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An automatic detection and a precise picking of the arrival times of seismic waves using digital seismograms
are important for earthquake early detection systems. Here we suggest a new method for detecting and picking P-
and S-wave signals automatically. Compared to methods currently in use, our method requires fewer assumption
with properties of the data time series. We divide a record into intervals of equal lengths and check the “local and
weak stationarity” of each interval using the theory of the KM,O-Langevin equations. The intervals are stationary
when these include only background noise, but the stationarity breaks abruptly when a seismic signal arrives and
the intervals include both the background noise and the P-wave. This break of stationarity makes us possible to
detect P-wave arrival. We expand the method for picking of S-waves. We applied our method to earthquake data
from Hi-net Japan, and 90% of P-wave auto-picks were found to be within 0.1 s of the corresponding manual
picks, and 70% of S-wave picks were within 0.1 s of the manual picks. This means that our method is accurate
enough to use as a part of the seismic early detection system.
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1. Introduction

We have recently processed a large amount of real time
seismic data. Detecting and picking seismic wave arrival
quickly is very important for event location and analysis
in earthquake early detection systems. In terms of picking
seismic signals, manual picking of seismic phases is cur-
rently the most accurate method, but it takes much time
and unavoidably becomes subjective. Many algorithms
have been suggested for the automatic picking of seismic
signals. Withers et al. (1998) organized previously used
methods into four categories: time domain (STA/LTA, Z-
statistic), frequency domain (frequency transient), particle
motion, and adaptive window length processing. Algo-
rithms based on wavelet analysis (Anant and Dowla, 1997;
Zhang et al., 2003) and polarization analysis (Vidale, 1986;
Reading et al., 2001) have also been suggested. The most
commonly used algorithm is the autoregressive (AR) model
(Yokota et al., 1981; Maeda, 1985; Takanami and Kitagawa,
1988; Sleeman and Eck, 1999; Leonard and Kennett, 1999;
Leonard, 2000). Methods using the autoregressive model
are based on the assumption that seismograms can be di-
vided into two locally stationary intervals at the time of an
arrival of seismic signal, with each interval satisfying a dif-
ferent autoregressive process. AR models are fitted to the
time series before and after the dividing point which is as-
sumed to be the arrival of seismic signals, and the value of
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Akaike’s information criteria (AIC) is calculated to evaluate
the degree of the AR model fitting. By moving this divid-
ing point, the dividing point with the minimum AIC value is
judged to be the best point and is the arrival time of seismic
signal. However, no check to verify the stationarity of each
time series is performed in these methods, and the meth-
ods have difficulty in determining the S-wave arrivals if the
hypocentral distances are short. Moreover, we must take
the time series as it includes just one change of the station-
ary process prior to the application of the AR-AIC method.
Therefore, this method can not use as the “detector” of the
phase, though it can use as the “picker”. In this paper, we
use the word “detector” to denote the method to detect the
phase and the word “picker” to denote the method to deter-
mine a precise onset time of a detected phase (Allen, 1982).
Okabe et al. (2003) took the interval of fixed length from
seismograms and checked the stationarity of the nonlinear
transformed data of this interval. The stationary analysis
based on the theory of the KM,0-Langevin equations (Ok-
abe and Nakano, 1991) was used to check the stationarity
of the interval. These authors suggest this algorithm as the
method to pick initial phases of earthquakes. The advan-
tage of using this algorithm is that no prior information is
required on the data and parametric models, like AR-model,
do not have to be defined. We change this algorithm for
practical use and present a new method to detect and pick
P- and S-wave arrivals automatically by applying the sta-
tionary analysis along the time line. We also evaluate the
automatic detector and picker of S-wave arrivals when the
hypocentral distance is relatively short.
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Fig. 1. A general idea of the forward KM,O-Langevin equations. Data of
current time #n is constructed by the contribution from the past data plus
the information newly given at the time n.

2. Theoretical Background
2.1 Theory for stochastic process

The fundamental principle of our method is the theory of
the KM, O-Langevin equations (Okabe, 1999, 2000; Okabe
and Yamane 1998; Matsuura and Okabe, 2001). For given
d-dimensional stochastic process, X = (X(n);0 < n <
N), which is square integrable, we can derive the KM,O-
Langevin equations

X(0) = vi.(X)(0)

