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Analytic solution of GPS atmospheric sounding refraction angles
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The nonlinear system of equations for solving GPS atmospheric sounding’s bending angles are normally solved
using Newton’s method. Because of the nonlinear nature of the equations, Newton’s method applies linearization
and iterations. The method assumes the refraction angle to be small enough such that the dependency of the
doppler shift on these angles are linear. The bending angles are then solved iteratively. Since the approach assumes
the dependency of doppler shift on bending angles to be linear, which in actual sense is not, some small nonlinearity
error is incurred. The Newton’s iterative method is often used owing to the bottleneck of solving in exact form the
nonlinear system of equations for bending angles. By converting this system of trigonometric nonlinear equations
into algebraic, the present contribution proposes an analytic (algebraic) algorithm for solving the bending angles and
presents the geometry of the solution space. The algorithm is tested by computing bending angles of three CHAMP
occultation data and the results compared to those of iterative Newton’s approach. Occultation 133 of 3rd May
2002 is selected as it occurred during diurnal solar radiation maximum past afternoon. During this time, the effect
of ionospheric noise is high. Occultations number 3 of 14th May 2001 and number 6 of 2nd February 2002 were
selected since they occurred past mid-night, a time of low solar activity and thus less effect of ionospheric noise.
The results for occultation 133 of 3rd May 2002 indicate that the nonlinearity errors in bending angles increase with
decrease in height to a maximum absolute value of 0.00069◦ (0.1%) for the region 5–40 km during period of high
solar activity. Such nonlinearity errors are shown to impact significantly on the computed impact parameters to
which the bending angles are referred. During low solar activity period, the nonlinearity error was relatively small
for occultation number 3 of 14th May 2001 with maximum absolute value of 0.00001◦. The analytical algorithm
thus provide an independent method for controlling classical iterative procedures and could be used where very
accurate results are desired.
Key words: Nonlinearity, Sylvester resultant, reduced Groebner basis, Analytical algorithm.

1. Introduction
In GPS satellite occultation, the determination of refrac-

tion angle α from measured excess phase is the beginning
of the computational process to retrieve the atmospheric pro-
files of temperature, pressure, water vapour and geopoten-
tial heights. The trigonometric nonlinear system of equa-
tions for solving the bending refraction angles comprise two
equations formed by;

1) an equation relating the doppler shift at the LEO ex-
pressed as the difference in the projected velocities of
the two moving satellites on the ray path tangent on one
hand, and the doppler shift expressed as the sum of the
atmosphere free propagation term and a term due to at-
mosphere on the other hand

2) an equation that makes use of Snell’s law in a spheri-
cally layered medium (Steiner, 1998, p. 59).

Since the equations formed from (1) and (2) are nonlin-
ear, the standard practise has been to apply iterative methods
such as Newton’s (e.g. Gurbunov et al., 1996; Kursinski et
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al., 1997; Steiner, 1998; Wickert, 2002). In order to solve
the trigonometric nonlinear system of equations, Newton’s
approach assumes the refractive angles to be small enough
such that the relationship between the doppler shift and the
bending angles formed from (1) and (2) are linear. The lin-
earity assumption of the relationship between the doppler
shift and refraction angles introduce some small nonlinearity
errors. Vorob’ev and Krasil’nikova (1994) have pointed out
that the nonlinearity causes an error of 2% when the beam
perigee is close to the Earth’s ground and decrease with the
altitude of the perigee. The extent of these errors in the dry
part of the atmosphere, i.e. the upper troposphere and lower
stratosphere, particularly the height 5–30 km, whose bend-
ing angle data are directly used to compute the atmospheric
profiles or directly assimilated in Numerical Weather Predic-
tion Models (NWPM) (e.g. Healey et al., 2003) is however
not precisely stated. The effects of the nonlinearity error on
the impact parameters to which the refraction bending angles
are related is also not known.

