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Cyclic solar activity as one of the natural chaotic phenomena has significant effects on Earth, climate, and
satellites. Rapid changes in the near-Earth space environment can affect the performance and reliability of
both spacecraft and ground-based systems. This can imply major problems due to communication and satellite
operational anomalies. Therefore, it is meaningful to analyze solar activity and geomagnetic indices to elicit the
behavior of sun as the origin of most of these chaotic phenomena. One of the most important tools for analyzing
the chaotic trends is the “Embedding Dimension” (ED). In this paper, the variation of ED for solar activity indices
especially during storm time for two well-known storms is considered. The first storm is the super-storm on 13
March 1989, which shuts down the power supply system in Québec, Canada and the second one is the storm
caused by Coronal Mass Ejection on 11 January 1997 which causes the failure of Telstar 401 satellite. The
method of this paper is based on the fact that the reconstructed dynamics of an attractor should be a smooth map,
i.e. with no self intersection in the reconstructed attractor. It is shown that the Embedding Dimension (and other
chaotic characteristics) of some solar and geomagnetic activity indices during these storms varies rapidly.
Key words: Space weather, chaotic dynamics, embedding dimension, polynomial models, solar activity, geo-
magnetic activity, geomagnetic storms.

1. Introduction
Recently, there has been so much progress made in so-

lar plasma eruptions, geomagnetic storms and sub-storms
that the time is now ripe to put all related and global as-
pects together into a field of space weather. On the other
hand, technological progress was made in 20th century and
continued in the beginning of 21st century has made hu-
man life increasingly dependent on satellites. There has
been a rapidly increasing reliance on spacecraft systems to
meet modern human needs for information transfer and re-
mote sensing (Baker, 2000). As human presence in space
is in an explosive phase, it is expected that the impact of
these effects will be quite significant in this and the next
solar cycles (Vassilidiadis, 2000; Sharifi et al., 2006; Mir-
momeni et al., 2006, 2007). In addition, modern satellite
systems and subsystems appear to show an increasing sus-
ceptibility to effects of the space weather due to their high-
sensitive electronic nature (Baker, 2000). Space weather not
only affects the functioning of technical systems in space
and on Earth, but may also endanger human health and life
(Hill et al., 2000; Carlowicz and Lopez, 2002). The ef-
fects of this phenomenon are many and varied: they include
electronic failures (Love et al., 2000; Dorman, 2005), im-
mediate and long term hazards to astronauts and aircraft
crews (Garrett and Hoffman, 2000; Jokiaho, 2004; Defise
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et al., 2005), changes in electrostatic charging of satellites
(Lai, 1996, 1999; Baker, 2000), interruptions in telecom-
munications and navigational systems (Boteler et al., 1998;
Kikuchi, 2003; Stanislawska et al., 2003), and power trans-
mission failures (Kappenman, 1999; Pirjola, 1998; Daglis
et al., 2004) and disruption to rail traffic signaling (Label
and Barth, 2000; Pirjola, 2003). Space weather is thus a
lot more than the impressive auroras at high latitudes, with
which we are all familiar and risk hazards due to space
weather exotic phenomena pose serious threat motivating
rapid search for accurate analyzing, modeling, and predic-
tion methods (Turner, 2000; Bothmer, 2004).

It is shown that the cyclic solar activity has chaotic char-
acteristics especially during storm time which depicts the
difficulties in long-term prediction of solar activity indices
(Stefanski, 2003; Gholipour et al., 2007; Mirmomeni et al.,
2007). It has to be said that, deterministic chaos appears
in different fields of science like physics, biomedicine, and
engineering (Ruelle, 1978; Kocarev et al., 2006). The main
idea of chaotic time series analysis is that a complex system
can be described by a strange attractor in the phase space
(Mirmomeni and Lucas, 2008). The first step of chaotic
time series analysis is the reconstruction of the equivalent
attractor’s state space. State space reconstruction can be de-
scribed by embedding the time series in a vector space. The
embedding theorem is proposed by Takens (Takens, 1981;
Sauer et al., 1991). However, Takens’ theorem is valid for
indefinite noise free data only and does not address the cal-
culation of embedding dimension and lag time. In addition,
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Fig. 1. Strange attractor of a two dimensional chaotic system, if order
is under-estimated to d = 1 all the points 1, . . . , 7 on x(k − 1) axis
are projected on point 1 in x(k) axis and have the same one step ahead
value.

it is of little practical relevance since it suggests a sufficient
condition based on the dimension of the attractor’s mani-
fold, which is not known a priori. There are many publica-
tions concerning the estimation of suitable embedding di-
mension from chaotic time series. They can be summarized
in three main categories as follow.

