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FDM computation of seismic wavefield for an axisymmetric earth with a
moment tensor point source
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Axisymmetric modeling has been playing an important role in global seismic waveform modeling since it
can correctly model geometrical spreading effects in 3-D within computational resources comparable to 2-D
modeling. However, in the previous investigations on axisymmetric modeling, seismic sources were restricted
to axisymmetric sources such as an explosive source. In this paper, we propose implementation of an arbitrary
moment tensor point source to axisymmetric modeling using the finite-difference method (FDM). The validity
and efficiency of this technique are demonstrated by comparing synthetic seismograms with analytical solutions
for a homogeneous earth model, as well as with the DSM synthetics for a spherically symmetric earth. We also
show a numerical example with a subducting slab structure.
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1. Introduction
In order to model seismic wave propagation in real-

istic structural models with strong lateral heterogeneity,
we should adopt numerical procedures such as the finite-
difference method (FDM). Synthetic seismogram calcula-
tions by these numerical methods, however, for full 3-D sit-
uations are still computationally intensive and costly even
on parallel hardware. To save on the computational re-
sources, we often employ methods with idealized simple
models. One of these methods, the so-called axisymmetric
modeling, uses a structure model with rotational symmetry
about an axis through a seismic source, and then solves the
elastodynamic equation in cylindrical or spherical coordi-
nates. The axisymmetric modeling has been a powerful ap-
proach for investigating basic phenomena of seismic waves,
developing new techniques, checking a new method or new
code, or for finding optimal values of some computational
parameters in preparation for more complex modeling (Ta-
kenaka et al., 1999). When the geometrical symmetry is
presented in a model, by an explicit use of this symmetry,
we can reduce computational size in both computation time
and memory, because only a subdomain is required for the
calculation. The wavefield is then determined by the type of
symmetry, instead of adopting the entire structural model.
In the field of global seismology, axisymmetric model-

ing has performed a particularly important role since it can
correctly model the 3-D geometrical spreading effects with
computational resources comparable to 2-D modeling. Fol-
lowing the early work by Alterman et al. (1970), many au-
thors have used axisymmetric modeling with the FDM: for
acoustic waves (Thomas et al., 2000), for SH waves (Igel
and Weber, 1995; Chaljub and Tarantola, 1997; Igel and
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Gudmundsson, 1997), and for P-SV waves (Igel and We-
ber, 1996). Furthermore, Toyokuni et al. (2005) proposed
the quasi-spherical approach as an extension of axisymmet-
ric modeling to treat an asymmetric 2-D structure with re-
spect to the source axis. Nevertheless, in conventional ax-
isymmetric modeling, the sources also have to be axisym-
metric, which limits the source types to toroidal sources
(SH waves), explosions, or vertical forces (P-SV waves),
though most of earthquakes are caused by double-couple
sources. For moment tensor sources, including double-
couple sources, we need to consider the coupling between
P-SV and SH waves. In this paper, we provide a way to
implement arbitrary moment-tensor point sources to the ax-
isymmetric modeling with the FDM. Although this paper
focuses only on a point source represented by symmetric
moment tensor, we can treat vector dipoles, CLVDs, ex-
plosive sources, and shear dislocation sources, which pro-
vide ample description of natural seismic sources (Aki and
Richards, 2002). We also consider only an isotropic elas-
tic medium, while the axisymmetric modeling can also be
applied to anisotropic or viscoelastic case.

2. Treatment of Moment Tensor Point Source
We solve the 3-D elastodynamic equation in spherical

coordinates (r, θ, φ) for a point source located on the θ = 0
axis. For instance, the equation for the vertical component
of particle velocity vr is

ρ
∂vr

∂t
= ∂rσrr + r−1∂θσrθ + r−1 sin−1 θ∂φσrφ

+ r−1
(
2σrr − σθθ − σφφ + σrθ cot θ

) + fr , (1)

where t is time, ρ is the density, and σi j are the components
of stress tensor. The axisymmetric modeling uses structures
which are invariant in φ direction, so that it considers only
a cross section along a great circle of the spherical earth
model.
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Table 1. θ -symmetry of field quantities.

Source v̂m
r v̂m

θ v̂m
φ σ̂ m

kk σ̂ m
θφ σ̂ m

rθ σ̂ m
rφ

(a) S A A S S A A

(b) A S S A A S S

S: symmetric; A: anti-symmetric with respect to lines θ = 0 and θ = π .
Type (a) contains moment tensor elements with expansion order m = 0
(with nonzero moment tensor components, M11 = M22, and M33), and
m = 2 (M11 = −M22, and M12 = M21), whereas type (b) contains those
with m = 1 (M13 = M31, and M23 = M32).