In an attempt to circumvent the nonlinearity problem in
the bending angle equations, Vorob’ev and Krasil’nikova
(1994) expand the bending angle equations into series of V/c
(where V is the velocities of the artificial satellites and c the
velocity of light in vacuum) to correct for relativistic effect
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Fig. 1. Geometry of the GPS occultation.

and introduce the concept of perturbation. The angle be-
tween the relative position vectors of the two satellites and
the tangent velocity vector at GPS is expressed in quadratic
terms of the corresponding angle at LEO (also expanded to
the second order). The refraction angle is then obtained by
making use of infinitesimal refraction angle values that are
less than 10−2. Though the approach attempts to provide an
analytic (direct) solution to the nonlinear system of equations
for bending angles, it is still never the less “quasi-nonlinear”
and as such does not offer a complete exact solution to the
problem. Indeed that there existed no direct (exact) solu-
tion to nonlinear system of bending angle equations of atmo-
spheric sounding had already been pointed out by Wickert
(2002, p. 48).

Motivated by the observation of Wickert (ibid), the
present contribution extends on the work of Vorob’ev and
Krasil’nikova (1994) by providing an analytic (exact) so-
lution to nonlinear system of equations for bending angles
using algebraic approaches of Sylvester resultant (Awange
and Grafarend, 2002) and reduced Groebner basis (Awange,
2002; Cox et al., 1998). The developed algorithm is tested
by being applied to compute bending angles from the data of
CHAMP satellite occultation number 3 of 14th May 2001,
number 6 of 2nd February 2002 and number 133 of May
2002. The solutions are then compared to those obtained
from iterative procedure in Steiner (1998). Whereas the
present contribution focuses on the algorithm, works to be
reported in later contribution will consider the effect of non-
linearity error on the computed profiles of density, refrac-
tivity, pressure and temperature where a complete nonlinear
analysis will be presented. Indeed the analytic (algebraic)
algorithm has already been successfully applied in solving
nonlinear problems of geodetic nature (e.g. Awange and Gra-
farend 2003a; Awange et al., 2003 etc.), Robotics for kine-
matic modelling of robots, Engineering for offset solid mod-
elling, Computer Science for automated theorem proving,
and Computer Aided Design.

The present contribution is organized as follows; in Sec-
tion 2, the nonlinear system of trigonometric equations are
converted using Theorem (2-1) of Awange and Grafarend
(2003b) into algebraic (polynomial), a necessary condition
for applying the algebraic techniques of Sylvester resultant
or reduced Groebner basis. Section 3 provides a brief in-

troduction to the Sylvester resultant and Groebner basis al-
gebraic approaches which are used to develop an analytic
algorithm for solving the nonlinear system of bending an-
gle equations. It is illustrated in Section 4 how the algo-
rithm solve analytically (algebraically) the nonlinear system
of bending angle equations once they have been converted
into polynomials. In Section 5, the algorithm is tested by be-
ing applied to compute the GPS atmospheric sounding bend-
ing angles of three given CHAMP satellite occultation data.
The contribution is concluded in Section 6.

2. Conversion of Trigonometric Equations to Alge-
braic

The system of nonlinear trigonometric equations for solv-
ing the bending refraction angles comprise two equations
given as

vL cos(βL − φL) − vG cos(φG + βG)

= d Li

dt
+ vL cos(βL − ψL) − vG cos(ψG + βG)

rG sin φG = rL sin φL ,

(1)

where vL , vG in (1) are the projected LEO and GPS satel-
lite velocities in the occultation plane, rL , rG the radius of

tangent points at LEO and GPS respectively and
d Li

dt
, the

doppler shift. The angles in (1) are as shown in Fig. 1. For
more details, we refer to the works of Steiner (1998) and
Wickert (2002). Let us denote

x = sin φG, y = sin φL , a1 = vL cos βL , a2 = vL sin βL

a3 = −vG cos βG, a4 = vG sin βG, a5 = rG, a6 = −rL ,

(2)
where the signs of the velocities in (2) change depending
on the directions of the satellites. Using Theorem (2-1) of
Awange and Grafarend (2003b), the trigonometric addition
formulae and (2), (1) simplifies to

a1 cos φL + a2 y + a3 cos φG + a4x = a
a5x + a6 y = 0.

(3)

In (3) the right hand side of the first equation of (1) has been
substituted with a. In order to eliminate the trigonometric
terms cos φL and cos φG appearing in (3), they are taken to
the right hand side and the resulting expression squared as

(a2 y + a4x − a)2 = (−a1 cos φL − a3 cos φG)2. (4)
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Fig. 2. Algebraic curve for the solution of system of nonlinear GPS atmospheric sounding bending angle equations.