The first approach is based on the fact that the original at-
tractor lies on a smooth manifold. This condition is checked
by different methods by many researchers. The most fa-
mous work seems to be the method of False Nearest Neigh-
bours (FNN) developed in Kennel et al. (1992). The second
approach for estimating the embedding dimension is based
on Singular Value Decomposition (SVD) method which is
proposed in Broomhead and King (1986) and Cao (1997).
The main idea of this approach is to obtain a base for the
embedding space in such a way that the attractor can be
modelled by an invariant geometry in a subspace with fixed
dimension. It has to be said that, many researchers doubt in
the quality of this method in eliciting the characteristics of
nonlinear time series because the SVD essentially is a linear
approach with firm theoretic base (Mess et al., 1987; Fraser,
1989; Bian and Ning, 2004; Meng et al., 2007). The third
approach is based on considering an invariant on the attrac-
tor such as correlation dimension (Grassberger and Procac-
cia, 1983), successive values of embedding dimension and
convergent values. The typical problems of this method are
its computation time, its poor performance for short time
series, and its sensitivity to noise (Meng et al., 2007).

In this paper, it is tried to elicit the variation of chaotic
trends of solar activity indices, especially during storm
time. Eliciting the variation of chaotic trends is the first
step for modeling such complex and chaotic phenomena. To
achieve this, there are some quantitative measures including
fractal dimension, entropy and Lyapunov exponents (LEs)
(Sano and Sawada, 1985; Chen et al., 2006; Liu et al., 2005;
Serletis et al., 2007).

In this paper, the variation of embedding dimension from
some solar activity indices based on polynomial models is
considered. This method has been used in many applica-

tions by several researchers (e.g., Ataei et al., 2003, 2004;
Bian and Ning, 2004; Meng et al., 2007) and the perfor-
mance of this method in estimating the optimal embedding
dimension even for noisy chaotic dynamics is great (Meng
et al., 2007). In addition, this method is applicable to short
time series as well and its performance for estimating em-
bedding dimension of noisy chaotic dynamic is good (Bian
and Ning, 2004; Meng et al., 2007). In this method a gen-
eral polynomial autoregressive model (Landau et al., 1989;
Isermann, 1991; Ljung, 1998; Nelles, 2001), is considered
to locally fit the given data. The order of this model is
the same as the dimension of the reconstructed state space.
The reconstructed dynamics should be a smooth map, i.e.
with no self-intersection in the reconstructed attractor. This
property is checked by the evaluation of the one step ahead
prediction error of the fitted model for different orders and
various degrees of nonlinearity in the polynomials. The
minimum embedding dimension is determined as the or-
der with which the level of the prediction error decreases
abruptly. It is shown that this approach has the capability
of adaptively computing embedding dimension of uncer-
tain or time varying chaotic dynamical systems (Ataei et al.,
2004). Therefore, it is useful to apply this adaptive estima-
tion method to elicit the variation of ED for solar activity
indices. To show the variation of ED of solar activity in-
dices, two well-known storms are considered. The first one
is the super-storm on 13 March 1989 which cause a black
out about nine hours in Québec, Canada and the second one
is the storm caused by Coronal Mass Ejection (CME) on
11 January 1997 which causes the most widely known dis-
turbances and failures for satellites: the failure of Telstar
401 satellite. In this paper, ED of three solar activity and
some other related indices is estimated via proposed adap-
tive approach: Sunspot number, Disturbance Storm Time
(Dst) and Proton temperature as one of the factors of solar
wind index. The results of this paper depict that the embed-
ding dimension (and chaotic characteristics) of these solar
activity indices during these storms vary rapidly.