X(n)=— 5 Y+, k)X (k) +vi(n) (1 <n=N)
X(N) = vf(z(OX))(O) (H
X(N —n)=— i Y-, )X (N — k) 4 v_(n)
(v (n), ve(m)) ]:C:?ani(n) (0O<m,n <N)

where pi(n,k) is a d x d matrix which is de-

termined uniquely from the non-degenerate stochas-
tic process X and called a forward (resp. backward)
KM,0-Langevin dissipation matrix function. We call
— Zz;é ye(n, k)X (k) (resp. X(N — k)) the dissipation
term and y4(n) fluctuation term. The matrix function
Vi(X) = (VL+(n);0 < n < N) is obtained as the inner
product of vy (n): V(X)(n) = (v4(n), vL(n)). It is to be
noted that (v (n), vo(m)) = 8,, V+(n) (0 <m,n < N).
We define a system L M (X) and call it the KM,O-Langevin
matrix associated with the non-degenerate stochastic pro-
cess X. In particular, we put 61 (n) = y+(n, 0). Physically,
the dissipation term means the part that can be explained by
the previous data, and the fluctuation term means the infor-
mation newly added at the time n. A general idea of the
forward KM,O-Langevin equations is illustrated in Fig. 1.
Same as the forward case, an implication of the backward
KM,0O-Langevin equations is that the data of current time
N —n, X (N —n) is constructed by the contribution from the
future data (backward dissipation term) and the information
newly given at the time N — n (backward fluctuation term).

We define the local and weakly stationary property for
the stochastic process X as follows:
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1) The expected value of X is zero. (E(X (n)) = 0),

2) The covariance matrix function R of X (n) and X (m)
depends only on the relative difference between time
n and time m, such that (X (m),'X(n)) = R(m —
n)y O0<m,n<N).

If X is a local and weakly stationary process, special re-
lationships exist among the elements of L M (X) (Charac-
terization Theorem for Stationary Property (Okabe, 1999));
that is, L M (X) satisfies Dissipation-Dissipation Theorem
(DDT) and Fluctuation-Dissipation Theorem (FDT).

On the other hand, we can uniquely construct
the KM,;O-Langevin matrix system LM (R) =
{yR(n, k), %(n), VRm); 0 <k <n < N,0 <m < N}
that satisfies the (DDT) and (FDT) from any positive
definite d x d matrix function R = (R(n);|n|] < N)
with the Toeplitz condition (Okabe, 2000). This theorem
is called the Construction Theorem. Details about the
Characterization Theorem, Construction Theorem, (DDT),
and (FDT) are explained in Appendix A. Using elements of
LM (R), we introduce a pseudo-fluctuation process of X as
follows: v, (n) = X(n) + ZZ;(I) yf (n, k)X (k). Then, the
necessary and sufficient condition for X to have a weakly
stationary property and to have R as the covariance matrix
function is that v(n) satisfies the following relation.

[Stationarity Condition] (D(m), ‘(1)) = 8, V. f (n)

E(®mn) =0 2
Based on this, Okabe and Nakano (1991) proposed Test(S)
as the method to test the stationarity of a given time series.
In Test(S), we use the covariance matrix function of a time
series x itself as R and calculate L M (R). We then check
the [Stationarity Condition]. If the [Stationarity Condition]
is not satisfied, the time series « is determined to be non-
stationary because R used here is the true covariance matrix
function of .

Almost all of the methods of time series analysis apply
a priori parametric statistical models (e.g., ARMA model,
AR model) but do not check to verify the preconditions as-
sumed in these models before the analysis (e.g., stationarity
for AR model) is performed. In the theory of the KM,0-
Langevin equations, we can obtain the characteristic param-
eters of the time series, i.e. y, V by (DDT), (FDT), (PAC)
with no priori assumptions when the stationarity of the data
is assured. The stationarity of the time series can be tested
by Test(S) before analysis. Therefore, the important char-
acteristics of using this theory are that it requires no priori
information about the data and that we do not have to define
any parametric models before an execution of the stationary
analysis based on the theory. An appropriate model can be
extracted directly from the analyzed data in the form of dif-
ference equations.

2.2 Application to the real data set: Test(S)

In the above explanation, we developed the theory on the
stochastic process. In this section, we extend the theory to
real data and describe the framework of Test(S), considering
real data as occurrence of the stochastic process X.

A sample covariance matrix function R = (R (1); 0 <
| <N, 1< j,k <d) forad-dimensional data series x is
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calculated as

1

N—-I
D G+ m) = ) (xe(m) — ) (3)
m=0

where p; is the j-th component of the mean vector
of x. Since a length of real data is finite, calcu-
lated sample covariance matrix functions are reliable
only for a limited range. If a data length of inter-
vals is N+1 (¢ = (x(n);0 < n < N)), we can
calculate a reliable LM only for a limited length of
M+1<N+1; the value of M is obtained empirically to be

M = max ([3—”‘}’“ —1, Ml for d-dimensional

> T5d

data (Okabe and Nakano, 1991; Akaike and Nakagawa,
1988). Because of this reason, we take data pieces whose
length is M+1 from an interval and test the stationarity of
each piece by using R = (R(/); 0 < | < M) calculated
from the whole interval. The interval is defined to be
stationary when the ratio of data pieces that passed the
stationarity check among all the data pieces in the interval
exceeds a certain threshold. In this sense, M would act
somewhat like the maximum order of the AR-model.
However, the apparent resemblance of M to the maximum
order is caused simply by the practical circumstance and
we do not expect to say the length of contribution from the
previous time-series is M. The detailed process of Test(S)
is described as follows.

[Step 1] Standardization.