The squared trigonometric values cos2 φG and cos2 φL from
(4) are then replaced by variables x, y from (2) using the
trigonometric Pythagorean theorem of a unit circle cos2 φG +
sin2 φG = 1 and cos2 φL + sin2 φL = 1. The resulting ex-
pression has only trigonometric product 2a1a3 cos φL cos φG

on the right hand side. On squaring both sides of the re-
sulting expression and replacing the squared trigonometric
values cos2 φG and cos2 φL with x, y from (2) completes the
conversion of (1) into algebraic

d1x4 + d2x3 + d3x3 y + d4x2 + d5x2 y2 + d6x2 y
+d7x + d8xy3 + d9xy2 + d10xy + d00 = 0

a5x + a6 y = 0,

(5)

with d00 = d11 y4 + d12 y3 + d13 y2 + d14 y + d15. The coef-
ficients d1, . . . , d15 appearing in (5) are as given in the Ap-
pendix A. Equation (5) indicates the geometry of the solu-
tion space of the nonlinear bending angle equation (1) to be
the intersection of a polynomial curve of order four (quartic
polynomial) and a straight line. The algebraic curve of (5)
is as presented in Fig. 2 indicating that there exist four solu-
tions to the nonlinear problem. Equation (5) can be solved
analytically using the Sylvester resultant or Groebner basis
algebraic approaches briefly discussed in the next section.
The advantage is that both these algebraic approaches are
readily available in algebraic software such as Mathematica
and Maple.

3. Algebraic Computing Engine for the Analytic
Algorithm

3.1 Sylvester resultant approach
Given two univariate polynomials p, q ∈ k[x] of positive

degree as

p = k0xi + · · · + ki , k0 �= 0, i > 0
q = l0x j + · · · + l j , l0 �= 0, j > 0

}
(6)

the resultant of p and q, denoted Res(p, q), is the (i + j) ×
(i + j) determinant

Res (p, q) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k0 k1 k2 . . . ki 0 0 0 0 0
0 k0 k1 k2 . . . ki 0 0 0 0
0 0 k0 k1 k2 . . . ki 0 0 0
0 0 0 k0 k1 k2 . . . ki 0 0
0 0 0 0 k0 k1 k2 . . . ki 0
0 0 0 0 0 k0 k1 k2 . . . ki

l0 l1 l2 . . . l j 0 0 0 0 0
0 l0 l1 l2 . . . l j 0 0 0 0
0 0 l0 l1 l2 . . . l j 0 0 0
0 0 0 l0 l1 l2 . . . l j 0 0
0 0 0 0 l0 l1 l2 . . . l j 0
0 0 0 0 0 l0 l1 l2 . . . l j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)
In (7), the coefficients of the first polynomial p in (6)

occupies j rows while those of the second polynomial q
occupies i rows. The empty spaces are occupied by zeros
as shown above such that a square matrix is obtained. k[x]
indicates the polynomials to have the variable x and the
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coefficients to be in the field k such as R of real numbers or C

of complex numbers. This resultant is known as the Sylvester
resultant and has the following properties (Sturmfels, 1998;
Cox et al., 1998, § 3.5).

1) Res(p, q) is a polynomial in k0, . . . , ki , l0, . . . , l j with
integer coefficients

2) Res(p, q) = 0 if and only if p(x) and q(x) have a
common factor in Q[x]. Q[x] is a polynomial ring in
the variable x and coefficients in the ring Q. Q can take
on any ring such as R of real numbers or C of complex
numbers etc.

3) There exist a polynomial r, s ∈ Q[x] such that r p +
sq = Res(p, q)

Sylvester resultant can be used to solve a systems of polyno-
mial equations in two variables as shown in Example (3-1).

Example 3-1 Sylvester resultant solution of nonlinear sys-
tem of equations:
Consider the system of two nonlinear equations

p := xy − 1 = 0
q := x2 + y2 − 4 = 0.

}
(8)

In order to eliminate one variable e.g. x , the variable y is
hidden, i.e. the variable say y is considered as a constant
(polynomial of degree zero). Sylvester resultant is then
computed from (7) as

Res (p, q, y) = det

⎡
⎣ y −1 0

0 y −1
1 0 y2 − 4

⎤
⎦ = y4 − 4y2 + 1

(9)
which can readily be solved for the variable y and sub-
stituted back in any of the equations in (8) to get the
values of the other variable x . Alternatively, the proce-
dure is repeated to solve the variable x directly. Hiding
x and applying (7), one obtains

Res (p, q, y) = det

⎡
⎣ x −1 0

0 x −1
1 0 x2 − 4

⎤
⎦ = x4 − 4x2 + 1.