The remaining sections of this paper are structured as
follows: the main idea of the method for estimating the
minimum embedding dimension is presented in Section 2.
Model based procedure for estimation of the embedding di-
mension is presented in Section 3. Section 4 is devoted to
describe the performance of the proposed method in elic-
iting the variation of chaotic characteristics of solar activ-
ity indices especially during storm time by estimating min-
imum embedding dimension of solar activity indices. The
last section contains the concluding remarks.

2. Model Based Estimation of the Embedding Di-
mension

In this section, the basic idea and the procedure of the
model based method for estimating the embedding dimen-
sion is presented. Let the original attractor of the system
exists in an m-dimensional smooth manifold, M . The dy-
namical behavior of the system is not known a priori and
only a sequence of measurements is available as follows,

y(t + ts), y(t + 2ts), . . . , y(t + Nts) ≡ y1, y2, . . . , yN

(1)
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Fig. 2. Daily average of Dst index during 1989.

Fig. 3. Variation of the minimum embedding dimension of Dst index during 1989.

where ts is the sampling time and N is the total number of
measurements.

An embedding is a smooth map from the manifold M
to space U in such a way that its image be a smooth sub-
manifold of U . It has to be said that this map is a diffeomor-
phism between M and its image. By using Method of De-
lays (Takens, 1981; Mirmomeni and Lucas, 2008), which is
based on Takens’ theorem, the embedding space is recon-
structed by d (greater than 2m) sequential values of mea-
surements as:

[y ((k − (d − 1)) ts) , y ((k − (d − 2)) ts) , . . . ,

y ((k − 1)ts) , y(kts)] (2)

where ts is the sampling time and the dimension of the
reconstructed space, d is called the embedding dimension
(its optimal value is looked for).

The attractor of the well reconstructed phase space is
equivalent to the original attractor and should be expressed
as a smooth map. The state equations of the reconstructed

dynamics are considered as:

x(k + 1) = f
(
x(k)

)
(3)

where f (.) is a continuously differentiable function to the
state vector x(k). In many practical situations, the structure
of the underlying dynamical system is unknown. Depend-
ing on the objectives, there are different theories which are
suitable for special analysis of nonlinear systems. In this
paper, in order to model the reconstructed state space, the
vector (2) after normalization, is considered as the state vec-
tors.

x(k) =

⎡
⎢⎢⎢⎣

x1(k)

x2(k)
...

xd(k)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y (k − (d − 1))

y (k − (d − 2))
...

y (k)

⎤
⎥⎥⎥⎦ (4)

To derive the state equations, a function g(.) is estimated
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Fig. 4. Variation of one step ahead prediction error calculated for the estimated embedding dimension and degree of nonlinearity of the polynomial
models of Dst index during storm on March 1989.

Fig. 5. Daily average SSN index during 1989.

by polynomial modeling as follows:

y(k + 1) = g
(
x(k)

)
(5)

A canonical state space representation of the system is
obtained as follows:

x(k + 1) =

⎡
⎢⎢⎢⎣

y(k − d + 2)

y(k − d + 3)
...

y(k + 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x2(k)

x3(k)
...

g
(
x(k)

)

⎤
⎥⎥⎥⎦ (6)

Thus, the order of polynomial model g(.) will also be
d. Therefore, the optimal embedding dimension and the
suitable order of the polynomial model have the same value.

Now, let us have an example to show the main idea of
finding the optimal embedding dimension for a chaotic dy-
namic. Consider for example a two dimensional nonlinear
chaotic system with its strange attractor as shown in Fig. 1.
The phase diagram or state trajectory which is shown in

Fig. 1 depicts the chaotic trends of this dynamic. The objec-
tive is to find a model as Eq. (5) by using the autoregressive
polynomial structure. If the order of the model is under-
estimated to d = 1, it is obvious from Fig. 1 that the model
will project seven points (i, 1), i = 1, . . . , 7 to the same one
step ahead value, say x̂k+1. Therefore, the first step ahead
prediction error for each transition of the point is:

e(i, 1) = x̂k+1 − xk+1(i, 1) (7)

i = 1, . . . , 7 (Number of points proejcted to the same

one step ahead value)

where xk+1(i, 1) denotes the true first step ahead value. By
this assumption for embedding dimension, these errors will
be large since only one fixed projection has been considered
for all of these points. If the order of model is selected to
d = 2, then for each points of xk+1(i, 1), i = 1, . . . , 7
different one step ahead value is estimated. The prediction
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Fig. 6. Variation of the minimum embedding dimension of SSN index during 1988 and 1989.