We first take Fourier expansion of all physical compo-
nents appearing in the elastodynamic equation about φ di-
rection. For example, the expansion of particle velocity
components vi (i = r, θ, φ) may be

vi (t, r, θ, φ) = v̂0
i (t, r, θ)

+
2∑

m=1

{
v̂m

iC(t, r, θ) cosmφ + v̂m
i S(t, r, θ) sinmφ

}
, (2)

where m denotes the order of expansion, v̂0
i , v̂m

iC , and v̂m
i S

(m = 1, 2) are expansion coefficients. C and S indicate
coefficients of cosine and sine terms, respectively. For each
component of stress tensor and body forces, we take the
same expansion. In this problem, it is sufficient to take the
expansion order up to m = 2 because of the radiation pat-
terns for moment tensor components. This is a similar ap-
proach to semi-analytic methods with the vector harmonic
function (wavefunction) expansion for the case of a general
point source in a 1-D earth model (e.g., Takeuchi and Saito,
1972; Aki and Richards, 2002), and it can also be applied to
a non-symmetric moment tensor source as well as to a sym-
metric moment tensor one we treat here. Substituting the
Fourier expansions of the field quantities such as Eq. (2)
into the elastodynamic equation (Eq. (1)) and rearrang-
ing the results as for the constant terms, cosmφ terms, and
sinmφ terms give five closed systems of partial differential
equations (PDEs) about expansion coefficients. Through
this process, an arbitrary moment-tensor point source is de-
composed into five moment-tensor elements—i.e., the ele-
ment for axisymmetric source (m = 0) and the elements
corresponding to four shear dislocation sources (two types
of pure vertical dip-slip sources, nonzero components of
M13 = M31, and those of M23 = M32; two types of pure
strike-slip sources, M11 = −M22, and M12 = M21). For
implementation, we further divide the axisymmetric source
into two elements: the vertical component M33 and the hori-
zontal M11 = M22, where the other components of moment
tensor are zero for each case. Note that calculations for any
combinations of these axisymmetric elements can be per-
formed by one computation changing the weight for each
element. We can model seismic wave propagation due to an
arbitrary moment tensor point source by solving these equa-
tion systems about expansion coefficients using a numerical
method such as the FDM, and then substituting them into
Eq. (2).

3. FDM Implementation
In order to solve the five systems of PDEs of expan-

sion coefficients, we adopt a velocity-stress staggered-grid
finite-difference scheme. The staggered-grid system is the

Fig. 1. FDM implementation of Cartesian moment tensor elements to the
FDM scheme using equivalent body-force components f̂r , f̂θ , and f̂φ
(h = �r , d = rs�θ ): (a) M33; (b) M11 = M22; (c) M11 = −M22; (d)
M12 = M21; (e) M13 = M31; (f) M23 = M32.

same as that described in Igel and Weber (1996) although
we chose the grids for v̂φ , σ̂θφ , and σ̂rφ to be the same po-
sition as those for v̂θ , σ̂kk (normal stress components), and
σ̂rθ , respectively. The grids for v̂r , σ̂kk , and σ̂θφ lie on the
source axis θ = 0.

In the axisymmetric modeling, we perform the FDM cal-
culation on a computational domain with an angular range
of θ ≥ 0. However, to calculate θ -derivatives ∂/∂θ near
and on the axis θ = 0 (and θ = π ), we need values of field
quantities on grid points at θ < 0 near the axis. When we
assign the θ ≥ 0 domain on a half plane of a cross section
of the earth at φ = φ0, the θ < 0 domain corresponds to
another half at φ = φ0 + π . Therefore, the field quantities
have symmetric or anti-symmetric properties with respect
to the θ = 0 and θ = π axes due to each of the six moment
tensor elements, based on symmetry of radiation patterns of
wavefields excited by these elements. For the element cor-
responding to a pure strike-slip source M12 = M21 = M0,
as an example, v̂r is symmetric around line θ = 0, whereas
the angular (θ ) and transverse (φ) component of particle ve-
locity, v̂θ and v̂φ , are anti-symmetry, i.e.,

v̂2
r (·, −θ) = v̂2

r (·, θ),

v̂2
θ (·, −θ) = −v̂2

θ (·, θ), v̂2
φ(·, −θ) = −v̂2

φ(·, θ),

(3)

where the base vector of each component has been assumed
to be continuous across the axis θ = 0; e.g., eφ(·, θ =
0−) = eφ(·, θ = 0+) for the unit base vector of φ, eφ .