(10)
The roots of the univariate polynomials (9) and (10) are
then obtained using Matlab’s roots command as

{x, y} = roots([ 1 0 −4 0 1] )

= ±1.9319 or ± 0.5176.
(11)

In (11), the row vector [ 1 0 −4 0 1] are the coeffi-
cients of the quartic polynomials in (9) and (10). The
zeros are the coefficients of the variables {x3, y3} and
{x, y}. The solutions in (11) satisfy the polynomials
in (9), (10) and the original nonlinear system of equa-
tions (8). In equations (9) and (10), the determinant can
readily be obtained from MATLAB software by typing
det (A), where A is the matrix whose determinant is de-
sired.

3.2 Groebner basis approach
Groebner basis approach on the other hand reduces a sys-

tem of multivariate polynomials into a simpler system by

using Buchberger algorithm (Buchberger, 1970). Given a
system of polynomial equations which are to be solved ex-
plicitly for the unknowns, Groebner basis algorithm is ap-
plied to reduce this set of polynomials into another set (e.g.
from F(x, y, z) to G(x, y, z)) of polynomials with suit-
able properties that allow solution. If F(x, y, z) is a set of
nonlinear system of polynomial equations, the application
of Groebner basis—which eliminates variables in a manner
similar to Gauss elimination technique for linear system of
equations—reduces it to another set G(x, y, z) whose so-
lution also satisfy the initial system of nonlinear equations.
With lexicographic ordering x > y > z of monomials (e.g.
x comes before y which comes before z), one expression in
G(x, y, z) normally turns out to be a univariate polynomial
whose roots are easily solvable using algebraic software of
Matlab, Mathematica or Maple. Examples (3-2) and (3-3)
illustrate the application of Groebner basis.

Example 3-2 Groebner basis solution of nonlinear system
of equations:
Let us consider a simple example from Buchberger
(2001). Consider a set F(x, y) = { f1, f2} to have as
its elements

f1 = xy − 2y
f2 = 2y2 − x2 (12)

The Groebner basis algorithm reduces the set in (12)
into another set G of F as

G := {−2x2 + x3, −2y + xy, −x2 + 2y2} (13)

In Mathematica software, the Groebner basis could sim-
ply be computed by entering the command

Groebner Basis[{F}, {x, y}] (14)

The set G in (13) contains one univariate polynomial
x3 − 2x2 that can easily be solved e.g. using roots com-
mand in Matlab for solutions (x = 0, x = 0, x = 2)

and substituted in any of the remaining elements of the
set to solve for y. If one is interested only in the uni-
variate expression x3 − 2x2, one computes the reduced
Groebner basis in Example (3-3).

Example 3-3 Reduced Groebner basis computation:
In Example (3-2), assuming one desires only those uni-
variate expressions in x and y, one computes

Groebner Basis[{F}, {x, y}, {y}]
Groebner Basis[{F}, {x, y}, {x}]. (15)

The first expression of (15) will give only x3 − 2x2

whose roots are already given in Example (3-2). The
second expression will give y3 − 2y whose roots are
y = 0 or y = ±1.4142.

For detailed literature on Groebner basis, we refer to
standard text books on Groebner bases e.g. Becker and
Weispfenning (1998) and Cox et al. (1998).
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4. Analytic Solution of the Nonlinear Bending An-
gle Equations

4.1 Solution using Groebner basis
If the nonlinear system of algebraic (polynomial) equa-

tions (5) are denoted as

f1 := d1x4 + d2x3 + d3x3 y + d4x2 + d5x2 y2

+d6x2 y + d7x + d8xy3 + d9xy2 + d10xy + d00

f2 := a5x + a6 y,

(16)

using Mathematica software, one solves using reduced
Groebner basis (e.g. Example 3-3) for x and y by entering