Fig. 7. Variation of one step ahead prediction error calculated for the estimated.

error in this case is:

e(i, 1) = x̂k+1(i, 1) − xk+1(i, 1) (8)

i = 1, . . . , 7 (Number of points proejcted to the same

one step ahead value)

The errors in this case are much smaller than the previous
case, since the error in this analysis shows only the capabil-
ity of selected model in predicting one step ahead value of
chaotic dynamic. In addition, the mean squares of these er-
rors for all points of the strange attractor differ so much in
these two different choices. Typically, it is observed that
the mean squares of prediction errors decrease while d in-
creases; however if one continues to increase the value of
d , there will be a value for d (or an order for state space of
the model) which the change on d has no effects on predic-
tion error. This order is the best choice for the order of the
model and is selected as minimum embedding dimension as
well.

In the following section, by using the aforementioned
idea, the procedure of estimating the minimum embedding
dimension for chaotic time series is presented.

3. Model Based Procedure for Estimation of the
Embedding Dimension

The procedure for estimation of the embedding dimen-
sion of chaotic time series consists of 7 steps as follows:

1) The fist step is devoted to preprocessing. The data has
to be normalized. In addition, if there are some long-
term trends or seasonal effects, these trends have to
be removed in this step. It has to be said that, this
procedure is a general tool which can be used for any
time series. Some time series such as weather indices,
transaction of a bank account, or load time series for
power networks have seasonal effects; but seasonal
effects do not concern us in analyzing solar activity
indices. In this paper, the preprocessing step includes
only normalization task.
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Fig. 8. Daily Dst index during 1997.

Fig. 9. Variation of the minimum embedding dimension of Dst index during 1997.

2) Some definite ranges for embedding dimension and
degree of nonlinearity of the polynomial models have
to be chosen such as

D = {1, 2, . . . , dmax}
Np = {1, 2, . . . , nmax}

(9)

3) For each di ∈ D construct the delayed vector as

x(k) =

⎡
⎢⎢⎢⎣

y (k − (di − 1))

y (k − (di − 2))
...

y(k)

⎤
⎥⎥⎥⎦ (10)

4) For each delayed vector (10), find r nearest neighbors
which r as a designing parameter should be greater
than m as defined by Ataei et al. (2003, 2004):

m = (di + ni )!

di ! ni !
(11)

where di and n are the model order and degree of
nonlinearity respectively.

5) The following polynomial autoregressive model (Iser-
mann, 1991; Ljung, 1998) is fitted to the set of neigh-
bors found in the last step by well-known Least Square
(LS) technique (Isermann, 1991; Ljung, 1998; Nelles,
2001).

y(k + 1) = θ0 +
di −1∑
i=0

θ1i y(k − i)

+
di −1∑
i=0

di −1∑
j=i

θ2i j y(k − i)y(k − j)

+
di −1∑
i=0

di −1∑
j=i

di −1∑
p= j

θ3i j p y(k − i)y(k − j)y(k − p) + · · ·

+
di −1∑
i=0

di −1∑
j=i

· · ·
di −1∑
v=u

θni i j p···uv y(k − i)y(k − j) · · ·

·y(k − u)y(k − v) (12)
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Fig. 10. Variation of one step ahead prediction error calculated for the estimated embedding dimension and degree of nonlinearity of the polynomial
models of Dst index during CME on January 1997.

Fig. 11. Daily SSN index during 1997.

The initial values of parameters in vector ��� which
should be tuned by least square technique are chosen
randomly. For the model order di and degree of non-
linearity n the number of parameters in vector ��� that
should be estimated to identify the underlying model
can be calculated via Eq. (11).

6) The mean square of prediction errors is computed as:

σ =
√√√√ 1

N

N∑
k=1

e2
k =

√√√√ 1

N

N∑
k=1

(
x̂(k) − x(k)

)2
(13)

where N is the total number of points and ek is the one
step ahead prediction error.