A time series « is standardized. The standardized
time series and its sample covariance matrix function are
written as & = (¥(n); 0 < n < N) and R, respectively.
Stationarity of « is equivalent to that of &. Stationarity
of the time series @ means that the time series & is a
realization of a d-dimensional local and weakly stationary
stochastic process X with R¥ as its covariance matrix
function.

[Step 2] Consideration about the finite length

As mentioned above, we can calculate reliable sam-
ple covariance matrix functions only for the limited
length of M+1. Therefore, we think about data pieces
29 () = (s +n) (0 < n < M) for a fixed number of
se{0,1,---,N — M}.

[Step 3] Calculation of the fluctuation term

From R¥, we can obtain the sample KM,O-Langevin ma-
trix system LM (X) (See Appendix A). Using L M (X), the
sample forward KM,O-Langevin fluctuation term v (¥)
is extracted as

v (F)m) =5 (n)
n—1

+ ) @@ HEO®E) 0 <n < M)
k=0
@)
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[Step 4] Standardization and reformation of the v, (¥ )

By taking lower triangular matrices W, (n), such that
Vi(GED)(n) = Wo(n) W, (n), we standardize the v, (¥)
to Ef)(n) = W) vy (¥®)(n). The [Stationarity Con-
dition] described in Section 2.1 assurees us that “ % is a
realization of a local and weakly stationary process with R*
as its covariance function” if, and only if, “£, (¥*) realizes
a d-dimensional standardized white noise.”

[Step 5] reconstruction of 1-D time series &

All components of £, (¥*)) are arranged in one line and
the 1-D time series £®) = (€@ (n); 0 <n <dM+1)—1)
is constructed as:

£0 = (90, £90), -, £20), £7) (1),

o Eg (D, - EROD, - EROD) ()
Using £, the condition about the £,(¥®) described
above is equivalent to following [White noise Condition].
“The time series £ is a realization of a 1-D standardized
white noise stochastic process (say &,).” If the [White noise
Condition] is satisfied in many case of s, we can conclude
the time series & is stationary.

[Step 6] Test the [White noise Condition] of & Q)
To test the [White noise condition] of &%), we check
the normality and orthogonality of £®(n). The sample
S(“’ . S(x)
mean u° , the sample pseudo-variance v , and the sample
pseudo-covariance Rfm(n;m) O<n<L, 0<mc<
L — n) are calculated by following formula

1 d(M+1)—1
> EYwm,
k=0
1 dM+1)—1
Y V%7,
k=0
d(M+1)—1—n

’D

k=m

g(s) —
TdM+1)

E(»\') _
YT amM ©

RE" (n; m) EVW0EY (k)

~dM + 1)

It should be noted that R¢" (n; 0) is the sample covari-
ance function of time series £¢). A new value L =
[34/d(M + 1)] — 1 is introduced for the same reason that
we introduced the number M.

The [White noise Condition] of £ can be written as
three criteria.

Mean The sample mean value of & distributes around
zero, i.e. ,uém ~ 0;

Variance The sample variance of & ) distributes around 1,
e v — 1~ 0;

Orthogonality The sample covariance of £ is orthogo-
nal, i.e. RE” (n; m) ~ 0.

We should now formulate these criteria.  From the
central limit theorem, if the criterion [Mean] is held,
Jd(M + 1) ,uém following a normal distribution N (0,1) for
sufficiently large M. Therefore, the inequality (C-M) is sat-
isfied approximately at a probability of 0.95, as the 95%
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confidence limit of N(0,1).

VdM +1) |p¥] < 1.96

(C-M) is used as the formulated criterion [Mean] in Test(S).
In the same way, the formulated criterion [Variance] in
Test(S) can be derived in a form of inequality (C-V) de-
scribed below. In the case of [Mean],/d (M + 1)u?® “ itself
can converge to N(0,1) if the [White noise Condition] of
£ is satisfied. However, in the case of [Variance], sample
variance subtracted by 1 and multiplied by /d(M + 1), i.e.
VAM + 1)(v5" —1), does not converge to N(0,1) but con-
verges to a Gaussian distribution with average 0 and certain
variance o;. To evaluate the convergence, we have to calcu-
late the 01-2, second moment of /d (M + 1)(v5m —1), sothe
fourth moment around the average of the white noise pro-
cess €;. . But the fourth moment cannot be obtained directly
from sample covariance functions. To resolve this, we ap-
ply the idea of the ¢-test, which is often used in the field of
statistics (e.g., Snedecor et al., 1989; Student, 1908). A new

(C-M) )

statistic (vsm — 1)~ instead of the v¥” — 1 is introduced as
follows:
dM+1)—1
> E9WR -1
(vgm _ 1)~ = k=0
d(M+1)—1
Y. EOE? - 1)?
k=0
| d(M+1)—1 5 epa2
= W (k) —1)
Jd(M+1)o; lg) g
= )]
| d(Mg)—l o )
NZIESS (EW (k)= 1)
Jd(M+1)o; =0