Groebner Basis[{ f1, f2}, {x, y}, {y}]
Groebner Basis[{ f1, f2}, {x, y}, {x}], (17)

with the terms { f1, f2} representing the polynomials (16).
The second entry in (17) is {x, y} which informs Mathemat-
ica software of the variables to be solved. The variables are
arranged in lexicographic ordering where x comes before y.
The final entries in (17) are {y} and {x} which tells Math-
ematica software which variable to eliminate. The first ex-
pression of (17), i.e. Groebner Basis[{ f1, f2}, {x, y}, {y}],
will give a quartic polynomial in x (i.e. the first expression
of (18)), while the second will give a quartic polynomial in
y (i.e. the second expression of (18)) as

h4x4 + h3x3 + h2x2 + h1x + h0 = 0
g4 y4 + g3 y3 + g2 y2 + g1 y + g0 = 0,

(18)

with the coefficients as in Appendix B. Four solutions are
obtained from (18) for both x and y using roots command
in Matlab software as x = roots([ h4 h3 h2 h1 h0 ]) and
y = roots([ g4 g3 g2 g1 g0 ]). From (2) and the roots of
(18), the required solutions can now be obtained from

φG = sin−1 x,

φL = sin−1 y.
(19)

The desired bending angle (see e.g. Fig. 1) is then obtained
by first computing δG and δL as

δG = φG − ψG,

δL = φL − ψL
(20)

leading to

α = δG + δL ,

p = 1

2
(rL sin φL + rG sin φG)

(21)

where α(p) is the bending angle and p the impact parameter.
4.2 Solution using Sylvester resultant

The quartic solutions (18) can also be obtained using
Sylvester resultant technique as follows:

• Step 1: From the nonlinear system of equation (5), hide
y by treating it as a constant (i.e. polynomial of degree
zero). From (6) and (7), one computes the resultant of a
5 × 5 matrix

Res ( f1, f2, y) = det

⎡
⎢⎢⎢⎢⎣

a5 a6 y 0 0 0
0 a5 a6 y 0 0
0 0 a5 a6 y 0
0 0 0 a5 a6 y
d1 d2 + d3 y b53 b54 b55

⎤
⎥⎥⎥⎥⎦

(22)

with b53 = d4 + d5 y2 + d6 y, b54 = d7 + d8 y3 + d9 y2 +
d10 y and b55 = d00. The solution of (22) leads to the
first expression of (18) and can be solved as already
described.

• Step 2: From the nonlinear system of equation (5), hide
x by treating it as a constant (i.e. polynomial of degree
zero). From (6) and (7), one computes the resultant of a
5 × 5 matrix

Res ( f1, f2, x) = det

⎡
⎢⎢⎢⎢⎣

a6 a5x 0 0 0
0 a6 a5x 0 0
0 0 a6 a5x 0
0 0 0 a6 a5x

d11 d12 + d8x c53 c54 c55

⎤
⎥⎥⎥⎥⎦

(23)
with c53 = d13 + d5x2 + d9x , c54 = d14 + d3x3 +
d6x2 + d10x and c55 = d15 + d1x4 + d2x3 + d4x2 + d7x .
The solution of (23) leads to the second expression of
(18) from which the bending angles and the impact
parameters can be solved as already discussed.

The analytic algorithm for computing GPS atmospheric
sounding refraction angles proceeds in four steps as follows:

Step 1 Coefficient computation:
Using (2) and Appendices A and B, compute the coef-
ficients {h4 h3 h2 h1 h0} and {g4 g3 g2 g1 g0} of the
quartic polynomials (18).

Step 2 Solution for variables {x, y}:
Using the coefficients {hi , gi }|i = 1, 2, 3, 4 computed
from step 1, obtain the roots of the univariate polyno-
mials in (18) for {x, y}.

Step 3 Solve for the angles {φG, φL}:
With the chosen values of {x, y} from step 2 compute
using (19) the angles {φG, φL}.

Step 4 Solve for the angles {δG, δL}:
Using the values of {φG, φL} from step 3 compute using
(20) the angles {δG, δL}.

Step 5 Solve for the angle {α} and the impact parameter p:
Finally, the bending angle {α} and the impact parameter
p are computed using the values of {φG, φL} from step
4 in equation (21).