The symmetric or anti-symmetric properties of the stress
components are then derived from Eq. (3), and symmet-
ric property of the structural model through the stress-
displacement relations appear in the elastodynamic equa-
tion (e.g., Takenaka et al., 1999). Table 1 shows properties
of symmetry or anti-symmetry about the source axis of field
quantities radiated by six moment tensor elements. From
these relations, we can obtain field quantities at θ < 0
from corresponding values at θ > 0, so that the calculation
of θ -derivatives around the source axis becomes possible.
Now we implement the moment tensor sources on the

FD scheme. Figure 1 shows the implementation of six
moment tensor elements with body forces. Note that all
elements have the same center on a grid for normal stress
components. Coefficients corresponding to the body forces
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around a grid cell are set as follows:

(a) f̂ 0+
r = − f̂ 0−

r = M0/V �r,

(b) f̂ 0
θ = M0/V rs�θ,

(c) f̂ 2
θ = f̂ 2

φ = 4M0/V rs�θ,

(d) f̂ 2
θ = − f̂ 2

φ = 4M0/V rs�θ,

(e) f̂ 1
r = 2M0/V rs�θ, f̂ 1+

θ = − f̂ 1−
θ = 2M0/V �r,

(f) f̂ 1
r = 2M0/V rs�θ, f̂ 1+

φ = − f̂ 1−
φ = 2M0/V �r,

where rs is the radius at the source, and �r and �θ denote
the grid spacings in the r and θ directions, respectively.
V = 2π(rs�θ)2�r for cases (e) and (f), while for the other
cases V = π(rs�θ)2�r/4. Although we explicitly give
body forces only for right half of the grid cell (0 ≤ θ ≤ π),
forces on the opposite side (−π < θ < 0) are automatically
settled by the symmetry in Table 1.
We use the FDM scheme with second-order accuracy in

time and fourth-order accuracy in space. For keeping the
fourth-order FD approximation to the terms without spatial
derivatives, we use the same identities as in Toyokuni et
al. (2005) followed by discretization. We use two different
identities, such as

σ̂i j

sin θ
= 1

cos θ

∂σ̂i j

∂θ
− tan θ

∂

∂θ

(
σ̂i j

sin θ

)
, (4)

σ̂i j

sin θ
= 1

sin θ

{
∂

∂θ
(θσ̂i j ) − θ

∂σ̂i j

∂θ

}
, (5)

(i, j) = (r, φ), (θ, φ), (φ, φ), to avoid zero divisions on
and near the axes θ = 0, π/2, π , and 3π/2. Furthermore,
on the θ = 0 and θ = π axes, we exploit the formulae
derived from limiting operations with the L’Hospital rule
to overcome the singularity on these axes (e.g., Alterman
et al., 1970; Takenaka et al., 2003). Through this paper,
we adopt a nonuniform grid configuration (Pitarka, 1999)
in the vertical coordinate, whereas a uniform grid spacing
is used in the angular direction.

4. Comparison with Analytical Solutions
Here we demonstrate the validity of the FDM scheme for

moment tensor sources described in the previous section,
through computations for simple models. We first calculate
synthetic seismograms radiated by each moment tensor ele-
ment (Fig. 1) for a homogeneous earth model with the seis-
mic velocity vp = 8.02 km/s, vs = 4.44 km/s, and density

θ

θ

ϕ

ϕ

θ

θ

Fig. 2. Synthetic seismograms at an epicentral distance � = 18◦ (φ = 0◦)
for a homogeneous earth model with each of the six moment tensor
elements shown in Fig. 1. The FDM results are displayed by solid lines,
while the analytical solutions are shown by dashed lines. A low-pass
filter (< 1/60 Hz) has been applied.

Fig. 3. Synthetic seismograms for the IASP91 model with a moment
tensor element M12 = M21. The transverse component of particle
velocity is shown for the FDM (solid lines) and the DSM (dashed lines).
The observation points are located at the earth’s surface of plane φ = 0.
A low-pass filter (< 1/60 Hz) has been applied.