Employing the law of large numbers and the central limit
theorem, the numerator of Eq. (8) converges to N(0,1) and
the denominator of the equation, which includes the square
root of unbiased variance of £*), converges to x distribution
of d(M 4 1) — 1 degrees of freedom. Therefore, (v¢ ©_ 1~
will converge to a ¢ distribution of d(M + 1) — 1 degree
of freedom. As specified by the ¢-test, the validness of the
condition [Variance] in the 95% confidence limit of N(0,1)
for v¥” — 1 will now be transformed into the following
inequality (C-V) under an approximate probability of 0.975
for ¢-distribution.
(C-V) |(0% — 17| < 2.2414 )

This inequality (C-V) is used as the criterion [Variance].
Formulation of the criterion [Orthogonality] is more
complicated. Similar to the derivation of (C-M) and (C-
V), a basic concept of the formulation is to transform
R‘fm(n; m) into a form that converges to the normal dis-
tribution N(0,1). To achieve this, we express d(M +
DR (n; m) as the sum of Rfm(n;m) and Rg(‘r)(n;m),
which are the sums of independent stochastic variables. De-
tailed description about the derivation of the formulated cri-
terion [Orthogonality], an inequality (C-O), and concrete
forms of Rfm(n; m) and Rgm(n; m) are described in Ap-
pendix B, and here we show the obtained inequality (C-O)
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only. (C-O) is satisfied at the probability of 0.95.

(C-0) d(M + D)L + /LW RS (n;m)| < 1.96
(10)

where L{") and L are the total of the term number of

Rfm (n; m) and Rgm (n; m), respectively. Concrete forms of
L) and L) are shown in Appendix B. In contrast to the
case of [Mean] and [Variance], REY (n; m) is in the range of
(n,m;0<n<L,0<m <L —n),and we can test plural
times whether R%" (n; m) satisfies the (C-O) according to
the value of n, m. Using this fact, a more precise criterion
(C-0)' is suggested.

(C-0) (C-O) is satisfied for more than 90% of R¢" (n; m)
O=<n=L,0<m=<L-n) (11)

[Step 7] Test(M), Test(V), Test(O)

If Criteria (C-M), (C-V), and (C-O)’ are satisfied in many
cases of s, we can say that the time series I is stationary.
We recursively execute [Step 3] to [Step 6] toward &)™
froms = 0tos = N — M. If at least one of the numbers
of data pieces for which (C-M), (C-V), and (C-O)" do not
hold exceeds a certain threshold, the time series is said to be
non-stationary. We call these checks of (C-M), (C-V) and
(C-O) Test(M), Test(V) and Test(O), respectively, and call
the ratios of the number of data pieces that do not satisfy
the (C-M), (C-V), and (C-O)’ to the total number of data
pieces in an interval (i.e. N — M + 1) the “non-stationarity
rate” of Test(M), Test(V), and Test(O), respectively. From
numerical simulations toward various synthetic data sets,
Okabe and Nakano (1991) suggested that the thresholds
of “non-stationarity rate” of Test(M), Test(V), and Test(O)
used to define a time series as non-stationary are 0.2, 0.3,
and 0.2, respectively. To obtain the thresholds of “non-
stationarity rate” of Test(M), Test(V), and Test(O), they car-
ried out repeated experiments toward the large number of
data sets whose stationarity or non-stationarity can be deter-
mined theoretically, such as uniform random numbers, nor-
mal random numbers, tent transformation, the logistic trans-
formation, the transformed data of these data sets by tak-
ing first difference, adding noise, and so on. They then ob-
tained the threshold values statistically as the values which
can discriminate between stationary data sets and the non-
stationary data sets even if the data include the random fluc-
tuations and the error from the finiteness. Details about the
experiment are described in Okabe and Nakano (1991). In
the case of the seismic records treated here, these values
of the thresholds are certainly good criteria of the station-
arity. In the bottom panel of Fig. 4, the time series of the
non-stationarity rate of Test(V) is plotted. The dotted line
in the panel is the threshold value of Test(V), i.e., 0.3. The
non-stationarity rate of Test(V) exceeds the threshold when
the stationarity of the time series (plotted in the top panel)
seems to break.

3. Method
We take an interval of fixed length (N+1) from the ob-
served digital seismogram and apply Test(S). We then move
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stationarity will break
when the arrival point
is newly included

check stationarity
of the interval

>
—
. p—
Q
_Q
[3) interval (Iength N+1)
> L -
|
|

I PP
move interval along the time axis

time

Fig. 2. Concept of our method for determining P-wave arrival by station-
ary analysis.

the interval one data point forward in time (Fig. 2). By mov-
ing the interval step by step and applying Test(S) at every
step, we can determine how stationarity changes when the
last point of the interval is newly included. Stationarity is
expected to break abruptly when a point of P-wave arrival
is first included.