5. Test Example
In order to test the analytic (algebraic) algorithm out-

lined in steps 1 to 5 to assess the effect of nonlinearity error
in using Newton’s iterative approach, bending angles from
CHAMP satellite level 2 data for three satellite occultations
are computed and compared to those obtained from iterative
approach in Steiner (1998). The occultations were chosen at
different times of the day and years. Occultation number 133
of 3rd May 2002 occurred past mid-day at 13:48:36. For this
period of the day, the solar radiation is maximum and so is
the ionospheric noise. In contrary, occultation number 3 of
14th May 2001 occurred past mid-night at 00:39:58.00. For
this period, the solar radiation is minimum and the effect of
ionospheric noise is also minimum. Occultation number 6 of
2nd February 2002 which occurred shortly passed mid-night
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Fig. 3. x values for computing the bending angle component δG for L1 at t = 24.66 sec.
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Fig. 4. Selection of the correct x value for computing the component δG for L1 at t = 24.66 sec.

was further used to test the algorithm.
From the excess phase length data, smoothing was car-

ried out using the polyfit function of Matlab software and
the resulting doppler shift values for L1 and L2 used to-
gether with (2), (18) and (19) to obtain the angles φG and
φL which were then used in (21) to compute the refraction
angle α and the impact parameter p (also denoted in this
study as a). In what follows, a detailed computation of oc-
cultation number 133 of 3rd May 2002 during the maximum

solar radiation period is presented. The results of occultation
number 3 of 14th May 2001 and number 6 of 2nd Febru-
ary 2002 will thereafter be briefly presented. For occulta-
tion number 133 of 3rd May 2002 that occurred from the
time 13:48:36 to 13:49:51.98, the bending angles were com-
puted using both analytical procedure and the classical New-
ton’s approach presented in Steiner (1998). Since the analyt-
ical procedure leads to four solutions as already seen in the
preceding sections, a criteria for choosing the correct solu-
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tion had to be developed. In order to develop this criteria,
the bending angles from the classical Newton’s approach for
time t = 24.66 sec were used as prior information. For this
time, solutions from both analytical and classical methods
for the L1 signal were compared. Figures 3 and 5 indicate
the plot of the four solutions for x and y values computed
from equation (18) respectively. These solutions are con-
verted into angular values {δG , δL} using (19) and (20) re-
spectively and plotted in Figs. 4 and 6. From the values of

Figs. 4 and 6, the smallest values (encircled) were found to
be close to those of the classical Newton’s solution. In com-
puting the bending angles of the three occultations used in
this study, the algorithm was set to select the smallest value
amongst the four solutions. Though the Newton’s approach
converged after three iterations, the iterations in this study
were fixed to 20. The threshold was set such that the dif-
ference between the two consecutive solutions were smaller
than 1 × 10e − 06.
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Fig. 7. Bending angles for L1 and L2 from analytic algorithm.
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Fig. 8. Magnification of the bending angles above 6380 km from analytic algorithm.

For the entire occultation, the bending angles {α = δG +
δL} for both L1 and L2 are computed using exact analytic
algorithm and are plotted in Fig. 7. A magnification of Fig. 7
above the height 30 km is plotted in Fig. 8 to show the effect
of the residual ionospheric errors on the bending angles from
both procedures.

Since bending angle data above 40 km are augmented with
model values and those below 5 km are highly influenced by
the presence of water vapour (see for instance Figs. 7 and 8),
the present study restricts its analysis to the bending angles

data between 5–40 km. Data in this region are normally used
directly to derive the atmospheric profiles required for Nu-
merical Weather Prediction models. For occultation number
133 of 3rd May 2002, the differences in both the bending
angles α and impact parameters p were computed by sub-
tracting the solutions of the classical Newton’s method from
those of the analytical approach. The computations were car-
ried out separately for both L1 and L2 signals. In order to
compare the results, the computed differences are plotted in
Figs. 9, 10, 11 and 12. In these Figures, the vertical axes
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Fig. 9. Differences in computed bending angles from L1 due to nonlinearity for occultation 133 of 3rd May 2002.
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Fig. 10. Differences in computed bending angles from L2 due to nonlinearity for occultation 133 of 3rd May 2002.

are fixed while the horizontal axes indicate the range of the
computed differences.

