geophys. Res.,
104(E21), 30805–30815, 1999.

Drazin, P. G. and W. H. Reid, Hydrodynamic Stability, Cambridge Univ.
Press, 1981.

Goldreich, P. and W. R. Ward, The formation of planetesimals, Astrophys.
J., 183, 1051–1061, 1973.

Hayashi, C., Structure of the solar nebula, growth and decay of magnetic
fields and effects of magnetic and turbulent viscosities on the nebula,
Progr. Theor. Phys. Suppl., 70, 35–53, 1981.

Hayashi, C., K. Nakazawa, and Y. Nakagawa, Formation of the solar system,
in Protostars and Planets II, edited by B. C. Black and M. S. Matthews,
pp. 1100–1153, Univ. of Arizona Press, Tucson, 1985.

Nakagawa, Y., K. Nakazawa, and C. Hayashi, Growth and sedimentation of
dust grains in the primordial solar nebula, Icarus, 45, 517–528, 1981.

Nakagawa, Y., M. Sekiya, and C. Hayashi, Settling and growth of dust
particles in a laminar phase of a low-mass solar nebula. Icarus, 67, 375–
390, 1986.

Safronov, V. S., Evolution of the Protoplanetary Cloud and Formation of
the Earth and the Planets, Nauka, Moscow, [NASA Tech. Trans. F-677],



926 N. ISHITSU AND M. SEKIYA: INSTABILITIES IN THE DUST LAYER III

1969.
Sekiya, M., Gravitational instability in a dust-gas layer and formation of

planetesimals in the solar nebula, Progr. Theor. Phys., 69, 1116–1130,
1983.

Sekiya, M., Quasi-equilibrium density distributions of small dust aggrega-
tions in the solar nebula, Icarus, 133, 298–303, 1998.

Sekiya, M. and N. Ishitsu, Shear instabilities in the dust layer of the solar
nebula I. The linear analysis of a non-gravitating one-fluid model without
the Coriolis and the solar tidal forces, Earth Planets Space, 52, 517–526,
2000.

Sekiya, M. and N. Ishitsu, Shear instabilities in the dust layer of the solar
nebula II. Different unperturbed states, Earth Planets Space, 53, 761–
765, 2001.

Shu, F. H., The Physics of Astrophysics II. Gas Dynamics, University

Science Books, 1992.
Watanabe, S. and T. Yamada, Numerical simulations of dust-gas 2-phase

flows in the solar nebula, Eos, Trans. Am. Geoph. Union Suppl., 81,
No. 22, WP99, 2000.

Weidenschilling, S. J., Dust to planetesimals: settling and coagulation in the
solar nebula, Icarus, 44, 172–189, 1980.

Weidenschilling, S. J., Evolution of grains in a turbulent solar nebula,
Icarus, 60, 553–567, 1984.

Weidenschilling, S. J. and J. N. Cuzzi, Formation of planetesimals in the
solar nebula, in Protostars and Planets III, edited by E. H. Levy and J. I.
Lunine, pp. 1031–1060, Univ. of Arizona Press, Tucson, 1993.

N. Ishitsu (e-mail: ishitsu@qdeps.geo.kyushu-u.ac.jp) and M. Sekiya


	1. Introduction
	2. Formulation
	3. Results
	4. Discussion
	5. Conclusions
	Acknowledgments
	References