Figure 3 shows examples of typical P-wave arrivals to
which our Test(S) was applied. The sampling rate of the
data is 100 Hz. We take the length of the intervals (N +1) to
be 100, i.e. 1 s. In all of the following figures, the amplitude
of the records is normalized to an appropriate size. This
normalization does not affect the stationarity of the time
series. Figures 3(a) and 3(b) show the results of Test(S)
applied to the data with high and low background noise,
respectively. If we select N+1 to be 100, practical time
length M+1 would be 20 for 1-D data. In our previous
result, the numerical test for using stationary analysis to
various basic time-series data is processed and the central
limit theorem is sufficiently satisfied if M is about 20. We,
therefore, believe that the selected M has enough validity
for our problem. In both cases, the interval is stationary
while it only includes the background noise, and suddenly
becomes non-stationary when the point of P-wave arrival is
newly included. The abruptness of the stationarity change
depends on the signal/noise ratio and how impulsive the
arrival is. When an interval includes the arrival point, the
value of the arrival point affects the calculation of all the
D, y& of pseudo-KM,O-Langevin matrix LM (R)through
the covariance matrix function R. Consequently, the abrupt
break in the stationarity can be seen clearly even if we treat
the data with a relatively low signal/noise ratio. We applied
Test(S) to a synthetic data set composed of normal random
numbers whose mean value is 0 and variance is 1. The
data were checked from 0 to 5000 points (=50 s), but no
interval was determined to be non-stationary. The length
of the interval was 100 points. This result means that the
time series are determined to be stationary by Test(S) if
the background noise is normal-random. Considering the
results, Test(S) can be used for a method to detect and pick
the P-wave arrival.

Okabe et al. (2003) applied nonlinear transforms of rank
6, i.e. 19 nonlinear transforms, to intervals and made 2-D
data sets by combining two of the transformed data. A to-
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Fig. 3. Typical P-wave arrival as determined by Test(S) with (a) low and
(b) high noise. Crosses indicate the last points in the intervals that are
determined to be non-stationary.

tal of 171 data sets were constructed by this process. They
applied Test(S) to the data sets, and if all the data sets were
determined to be non-stationary, they called this condition
“abnormal” and proposed this criterion as a picker of the
initial phase. They called this test Test(ABN). However, a
practical algorithm is not constructed in Okabe et al. (2003).
Taking 19 nonlinear transforms and checking the stationar-
ity of 171 data sets is time-consuming and the application
of Test(ABN) as it is to the real time processing system is
not practical. We only focus here on the raw time series and
construct the detecting and picking algorithm for practical
use.

In checking the stationarity of the intervals by Test(S),
Test(O) has a special property. Though the non-stationarity
rate of Test(O) increases and exceeds the threshold when
the interval includes an arrival of P-wave or S-wave, the
increase of non-stationarity rate is gradual, and the non-
stationarity rate of Test(O) exceeds the threshold not just
at the arrival point but a few points after the arrival point.
On the other hand, when we pay attention to the last data
piece of the interval, i.e. the data set consists of the data
from (N — M + 1) to N, the data piece is determined to
be non-stationary by Test(O) at a point closer to the arrival
point. This benefit is more significant than the increase
of the statistical errors introduced by using only one data
piece instead of using whole data pieces of the interval.
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Fig. 4. A seismogram which includes P-wave arrival and the result of
Test(V) and Test(O) applied to this seismogram. The top panel shows
the waveform with the P-wave arrival of a typical earthquake. The verti-
cal lines in the middle panel mean that the interval was determined to be
last-piece-non-stationary by Test(O) when the point above the line was
newly included. A curve in the bottom figure shows the non-stationarity
rate of the interval determined by Test(V). The value of non-stationarity
rate in the interval is plotted at the last point of each interval on this
figure. The dotted lines in the bottom panel indicate the minimum and
maximum threshold values (0.3 and 0.7) of the non-stationarity rate of
Test(V) used in our algorithm

Therefore, we base our picker on this property instead of
the non-stationarity rate of Test(O) itself and refer to this
property as “last-piece-non-stationary by Test(O)”.

Figure 4 shows the non-stationarity rate of Test(V) and
the last points of each interval determined to be last-piece-
non-stationary by Test(O). At the P-wave arrival, the non-
stationarity rate of Test(V) increases sharply, and the inter-
val is determined to be last-piece-non-stationary by Test(O)
when the interval includes the arrival point. The picked
point is closer to the real arrival point when we use the
non-stationary rate of Test(V) for the determination, while
less misjudgments for picking occur for the result derived
from the last-piece-non-stationarity by Test(O). The non-
stationarity rate of Test(V) also increases at points other
than the point of real arrival. For this comparison, we
constructed our picker so that we detect the arrival point
roughly by Test(O) and searched for the accurate arrival
point by Test(V) in the vicinity of the roughly estimated
point. Here we searched the accurate arrival in a range of 10
points to the roughly estimated point. If the non-stationarity
rate of Test(V) exceeds the threshold (we used 0.7 as the
threshold here) at a certain point in this time range, we go
back along the time line from this point and search the in-
terval which can be regarded as stationary. The last point
of this interval is defined as the precise arrival. The non-
stationarity rate of Test(M) has always been small and does
not require further attention. An outline of our method is
shown in Fig. 5.