ρ = 3.36 g/cm3. The results are compared with the analyt-
ical solutions. The model is defined on a 678(r) × 1800(θ)

grid with an angular range of 180◦ and a maximum depth of
5321 km. The time increment in the FDM is 0.05 s. We put
a 2942-km-depth point source with a source time function
as a phaseless bell-shaped pulse with a width of 60 s. In
order to keep out reflected waves from the free surface and
the other artificial boundary, we put the observation points
at a depth of 1942 km. Figure 2 shows the synthetic seis-
mograms at an epicentral distance � = 18◦ (φ = 0◦) for
both the FDM and the analytical solutions. The vr and vθ

components of particle velocity are displayed for cases (a),
(b), (c), and (e) in Fig. 1, while the vφ component is shown
for (d) and (f). There is a very good agreement in the travel
times, amplitudes, and waveforms for all traces, suggest-
ing that our FDM scheme with moment tensor elements has
sufficient accuracy.
Next, we employ the spherically symmetric earth model

IASP91 (Kennett and Engdahl, 1991) with a moment ten-
sor element M12 = M21 = 1, and compare the results
with those obtained by the direct solution method (DSM)
(Takeuchi et al., 1996). The DSM can give exact waveforms
for spherically symmetric media. We put a 638-km-depth
seismic source and compare the waveforms on the free sur-
face. The grid configuration, numerical scheme, and source
time function are the same as those used in the homoge-
neous cases. Figure 3 shows the transverse component (i.e.
φ-component) of the synthetic seismograms at four epicen-
tral distances (� = 18◦, 36◦, 54◦, 72◦) for both the axisym-
metric FDM and the DSM. There is also a very good agree-
ment among the waveforms for all phases, although there
are small travel time differences on latter phases due to the
slight differences of discretized structural models between
the FDM and DSM schemes.

5. Numerical Example
We now illustrate the application of our scheme with a

numerical example for a more complex structure. We adopt
a model with subducting slab structure stagnating above the
660-km discontinuity superimposed on the IASP91 model.
We calculate synthetic seismograms for a 631-km-deep
point source with a sub-horizontal fault plane (φs = 311◦,
δ = 11◦, λ = −51◦) referring to the 1994 deep Bolivia
earthquake (MW = 8.2; Lundgren and Giardini, 1995). The
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Fig. 4. Model with a slab for numerical example. The stagnant slab is
lying on the 660-km discontinuity, with a +10 % perturbation for the
P-wave velocity, S-wave velocity, and density from the IASP91 model.
The star indicates the location of source.

slab structure which is located � = 100◦ away from the
source axis, as shown in Fig. 4, is then a rough image of the
slab below the Tonga arc (Fukao et al., 2001). The pertur-
bation for the compressional wave velocity, shear wave ve-
locity, and density in the slab are set at +10.0 % above the
IASP91 basis. The grid configuration, numerical scheme,
and source time function are also the same as in the previ-
ous calculations.
The vertical component of the synthetics at the earth’s

surface is shown in Fig. 5(a). Differential seismograms
of vertical (r ) and transverse (φ) components, calculated
by subtraction of the results for the IASP91 from those
for the stagnant slab, are displayed in Figs. 5(b) and 5(c),
respectively. Most of the differences occur from � = 100◦

where the perturbation begins. We can see Rayleigh waves
converted from SP and SSSP at the joint of the slab, while
Love waves appear due to a similar conversion from SS and
SSS.

6. Discussion and Conclusion
In this paper, we have proposed a method to imple-

ment an arbitrary moment tensor point source into the FDM
scheme for axisymmetric modeling with spherical coordi-
nates. We can calculate seismic wave propagation excited
by any moment tensor point sources on a 2-D slice of whole
axisymmetric earth by performing the computation only in
the half domain of the model. Since most earthquakes are
caused by double-couple sources, this method is expected to

Fig. 5. Synthetic seismograms at the earth’s surface (φ = 180◦) for the
slab model (Fig. 4). (a) Vertical component of the original seismograms
(particle velocity). (b) Differential seismograms of r -component and
(c) φ-component of particle velocity, which indicate the anomalies in
travel times and amplitudes caused by the slab. Green bands indicate
the angular range of the slab model. Phases affected by the slab are
displayed (blue lines) as well as surface waves generated at the root of
the slab model (red lines). All traces are shown in the same scale.

greatly facilitate the application of the axisymmetric model-
ing. Although this paper has treated a point source located
on θ = 0 axis, our method can also treat a source of fi-
nite extent. In this case, we may need to add the results of
plural simulations for several point sources. For example,
the finite source in a subducting slab may require the sum
of many wavefields resulting from several point sources to
represent a finite source.
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