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Ground effects of space weather investigated by the surface impedance
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The objective of this paper is to provide a discussion of the surface impedance applicable in connection with
studies of geomagnetically induced currents (GIC) in technological systems. This viewpoint means that the
surface impedance is regarded as a tool to determine the horizontal (geo)electric field at the Earth’s surface, which
is the key quantity for GIC. Thus the approach is different from the traditional magnetotelluric viewpoint. The
definition of the surface impedance usually involves wavenumber-frequency-domain fields, so inverse Fourier
transforming the expression of the electric field in terms of the surface impedance and the geomagnetic field
results in convolution integrals in the time and space domains. The frequency-dependent surface impedance has
a high-pass filter character whereas the corresponding transfer function between the electric field and the time
derivative of the magnetic field is of a low-pass filter type. The relative change of the latter transfer function with
frequency is usually smaller than that of the surface impedance, which indicates that the geoelectric field is closer
to the time derivative than to the magnetic field itself. An investigation of the surface impedance defined by the
space-domain electric and magnetic components indicates that the largest electric fields are not always achieved
by the plane wave assumption, which is sometimes regarded as an extreme case for GIC. It is also concluded
in this paper that it is often possible to apply the plane wave relation locally between the surface electric and
magnetic fields. The absolute value of the surface impedance decreases with an increasing wavenumber although
the maximum may also be at a non-zero value of the wavenumber. The imaginary part of the surface impedance
usually much exceeds the real part.
Key words: Geoelectric field, geomagnetic field, geomagnetically induced current, GIC, space weather, plane
wave, convolution.

1. Introduction
“Space Weather” originating from solar activity is an im-

portant research subject in a modern society because vital
space-borne and ground-based technological systems may
suffer from problems during space storms (e.g. Lanzerotti et
al., 1999). At the Earth’s surface space weather manifests
itself as geomagnetically induced currents (GIC) in large-
scale conductor networks, such as electric power transmis-
sion grids, oil and gas pipelines, telecommunication cables
and railway systems (e.g. Boteler et al., 1998). The key
quantity for GIC is the horizontal geoelectric field induced
by a geomagnetic disturbance or storm at the Earth’s sur-
face. The transfer function between the geoelectric and ge-
omagnetic fields is known as the surface impedance (e.g.
Kaufman and Keller, 1981).

The concept of the surface impedance, usually denoted
by Z , (or of the inductive response function, or of the
complex depth or of the apparent resistivity directly deriv-
able from Z ) is included implicitly or explicitly in mag-
netotelluric research since its beginning (e.g. Cagniard,
1953; Wait, 1954; Schmucker, 1970a, b; Schmucker and
Jankowski, 1972; Weidelt, 1972; Weaver, 1973; Thomson
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and Weaver, 1975; Dmitriev and Berdichevsky, 1979; Wait,
1980; Avdeev et al., 1989; Weaver and Agarwal, 1993;
Dmitriev and Berdichevsky, 2002; and many others). The
objective of this paper is not to repeat the well-known ap-
plications of the use of the surface impedance to investiga-
tions of the Earth’s conductivity structure but to explore,
demonstrate and summarise the properties of the surface
impedance paying special attention to its utilisation in the
calculation of the geoelectric field for space weather pur-
poses. A usual practical problem is to determine the elec-
tric field at the Earth’s surface from ground-based magnetic
recordings, and the surface impedance plays the key role
then (e.g. Boteler, 1994; Viljanen et al., 2004).

Similarly to the electric and magnetic fields, the sur-
face impedance is affected primarily by ionospheric-
magnetospheric currents and secondarily by the Earth’s
conductivity structure. In general, Z is a 2 × 2 ten-
sor but in many applications it can simply be defined as
the scalar ratio of the perpendicular electric and magnetic
components. In order that the unit of the impedance is
‘ohm’ [�], we include the vacuum permeability μ0 (=
4π ·10−7 V s A−1 m−1) in the definition of Z , which is based
on the magnetic flux density field B, instead of the magnetic
field intensity H, in this paper. In the case of the electric y
and magnetic x component a minus sign is also added for
convenience in the definition of Z .
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The surface impedance is usually, but not necessarily,
determined from the electric and magnetic fields in the
frequency-wavenumber domain. This means that the elec-
tric and magnetic data have to be Fourier transformed from
the time to the frequency and from one or two horizontal
space coordinates to one or two wavenumbers. For simplic-
ity, in this paper, we only consider one horizontal coordinate
and thus one wavenumber. Inverse Fourier transforms from
the frequency to the time and from the wavenumber to the
space domain result in convolution integrals.