Using this method, we can detect the phase and deter-
mine the precise arrival of the phase (picking) at the same
time. This makes real time source location much easier. In
this paper, we mainly focus on the part of the picker of this
method.

4. Results
We have tested the Test(S) picker using the velocity
waveform data set of events selected from National Re-
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Take an interval with length N+1
from n-N to n

Ast-piece-non-stationary

by Test(O)

Yes
| m=n; flag=0OFF |

calculate non-stationarity rate of Test
(V) for interval from m-N to m

ationarity 1o
Test(V) >0.7

determine there is no arrival in
this time window

Y

move one time step forward
n=n+1

Fig. 5. The outline of the algorithm of our method for automatic picking.

search Institute for Earth Science and Disaster Prevention’s
high-sensitivity seismograph network (Hi-net) Japan data
from February, 2002 to July, 2003. Selected events have a
magnitude ranging from M 0.3 to M 5.5 and epicentral dis-
tances less than 30 km from the stations. We used the up-
down component (1D) for the P-wave determination and
the horizontal component (2D) for the S-wave determina-
tion. We tested the P-wave picker on 334 seismograms and
the S-wave picker on 117 seismograms.

Some examples of the data to which our picker was ap-
plied are shown in Fig. 6. In Table 1, we show the ratio of
the points picked by our picker within any time lag between
the point picked by our picker and the point determined
manually by human experts. 90% of the picked points by
our picker are within 0.1 s of the manual picks. For com-
parison, we also applied the AR-model picker (auto_pick
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Table 1. Time lags of the point picked as P-wave arrival by automatic picker from the point picked by manually picking. Results of our picker and of
the picker using the AR-model are both shown. Number of seismograms that could be picked by each method is also showed. The total number of
seismograms used to test both methods is 334.

Time lag from manually picked point(%)
Number of picked seismograms <0.1s 0.1-0.5s 0.5-1s 1-5s >5s
Our method 278 90.3 9.7 0.0 0.0 0.0
AR picker 290 89.3 1.4 0.3 1.4 7.6
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Fig. 6. The results of our P-wave picker. Seismograms include the P-wave arrivals, and the vertical lines on the seismograms indicate the estimated

P-wave arrivals picked by our method of stationary analysis

program from the Win system (Yokota et al., 1981), a ma-
jor seismic monitoring system in Japan) to the same data
set. For the AR-model picker of Win system, both the for-
ward and backward AR models (Takanami and Kitagawa,
1988; Leonard, 2000) are used to derive the AIC. The re-
sult of the AR-model picker is also shown in Table 1. In the
case that the time lag is within 0.1 s, the ratio of the points

picked by AR-model picker is almost the same as that of
our picker. However, in the case that the time lag is big-
ger than 0.1 s, some points picked by AR-model picker are
determined largely apart from the arrival points estimated
by manually picking. These mistakes in AR-model picker
are mainly caused by the failure of taking ranges prior to
the appllcation of the picker. The AR-model picker deter-
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(®)

Fig. 7. The results of our S-wave picker. Seismograms include the S-wave arrivals and the vertical lines on the seismograms indicate the estimated

S-wave arrivals picked by our method of stationary analysis.

mines the point of arrival by (1) determination of the divid-
ing point, (2) estimation of the AR-coefficient from (some
part of or whole of) the data before (and after) the dividing
point, (3) derivation of the AIC value from the prediction
error of the estimated forward (and backward) model, (4)
move the dividing point along the time line and the point for
the minimum value of AIC is defined as the phase arrival.
So, we must take a range including the P-wave arrival prior
to applying the AR-model picker by using some other algo-
rithms, for example the STA/LTA ratio. If the range is not
taken correctly, AR-model picker fails to pick P-wave ar-
rival. And even if we could take the range correctly, the AIC
value sometimes has several peaks, and then the AR-model
picker may also determine the wrong point as the arrival
point by picking the wrong peak. Our picker takes intervals
along the time line, and does not have to take a prior range.
This difference may be significant especially for an earth-
quake with relatively low signal/noise ratio; for example,
volcanic earthquakes. This property is also useful when the
picker is used for real time monitoring. Overall, our picker
picked the P-wave arrival with considerable accuracy, and
it was able to pick the seismograms which AR-model picker
could not pick.