7) The one step ahead prediction error should be calcu-
lated for all embedding dimension and degree of non-
linearity of the polynomial models by above procedure
(the full range of D and Np). By plotting the level of
prediction error vs. model order, the minimum embed-
ding dimension can be considered as the model order

d∗ which the variation of prediction error is negligible
for d > d∗.

As it said before, this method has the following advan-
tages, it is (1) applicable to a short time series, (2) stable
to noise, (3) computationally efficient (typically, the anal-
ysis of a 500-point time series takes just a few seconds on
a desktop computer), and (4) without any purposely intro-
duced parameters (Bian and Ning, 2004; Meng et al., 2007).

4. Case Studies
This section is devoted to elicit the variation of embed-

ding dimension of some solar activity and other related in-
dices such as sunspot number (SSN), Disturbance storm
time (Dst) as an important measure for predicting magnetic
storms and Proton temperature as an important factor of so-
lar wind index during storm time. Two well-known storms
are considered in this section.

These solar activity indices are used from “OMNI 2”
data set contains the hourly mean values of the interplan-
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Fig. 12. Variation of the minimum embedding dimension of SSN index during 1997.

Fig. 13. Variation of one step ahead prediction error calculated for the estimated embedding dimension and degree of nonlinearity of the polynomial
models of SSN index during CME on January 1997.

etary magnetic field (IMF) and solar wind plasma parame-
ters measured by various spacecrafts near the Earth’s orbit,
as well as geomagnetic and solar activity indices, and ener-
getic proton fluxes. This data set was created at NSSDC in
2003 as a successor to the OMNI data set first created in the
mid-1970’s. A detailed discussion of the creation OMNI 2
is at http://nssdc.gsfc.nasa.gov/omniweb/.
4.1 Case study 1: variation of ED during magnetic

storm on 13 March 1989
This subsection is devoted to elicit the variation of ED

of two important solar and geomagnetic activity indices
during super-storm on 13 March 1989. It has to be said that
the proton temperature of solar wind index was not saved
during this storm. Therefore in this subsection the variation
of ED for SSN and Dst indices are analyzed.

The proposed method for estimating the embedding di-
mension or suitable order of model based on local poly-
nomial modeling is implemented to these solar activity in-
dices as some chaotic time series. For these time series,

the developed general program of polynomial modeling is
applied for various d and n, and σ is computed for all the
cases in a look up table. After that, based on the discussions
in Sections 2 and 3, the optimum embedding dimension is
selected for these time series in each step.

Although, the embedding dimension is considered for
a time series, in this paper by using a moving window
it is tried to elicit the chaotic characteristic of these solar
activity indices. Therefore, in this paper the embedding
dimension is corresponded to a part of solar activity index
which is chosen by window and is assigned to the end point
of the window. In addition, the size of window is very
important. Using a large value for window leads to a smooth
estimation of embedding dimension. In other words, by a
large window we lose the local characteristics of chaotic
dynamics. On the other hand, if we choose a small window,
it will not be possible to estimate the embedding dimension
properly. In this paper, the best size of window is chosen
N = 150 by trial and error. Figure 2 shows the daily
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Fig. 14. Daily proton temperature index during 1997.

Fig. 15. Variation of the minimum embedding dimension of proton temperature index during 1997.

average of Dst index during 1989. The drop off during
March depicts the major magnetic storm which caused the
black out in Quebec.

It has to be said that, the estimated embedding dimen-
sion for overall Dst index is equal to 5. Figure 3 shows the
variation of the minimum embedding dimension of Dst in-
dex during 1988 and 1989. The variation of ED is large
and there is an obvious oscillation before storm onset. Fig-
ure 4 shows the variation of the one step ahead prediction
error calculated for the estimated embedding dimension and
degree of nonlinearity of the polynomial models by above
procedure during storm on March 1989. It is obvious that
the one step ahead prediction error increases rapidly before
storm and during the storm time which shows the varia-
tion of chaotic characteristics of this natural chaotic phe-
nomenon.