The special situation with electric and magnetic fields
that are independent of the space coordinates at the Earth’s
surface is called the “plane wave case”, which is the
most important in practice in connection with the surface
impedance. It corresponds to a zero wavenumber. Impor-
tant conclusions about the relation between the electric and
magnetic fields in the time domain can be drawn from the
behaviour of Z in the frequency domain. Calculating the
surface impedance from electric and magnetic fields depen-
dent on a space coordinate at the Earth’s surface indicates
that Z varies much from site to site and its absolute value
may be larger or smaller than in the plane wave case, which
thus does not constitute any extreme case.

The paper is organised by presenting the theory and the
equations in Section 2, and Section 3 is devoted to numer-
ical examples, which are chosen regarding applications to
geoelectric and GIC modelling.

2. Theory
2.1 Definition of the surface impedance

The (scalar) surface impedance Z is defined by

Z = −μ0
Ey

Bx
(1)

where Ey and magnetic Bx are perpendicular horizontal
electric and magnetic components at the Earth’s surface.
The usual choice of the Cartesian xyz coordinate system
in geoelectromagnetic research (as in this paper) implies
that the Earth’s surface is the xy plane and the x , y and
z axes point northwards, eastwards and downwards, respec-
tively. Equation (1) provides a general definition of the sur-
face impedance independently of the domains (time, fre-
quency, space, wavenumber) in which Ey and Bx are con-
sidered. Note that, in the frequency and wavenumber do-
mains, Ey and Bx are generally complex-valued quantities
making Z complex, too. A recursive formula for the sur-
face impedance in the frequency and wavenumber domains
can be derived for a layered Earth by using the continuity
conditions of the electric and magnetic fields at the layer
boundaries (e.g. Wait, 1981, pp. 43–55). This formula is
used in the numerical examples presented in Section 3.
2.2 Plane wave case

We now assume that the Earth has a layered structure and
that the primary electromagnetic field due to ionospheric
and magnetospheric currents is a plane wave propagating
vertically downwards. Then both the secondary reflected
field in the air and the fields in the Earth layers also propa-
gate vertically and no dependence on x or y exists. This is
called the “plane wave case”, and the surface impedance
characterising the Earth’s conductivity structure only de-

pends on the angular frequency ω (provided that Ey and Bx

are Fourier transformed from the time (t) to the frequency
(ω) domain). Thus

Ey(ω) = − 1

μ0
Zp(ω)Bx (ω) (2)

where the subscript ‘p’ refers to ‘plane wave’ and Zp(ω)

is the “plane wave surface impedance”. Possible violations
of the plane wave assumption resulting in so-called source
effects have caused a lot of discussion in connection with
geoelectromagnetic induction and magnetotelluric studies
of the Earth (e.g. Wait, 1954; Mareschal, 1986; Osipova
et al., 1989; Viljanen et al., 1993; Varentsov et al., 2003;
Sokolova et al., 2007). In general, the farther away the pri-
mary currents the better the plane wave assumption is sat-
isfied, which means in practice that the source effect prob-
lem becomes significant in auroral and equatorial electro-
jet regions. As expressed more precisely, neglecting source
effects requires that the horizontal variation of the fields
should be small in a distance equal to the skin depth in the
Earth. This means that large frequencies, i.e. short periods,
and highly-conducting Earth structures are more favourable
for the plane wave assumption. To quantify this statement,
we consider a characteristic length for horizontal variations
of the fields to be about 200 km. Then the skin depth in
a uniform Earth having a conductivity of 10−3 �−1 m−1 is
small enough for the plane wave approximation to be ac-
ceptable if the period is roughly one to two minutes or less.
For conductivities of 10−1 �−1 m−1 and of 10−5 �−1 m−1,
the periods have to be less than about two hours and a
second, respectively, to make the skin depth sufficiently
small for the plane wave assumption. As discussed e.g. by
Dmitriev and Berdichevsky (1979) and by Wait (1980) and
implicitly already shown by Wait (1954), a linear spatial
variation of the field does not prevent the application of the
plane wave formulas. Further discussions of the subject are,
however, outside the scope of this paper.