We constructed the S-wave picker on the basis of the
same algorithm as the P-wave picker. We used the 2-D hor-
izontal component of seismograms for the S-wave picker.
A total of 117 seismograms with the manually picked S-
wave arrivals are used to test the algorithm, and 108 of these
could be determined by the S-wave arrival automatically
by our picker. Some of the examples are shown in Fig. 7.
For the comparison to the P-wave picker, we use the same
time length N+1=100 for the S-wave picker. The S-wave
picker is constructed for the 2-D data. Then, M turns into 9.
This value is relatively smaller than the case of the P-wave
picker. However, we have tested the S-wave picker with
longer time-length toward some seismograms and obtained

a similar result as the case of M=9. It would also be useful
to use a longer time length, let’s say, more than 200 for the
application of 2-D or multidimensional data case, with the
consideration of the computational time. S-wave picking is
more difficult and less accurate than P-wave picking, as the
other picker, because the non-stationarity rate of Test(V) be-
comes high after P-wave arrival. After the P-wave arrival,
many phases of seismic signals, such as surface waves, ar-
rive, and our method also picks these points of arrival, in-
stead of the other method of auto-picking. Improvement
needs to be made at this point, but in the present study we
used the point nearest to the maximum amplitude in cer-
tain length of time from the P-wave arrival as the picked
S-wave arrival. The P-wave arrival is of course picked by
the method of picking S-wave arrival, and this P-wave ar-
rival is also shown in Fig. 7. However, the estimated P-
wave arrival by the S-wave picker is not reliable since the
S-wave picker does not use the up-down component of seis-
mograms. A total of 108 seismograms could be picked for
the S-wave arrival by our method, and 71.3% of the auto-
picks are within 0.1 s of the manual picks. In the case of
the AR-model picker, 76 seismograms could be determined
as the S-wave arrival and 67% of the AR-model picks are
within the range of 0.1 s from the manual picks.

From these applications, our picker is a reliable method
to pick the point of arrival automatically. Since, unlike
the method of the AR-model picker, our method picks all
points that match the criteria, it will be useful in a swarm
or for picking many kinds of seismic phases in one event at
one time, for example, P-wave, S-wave, surface wave, and
converted wave.

5. Conclusions

We have constructed a new detector and picker of seismic
wave arrivals based on stationary analysis according to the
theory of the KM,O-Langevin equations. This method does
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not require the prior assumption for the time series and
does not have to take a range preliminarily before applying
picker. We applied this method to real seismic data and
confirmed that our method is accurate enough to use as a
part of the seismic early detection system and that it can
pick P-wave arrival which could not be picked by method
using AR-model.
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Appendix A.

If X is a local and weakly stationary process, special re-
lationships exist among the elements of L M (X). The Char-
acterization Theorem describes these relationships for Sta-
tionary Property (Okabe, 1999).

Theorem 1 (Characterization Theorem for Stationary
Property)

The necessary and sufficient condition for X to have a
weakly stationary property is that LM (X) satisfies the
Dissipation-Dissipation Theorem (DDT) and Fluctuation-
Dissipation Theorem (FDT).

Dissipation-Dissipation Theorem(DDT)

For each integer (1 <n < N)

y+(n,0) =4d+1(n)
For each integer (1 <k <n < N)

ven, b)) =ys(n =1L k=1 +6:(m)yx(n —1,n —k — 1)
(A.2)

(A1)

Fluctuation-Dissipation Theorem(FDT)
For each integer (1 <n < N)
Vi(0) =V_(0)
Vi(n) = X —3:(n)dz(n)Ve(n — 1)
S.(mV_(n—1)=Vin—1)"6_(n)
8 (mV_(n) = Vy(n)'s_(n)

(A3)

On the other hand, we can uniquely construct the KM,O-
Langevin matrix system which satisfies the (DDT) and
(FDT) from any positive definite d x d matrix function
with the Toeplitz condition (Okabe, 2000). This theorem
is called the Construction Theorem.

Theorem 2 (Construction Theorem)

For any matrix function R = (R(n); |[n| < N) which sat-
isfies the Toeplitz condition and 'R(n) = R(—n) (0 <n <
N), there exists a unique system LM (R) of d x d matrices
which satisfies (DDT),(FDT) and the following relationship
(PAC).

(PAC) 8f(n+1) = —(R(x(n+ 1)
n—1
+) vf e DREER+ D)VEm™!
k=0
(A4)
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On the basis of Theorem 2, L M (R) can be calculated by
the following algorithm.

[Step 1] VE©) = R(0)

[Step2]  85(1) = —REDHVEO)™

[Step3]  y£(1,0) =8£(1)

[Step4]l  VEM) = —sfMsEa)vVE©)
Assuming that we could obtain

(vEm k), 88m), VEW; 0 <k <m <n, 0 <1 <n)
fornof 1 < n < N — 1, then we can calculate terms of
n—+1.

[Step 5]

85 (n+1) == (R(£(n + 1))
n—1
+ ) yEm HREE + D)VEM ™
k=0

[Step 6]

yRm+1,00=6%n+1)
yEn+ 1.k =yf(n k-1

+ 88+ Dyfm.n—k), 1 <k<n)

[Step 7]
Vi +1) = U =85+ DSEn+ D)VEm)

LM (R)can be obtained by the recursive execution of this
algorithm.

By solving the KM,O-Langevin equations with elements
of LM (R)as the coefficient, we can make a d-dimensional
stochastic process X. Then X has following property.
Theorem 3
X has a stationary property and its covariance matrix
function is R. KM»O-Langevin matrix L M (X)is equal to
LM(R).