In Figs. 9 and 10, the computed differences in bend-
ing angles due to nonlinearity for L1 are in the range
±6 × 10−5(degrees) with the maximum absolute value of
5.14 × 10−5(degree), while for L2, they are in the range
±5 × 10−5(degrees) with the maximum absolute value of
4.85 × 10−5(degree). The effects of nonlinearity error on
the impact parameters for L1 are in the range ±1.5 m with

the maximum absolute value of 1.444 m, while those of L2
are in the range ±2 m with the maximum absolute value of
1.534 m. The large differences in the impact parameters are
due to the long distances of the GPS satellites (rG > 20, 000
km) which are used in the second equation of (21) to com-
pute the impact parameters to which the bending angles are
related. Any small difference in the computed bending an-
gles due to nonlinearity therefore contributes significantly to
the large differences in the impact parameters. For this par-
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Fig. 11. Differences in computed impact parameters from L1 due to nonlinearity for occultation 133 of 3rd May 2002.
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Fig. 12. Differences in computed impact parameters from L2 due to nonlinearity for occultation 133 of 3rd May 2002.

ticular occultation therefore, the bending angles of L1 and
L2 signals could probably be related to impact parameters
that are off by up to ±2 m.

In order to assess the overall effect of nonlinearity on the
bending angles; the bending angles from the analytic (alge-
braic) algorithm and those of the iterative procedure have to
be related to the same impact parameters. In this analysis, the
bending angles of L2 from algebraic approach and those of
L1 and L2 from iterative approach are all matched through
interpolation to the impact parameters P1 of L1 from ana-

lytic (algebraic) approach. The resulting total bending an-
gles from both algebraic and iterative procedures are then
obtained by the linear correction method of Vorob’ev and
Krasil’nikova (1994) as

α(a) = f 2
1 α1(a) − f 2

2 α2(a)

f 2
1 − f 2

2

. (24)

The resulting bending angles α(a)i from the iterative ap-
proach and α(a)a from analytic (algebraic) approach using
(24) are plotted in Fig. 13. The deviation �α = α(a)a −
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Fig. 13. Bending angles from iterative and analytic algorithms matched to the same impact parameters for occultation 133 of 3rd May 2002.
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Fig. 14. Differences of computed bending angles due to nonlinearity for occultation 133 of 3rd May 2002.

α(a)i obtained are plotted in Fig. 14 which indicates the
nonlinearity error to increase with decreasing atmospheric
height. From 40 km to 15 km, the deviation is within
±2 × 10−4(degrees) but increases to ±7 × 10−4(degrees) for
the region below 15 km with the maximum absolute devia-
tion of 0.00069◦ for this particular example. This maximum
absolute error is less than 1%. Vorob’ev and Krasil’nikova
(1994) pointed out that the error due to nonlinearity increases
downwards to a maximum of about 2% when the beam

perigee is close to the Earth’s ground. The large difference in
computed bending angles with decrease in height is expected
as the region below 5 km is affected by the presence of water
vapour and as seen from Fig. 7, the bending angles due to L2
are highly nonlinear.

The analytical approach was next tested by being used to
compute the bending angles of occultation number 3 of 14th
May 2001 which occurred past mid-night at 00:39:58.00.
For this period as stated earlier, the solar radiation is min-
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Fig. 15. Differences of computed bending angles due to nonlinearity for occultation number 3 of 14th May 2001.
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Fig. 16. Differences in computed impact parameters from L1 due to nonlinearity for occultation number 3 of 14th May 2001.

imum and the effect of ionospheric noise is also minimum.
Further, as an additional test, the analytical algorithms were
used to compute the bending angles of occultation number
6 of 2nd February 2002 which occurred shortly passed mid-
night. The results from occultation number 3 of 14th May
2001 show the differences in bending angles from the an-
alytical and Newton’s methods to be smaller (see Fig. 15).
The maximum absolute difference value for bending angles
was 0.00001◦. For the computed impact parameters, the dif-
ferences were in the range ± 5 cm for L1 signal (Fig. 16)

and ±6 cm for L2 (Fig. 17). The maximum absolute val-
ues were 4 cm and 5 cm respectively. In comparison to the
results of occultation 133 of 3rd May 2002, the results of
occultation 3 of 14th May 2001 indicate the effect of iono-
spheric noise during the period of low solar radiation to be
less. The ionospheric noise could therefore increase the er-
rors due to nonlinearity. Results from occultation number 6
of 2nd February 2002, which occurred during the period of
low solar radiation, however showed increased differences in
computed bending angles and impact parameters (Figs. 18,
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Fig. 17. Differences in computed impact parameters from L2 due to nonlinearity for occultation number 3 of 14th May 2001.
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Fig. 18. Differences of computed bending angles due to nonlinearity for occultation number 6 of 2nd February 2002.

19 and 20). There could exist other factors that influence
the nonlinearity error other than the ionospheric noise which
require further investigations.