Denoting the time derivative of Bx (t) by g(t) (=
d Bx (t)/dt) and using the relation g(ω) = iωBx (ω), Eq. (2)
may be expressed as

Ey(ω) = − Zp(ω)

iωμ0
g(ω) (3)

Equations (2) and (3) can be inverse Fourier transformed to
obtain the relations between the electric and magnetic fields
in the time domain. To get quantitatively correct results, the
exact forms of the Fourier transform and of its inverse to
be used have to be defined clearly, so we use the following
conventions

F(ω) = 1√
2π

∫ ∞

−∞
F(t)e−iωt dt (4)

F(t) = 1√
2π

∫ ∞

−∞
F(ω)eiωt dω (5)

where [F(t), F(ω)] is the time-frequency Fourier transform
pair of any quantity. (Mathematical items including the
Fourier transform, the convolution theorem and the Dirac
delta function are summarised for geoelectromagnetic pur-
poses e.g. by Pirjola (1982, appendix A).) By applying the
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convolution theorem, Eqs. (2) and (3) together with for-
mula (5) give

Ey(t) = − 1

μ0

√
2π

∫ ∞

−∞
Zp(t − u)Bx (u)du

= − 1

μ0

√
2π

∫ ∞

−∞
Zp(u)Bx (t − u)du (6)

Ey(t) = − 1

μ0

√
2π

∫ ∞

−∞
Cp(t − u)g(u)du

= − 1

μ0

√
2π

∫ ∞

−∞
Cp(u)g(t − u)du (7)

The functions Zp(t) and Cp(t) are obtained from Zp(ω) and
Zp(ω)/ iω by using Eq. (5). Consequently, Zp(t) is the time
derivative of Cp(t). The integrals in formulas (6) and (7)
extend from −∞ to +∞ indicating that the value of the
electric field at a given time t is in principle affected by
the magnetic field at all times in the past and in the future.
However, Eqs. (6) and (7) actually satisfy the causality, i.e.
only past values of the magnetic field have an influence,
which mathematically means that Zp(t) and Cp(t) are zero
for negative arguments.

If Zp(t) is proportional to the Dirac delta function δ(t)
Eq. (6) shows that Ey(t) is proportional to Bx (t), and simi-
larly based on Eq. (7), Ey(t) is proportional to g(t) if Cp(t)
is proportional to δ(t). In the frequency domain, these con-
ditions are equivalent to Zp(ω) independent of ω and to
Zp(ω) linearly dependent on ω, respectively. The particu-
lar conclusions can be drawn either from Eq. (4) with F(t)
proportional to δ(t) (and noting that the Fourier transform
of Cp(t) equals Zp(ω)/ iω, which is independent of ω when
Zp(ω) is proportional to ω) or directly from Eqs. (2) and (3).
Since the electric and magnetic fields are coupled by Fara-
day’s law of induction involving the time derivative of the
magnetic field the first guess might be that Ey(t) and g(t)
would be proportional. The issue is investigated by using
certain layered Earth models in Section 3. The assumption
of a uniform Earth (Section 2.6) enables a closed-form inte-
gral relation between Ey(t) and g(t), which shows that the
former is strongly related to the latter but a simple propor-
tionality does not exist. It is worth emphasising here that,
at least to the first approximation, the process of the electric
field driving GIC in a technological network is a dc pro-
cess (Lehtinen and Pirjola, 1985; Pulkkinen et al., 2001).
Therefore the time behaviour of GIC is the same as that of
the electric field, and so the electric field may be replaced by
GIC in the conclusions drawn about the relations between
the electric field and the magnetic field or its time deriva-
tive in the time domain. Trichtchenko and Boteler (2007)
present an example in which the electric field and GIC are
roughly proportional to the magnetic time derivative and
another example in which a close relation to the magnetic
field exists. An obvious explanation is that the two sites for
these observations are located at different Earth conductiv-
ity structures.
2.3 Surface impedance in the space domain

Let us consider electric and magnetic fields that have
been Fourier transformed from the time domain into the
frequency domain and consider a single angular frequency
ω. We assume that the only space coordinates on which

the fields depend are x and z (a two-dimensional case).
Maxwell’s equations then lead to two separate sets of equa-
tions, one including the electric Ey and magnetic Bx and Bz

components and the other including the electric Ex and Ez

and magnetic By components. We adopt the former, i.e. the
E polarisation case. Such an electromagnetic field is pro-
duced by an infinitely long line or sheet current simulating
an ionospheric electrojet and located parallel to the y axis
above a layered Earth and having the (implicit) time depen-
dence eiωt . Following the general equation (1), the surface
impedance denoted by Zs is now a function of x and ω and
is given by