We consider the case that we have any d-dimensional-
valued stochastic process X, and any non-negative definite
matrix function R which satisfies the Toeplitz condition and
'R(n) = R(—n) (0 < n < N). Note that R is indepen-
dent of X. From Theorem 2, we obtain the pseudo-KM,O-
Langevin matrix from R. Using elements of LM (R), we

introduce a pseudo-fluctuation process of X as follows:
n—1

v(n) = X(n) + Y yf (n, k)X (k). Considering Theorem
k=0

1, 2, and 3, the necessary and sufficient condition for X to
have a weakly stationary property and to have the covari-
ance matrix function R is that ¥ (n) is orthogonal, i.e.

B(m), D(n)) = 8,V (n) (A5)

Appendix B.

In the derivation of the formulated criterion [Orthog-
onality], a basic concept of the formulation is to trans-
form R(Em)(n; m) into a form that converge to the nor-
mal distribution N(0,1). To achieve this purpose, we ex-

press d(M + 1)RE” (n; m) as the sum of Rfm(n; m) and
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Rg v (n; m) that are the sum of independent stochastic vari-
ables:
E(A) Em S(v)
dM+ 1R "(n;m)=R; (n;m)+ R, (n;m) (B.1)
To obtain this separation, we divide both d(M + 1) and
m by 2n and call the quotients ¢, s and the reminders r, #,
respectively.

dM+1)—1=q2n)+r O<r <2n-1) (B.2)
m—sQ2n)+t 0<t<2n-1) )

Ifo<r<n-1,

(s)
R} (nym) =
n—t—1

Y EDm+EY (m+n+k)
k=0

+ Z (Z EDQ2jn+kEW (2] + Dn + k)
j=s+1 k=0

O<t<n-1)

q—1 n—1

Z (X EWQ2jn+kEW(Q2)j 4+ Dn+k))

j=s+1 k=0
n<t<2n-1)

(B.3)

E(»\')
R2 (n m)

Z (Z EONQ) 4+ Dn+ED (2] 4+ Dn + k)
=s —0

+ Z E9((2q — Dn +k)ED (2qn + k)
(0 < t<n-—1)

n—t—1
S EOm +ES (m + n + k)
k=0
q—2 n—1

+ 2 (X Q7+ Dn+kED(2) + Dn + k)
j=s k=0

+ 2 E9(2q — Dn 4+ k)EW 2qn + k)
k=0

(n<t<2n—1)

(B.4)
Ifn<r<2n-1

(s)
RS (n;m)
n—t—1

Y EDm+EY (m+n+k)
k=0

-1 n-1
+ S (R E0Qjn+0ED(Q2) + Dn+ k)
j=s+1 k=0

+’§§(”(2qn +ED(2g + Dn+k)
_ k=0

O<t<n-1)

-1 n-1
T (X EOQjn + DEOQ2) + D+ k)

j=s+1 k=0

+’§§(”(2qn +ESD(2g + Dn+k)
k=0
nm<t<2n-1)

(B.5)
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Rg(x) (n’ m) _
2n—1—t
Y EOm+E)EDm+n+k)
k= O
n—1

+ Z (X E9(Qj+ Dn+k)ED (2] + Dn + k)
j=s+1 k=0

O<t<n—1)
q—1 n—1

Z (X E9Qj+ Dn+kED(Q2) + Hn + k)
j=s k=0

n<t<2n-1)

(B.6)

LY and LY) are defined to be the total number of the term

n, m
number of Rl
(B1), (B2),

(n, m) and R2 (n, m), respectively. From

LY + 1P =dM+1)—n—m

n,m n,m

(B.7)

is satisfied. In concrete terms, these are given as follows:
Ifo<r<n-—1,

L — n(g +s) — O=<t=n-1
i nig—s—1) n<t<2n-1)
1O _ ng—s—14+r+1 O<t<n-1
n,m nig+s)+r+1—m n<t<2n-1)
(B.8)

Ifn+l1<r<2n-1

L0 — ng+s—H+r+1-m O=t=n-1
mm N n(g—s—2)+r+1 n<t<2n-1)
Lo —na—s O<t<n—1)
T n(g s+ 1) —m (n<t<2n—1)
(B.9)
From the ~central limit theorem, for each

nm(1l < n < L,0 < m < L — n),

41 -1
(,/LZ‘,L) RS (ny m), («Ui;) RS (:m)  will

approximately be the occurrence of a stochastic variable
which following the Gaussian normal distribution N (0,1)
for sufficiently large M. Therefore,

-1
(wdf,%) IRE” (n: m)| < 1.96
—1
<\/L£‘},> IRE” (ny m)| < 1.96

(B.10)
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are satisfied in probability of 0.95. From this,

m ((\/E)l R (n; m))
+/L, ((\/LT@_]RE(”(n;m))‘

<1.96 (m + m>

By transforming (B11), we get inequality (C-O).

—1
d(M +1) (\/L,‘Bn + \/Lf;,) |RE (n; m)| < 1.96

(B.12)

£

d(M—l—l)‘R (n;m)‘ _

(B.11)
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