6. Conclusion
The study has successfully presented an independent ana-

lytic algorithm for solving the system of nonlinear bending
angles for GPS atmospheric sounding and shown that nonlin-
earity correction should be taken into account if the accuracy
of the desired profiles are to be achieved to 1% accuracy. In

particular, it has been highlighted how the nonlinearity errors
in bending angles contribute to errors in the impact param-
eters to which the bending angles are related. Occultation
number 133 of 3rd May 2002 which occurred past noon and
occultation number 3 of 14th May 2001 which occurred past
mid-night indicated the significance of ionospheric noise on
the nonlinearity error. When ionospheric noise is minimum
e.g. at mid-night, the computed differences in bending angles
between the two procedures are almost negligible. During
maximum solar radiation in the afternoons with increased
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Fig. 19. Differences in computed impact parameters from L1 due to nonlinearity for occultation number 6 of 2nd February 2002.
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Fig. 20. Differences in computed impact parameters from L2 due to nonlinearity for occultation number 6 of 2nd February 2002.

ionospheric noise, the computed differences in bending an-
gles between the analytical and classical Newton’s meth-
ods increases. The proposed analytical method could there-
fore be used to control the results of the classical Newton’s
method especially when the ionospheric noise is suspected
to be great as for occultations that occur during maximum
solar radiation periods. The hurdle that must be overcome
however is to concretely identify the criteria for selecting the
correct solution amongst the four analytical solutions. In this

study, the smallest values amongst the four analytic solutions
turned out to be the correct ones compared with values of the
classical Newton’s approach. Whether this applies in general
is still subject to investigation. The causes of the large dif-
ferences in the results of occultation number 6 of 2nd Febru-
ary 2002 during minimum solar radiation period is subject to
further investigations. In terms of computing time, the ana-
lytical approach would probably have an advantage over the
classical Newton’s iterative procedure in cases where thou-



J. L. AWANGE et al.: GPS ATMOSPHERIC REFRACTION ANGLES 587

sands of occultations are to be processed. For single occul-
tations however, the classical Newton’s approach generally
converges after few iterations and as such, the advantage of
the analytical approach in light of modern computers may
not be so significant.

The proposed analytical procedure has the following ad-
vantages:

• The procedure offers a direct solution to the nonlinear
equations for bending angles. Errors due to nonlinearity
in general could be minimized.

• With this technique, linearization problems and iterative
procedures of computation could be avoided.

• Significant computation time could be saved.

• The analytical approach could be used to control classi-
cal procedures.
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Appendices
Appendix A: Coefficients of fourth order polynomial
(Equation (5))

d1 = b2
4

d2 = 2b4b5

d3 = 2b4b3

d4 = 2b6b4 + b2
5 + b2

7

d5 = 2b1b4 + b2
3 − b2

7

d6 = 2b3b5 + 2b2b4

d7 = 2b6b5

d8 = 2b1b3

d9 = 2b1b5 + 2b2b3

d10 = 2b3b6 + 2b5b2

d11 = b2
1

d12 = 2b1b2

d13 = 2b1b6 + b2
2 + b2

7

d14 = 2b2b6

d15 = b2
6 − b2

7

with

b1 = a2
1 + a2

2

b2 = −2aa2

b3 = 2a2a4

b4 = (a2
3 + a2

4)

b5 = −2aa4

b6 = a2 − a2
1 − a2

3

b7 = 2a1a3

Appendix B: Coefficients of quartic polynomials (Equa-
tion (18))

g4 = (a4
6d1 + a4

5d11 − a5a3
6d3 + a2

5a2
6d5 − a3

5a6d8)

g3 = (a4
5d12 − a5a3

6d2 + a2
5a2

6d6 − a3
5a6d9)

g2 = (−a3
5a6d10 + a4

5d13 + a2
5a2

6d4)

g1 = (a4
5d14 − a3

5a6d7);
g0 = a4

5d15

and

h4 = (a4
6d1 + a4

5d11 − a5a3
6d3 + a2

5a2
6d5 − a3

5a6d8)

h3 = (−a3
5a6d12 + a4

6d2 − a5a3
6d6 + a2

5a2
6d9)

h2 = (−a5a3
6d10 + a2

5a2
6d13 + a4

6d4)

h1 = (−a5a3
6d14 + a4

6d7)

h0 = a4
6d15
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