Zs = Zs(x, ω) = −μ0
Ey(x, ω)

Bx (x, ω)
(8)

The surface impedance, of course, also depends on the
Earth’s conductivity structure, not expressed explicitly in
formula (8).
2.4 Surface impedance in the wavenumber domain

We continue to consider the E polarisation case similar
to that discussed in Section 2.3, i.e. the components Ey

and Bx are functions of x and ω at the Earth’s surface.
The Fourier transform and the inverse Fourier transform
between the space (x) and wavenumber (b) domains are
defined similarly to Eqs. (4) and (5) with t and ω replaced
by x and b, respectively. Based on the general Eq. (1), the
surface impedance Zw in the wavenumber domain is

Zw = Zw(b, ω) = −μ0
Ey(b, ω)

Bx (b, ω)
(9)

where Ey(b, ω) and Bx (b, ω) are obtained by formula (4)
from Ey(x, ω) and Bx (x, ω) at the Earth’s surface. Besides
b and ω, Zw(b, ω) is affected by the Earth’s conductivity
structure, and as mentioned in Section 2.1, it can be calcu-
lated recursively for a layered Earth.
2.5 Convolution integrals in the space domain

Similarly to the derivation of Eq. (6) from formula (2),
Eq. (9) leads to the convolution integral

Ey(x) = − 1

μ0

√
2π

∫ ∞

−∞
Zw

(
x − x ′) Bx

(
x ′) dx ′

= − 1

μ0

√
2π

∫ ∞

−∞
Zw

(
x ′) Bx

(
x − x ′) dx ′ (10)

where Ey(x), Bx (x) and Zw(x) are the inverse Fourier
transforms of Ey(b), Bx (b) and Zw(b) (Eq. (5)). The ω

dependence is not written explicitly. Note the difference in
the use of the 2π factor compared to the formulas presented,
for example, by Pirjola et al. (2004). This is due to different
conventions in the Fourier transform pair.

Equation (10) shows that Ey at a given location x de-
pends on the values of Bx at other locations x ′, and the de-
pendence is determined by the (kernel) function Zw(x −x ′).
If Bx data are available from a chain of magnetometer sta-
tions with different x coordinates Eq. (10) provides a simple
means to calculate the electric field to be applied, for exam-
ple, to computing GIC in a technological network. It is very
important to note that Zw(x) has nothing to do with the sur-
face impedance function Zs(x) defined by Eq. (8) (the ω
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dependence is implicit in both functions). Mathematically
this is due to the fact that the (inverse) Fourier transform of
a ratio (Eq. (9)) is not equal to the ratio (Eq. (8)) of the (in-
verse) Fourier transforms of the top and bottom separately.
Even the units of Zw(x) [� m−1] and of Zs(x) [�] are dif-
ferent.

If Zw(b) is (or can be assumed to be) independent of b
and equal to Z0 Eq. (5) gives that Zw(x) equals Z0

√
2πδ(x)

where δ(x) is the Dirac delta function. Substituting this into
Eq. (10) shows that Ey(x) only depends on Bx (x) at the
same location x , which is a result also obtainable by using
Eqs. (5) and (9). This resembles the plane wave situation
with Z0 corresponding to the plane wave surface impedance
Zp (Section 2.2). In the strict plane wave case, Ey and Bx

should be independent of x . Thus, the fact that the depen-
dence on x need not vanish from Eq. (10) even in the present
delta function case provides a hint that it is sometimes pos-
sible to use the plane wave relation between Ey and Bx lo-
cally (see Pirjola et al., 2004; Viljanen et al., 2004). As
indicated by Pirjola et al. (2004), who consider a uniform
Earth (cf. Section 2.6), Zw(x) seems to approach the delta
function when the period decreases and/or the Earth’s con-
ductivity increases. This is in agreement with the result that
source effects distorting the plane wave assumption and re-
ferred to in Section 2.2 are more serious for long periods
and resistive Earth structures, both of which increase the
skin depth (see numerical values mentioned in Section 2.2).