Again, for SSN, the developed general program of poly-
nomial modeling is applied to estimate the minimum em-
bedding dimension of this chaotic dynamic. Figure 5 shows
the hourly SSN during 1989. During this magnetic super-

storm, the SSN is high.
Figure 6 shows the variation of the ED of SSN during

1988 and 1989. It is obvious that the variation of ED is
not as large as the variation of ED of Dst Index; however
there is a rapid oscillation right before storm beginning for
this index too. Figure 7 shows the variation of the one step
ahead prediction error for estimated embedding dimension
of SSN during March 1989. It is obvious that the one step
ahead error increases rapidly during this storm.
4.2 Case study 2: variation of ED during CME on 11

January 1997
This subsection is devoted to elicit the variation of ED

of three important solar and geomagnetic activity indices
during a Coronal Mass Ejection on 11 January 1997 which
was a result of events with signs started even at 6 January
1997.

The proposed adaptive method for estimating the min-
imum embedding dimension based on local polynomial
modeling is implemented to these solar activity indices.
Figure 8 shows the hourly Dst index during 1997. The drop



246 M. MIRMOMENI AND C. LUCAS: ANALYZING THE VARIATION OF EMBEDDING DIMENSION

Fig. 16. Variation of one step ahead prediction error calculated for the estimated embedding dimension and degree of nonlinearity of the polynomial
models of proton temperature index during CME on January 1997.

off during January depicts the CME.
Figure 9 shows the variation of the ED of Dst index dur-

ing 1996 and 1997. It can be seen that the variation of ED
is not as large as the variation of embedding dimension on
March 13th and there is not an oscillation before storm on-
set because this hazard happened by a CME as a singular
phenomenon. Figure 10 shows the variation of the one step
ahead prediction error calculated for the estimated embed-
ding dimension and degree of nonlinearity of the polyno-
mial models by above procedure during CME on January
1997. It is obvious that the one step ahead prediction error
increases rapidly before CME and during the CME.

Again, for SSN, the proposed adaptive estimation al-
gorithm is applied for estimation of minimum embedding
dimension of this chaotic dynamic. Figure 11 shows the
hourly SSN during 1997.

Figure 12 shows the variation of the ED of SSN during
1996 and 1997. It is obvious the ED varies rapidly during
this storm. Therefore, it is meaningful to use the variation of
the minimum embedding dimension to alarm space weather
hazards. Figure 13 shows the variation of the one step ahead
prediction error for estimated embedding dimension of SSN
during CME on January 1997. It is obvious that the one step
ahead error increases rapidly during this CME.

Like Dst and SSN indices, for proton temperature factor
of solar wind index which is an important measure during
a solar storm, the proposed estimation method is applied to
estimate minimum embedding dimension. Figure 14 shows
the hourly proton temperature index during 1997. The large
temperature during January depicts the CME.

Figure 15 shows the variation of the ED of proton tem-
perature index during 1996 and 1997. It can be seen that
the variation of ED is large and there is an obvious pattern
before storm beginning and variation of embedding dimen-
sion clearly shows the impact of this CME. Figure 16 shows
the variation of the one step ahead prediction error for es-
timated embedding dimension of proton temperature index
during CME on January 1997. It is obvious that the one step
ahead error increases rapidly during this CME.

5. Discussion and Conclusions
In this paper, it is tried to elicit the variation of chaotic

trends of solar activity indices such as sunspot number, Dst

and proton temperature during storm time by estimating the
minimum embedding dimension via an improved estima-
tion method based on polynomial modelling. Two well-
known storms are considered in this paper. The first one
is the magnetic super-storm which caused the nine hours
black out in Quebec, Canada on 13 March 1989 and the sec-
ond one is a storm caused by Coronal Mass Ejection on 11
January 1997 which caused the most well-known satellite
failure. The results of analysis on estimation and variation
of embedding dimension depict that there is a rapid change
with an obvious oscillation of ED of these solar activity in-
dices during these storms. The ED of these solar activity
indices begins to vary in such a way that an obvious pattern
can be detected about 10 steps sooner before storm begins.
Considering this fact that the hazard on 11 January was hap-
pened by a CME as a singular phenomenon, the oscillation
in estimated embedding dimension can not been detected
easily. However, this hazard can be detected by looking to
the one step ahead prediction error of embedding dimen-
sion. Therefore, it is meaningful to use the variation of ED
for alarming systems against space weather hazards.
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