Another extreme theoretical case is obtained by assum-
ing that Zw(b) is proportional to the delta function δ(b).
Equation (5) then shows that Zw(x) is independent of x ,
which by formula (10) also makes Ey independent of x and
proportional to the integral of Bx (x) over all values of x .
By formula (4), this integral gives the Fourier transform of
Bx (x) at b = 0. In other words, Ey only gets a constant
plane wave contribution (b = 0) at every value of x . This
can actually be directly seen from the assumption of Zw(b)

to be proportional to δ(b), which is zero for b �= 0.
2.6 Uniform Earth

Let us consider a uniform Earth characterised by the
permeability μ, permittivity ε and conductivity σ . The
Earth’s permeability and permittivity are commonly in
geoelectromagnetic studies, as well as in the numerical
calculations presented in Section 3, assumed to equal
μ0 and 5ε0 (ε0 is the vacuum (and air) permittivity =
8.854·10−12 A s V−1 m−1), respectively, although the latter
does not have any effect in practice in the range of periods
considered. However, in this section μ and ε need not be
specified, and so they are arbitrary.

Making first the plane wave assumption and considering
a single angular frequency ω, i.e. fields Fourier transformed
from the time to the frequency domain, we easily obtain

Zp(ω) = ωμ

k
(11)

where the propagation constant k is given by

k =
√

ω2με − iωμσ (12)

(e.g. Pirjola, 1982; Pirjola et al., 2004). An application of

the expression (11) makes the convolution integral (7) read

Ey(t) = − 1

μ0

√
μ

ε

∫ ∞

0
g(t − u)e− σu

2ε J0

(
i
σu

2ε

)
du (13)

The derivation of Eq. (13) is based on the determination of
the function Cp(t) included in Eq. (7) by inverse Fourier
transforming the function Zp(ω)/ iω, which in this case
equals μ/ ik(ω). As presented by Pirjola (1982, p. 23),
the inverse Fourier transform can be calculated by utilising
an integral expression of the Bessel function of the zero
order J0. A comparison of Eq. (13) with the corresponding
formula by Pirjola (1982, p. 23) indicates a small difference,
which results from the neglect of the assumption that μ

would equal μ0 now.
In practical geoelectromagnetic situations ε is around

5·10−11 A s V−1 m−1 and σ is in the order of 10−5 �−1 m−1

or larger. Thus the characteristic time ε/σ is about 5 μs or
smaller, and so relevant times in geoelectromagnetics be-
ing in the order of a second at the minimum are very much
longer than ε/σ . This indicates that the absolute value of
the argument of the Bessel function in Eq. (13) is very large
except for an insignificant time interval near u = 0. Conse-
quently, we replace the Bessel function term J0(iσu/2ε) by
the approximate expression eσu/2ε

√
ε/πσu valid when the

absolute value of the argument is large. Equation (13) then
reduces to

Ey(t) = −
√

μ

μ0

1√
πμ0σ

∫ ∞

0

g(t − u)√
u

du (14)

An alternative, but completely equivalent way, to derive
Eq. (14) is to note that in practical geoelectromagnetic situ-
ations σ � ωε, which enables the neglect of the first term
in the square root in formula (12). Calculating Cp(t) by
inverse Fourier transforming μ/ ik(ω) = μ/ i

√−iωμσ di-
rectly leads to Eq. (14) then. Both formula (13) and for-
mula (14) confirm the statement about the causality men-
tioned in Section 2.2 since Ey(t) only depends on values
of g at times earlier than t . Equations (13) and (14) can,
of course, also be written following the first integral of for-
mula (7). The integration limits would then be −∞ and
t . In practice, Eq. (14), usually with the assumption that
μ and μ0 are equal, is applicable to estimating the elec-
tric field from magnetic data in the time domain. This for-
mula is also included in the fundamental paper of magne-
totellurics by Cagniard (1953). By considering a fictitious
step-like change of Bx , Pirjola (1982, pp. 24–25) explicitly
demonstrates that the Ey values obtained from Eqs. (13)
and (14) are practically the same although, strictly speak-
ing, Ey[(14)] becomes infinite as “1/

√
0” at the time of the

step whereas Ey[(13)] remains finite.
From the mathematical point of view, it is still neces-

sary to emphasise that the inverse Fourier transform (5) re-
quires the knowledge of the function F(ω) for all values
of ω from −∞ to +∞. In the present uniform Earth case,
the function transformed above includes a square root of
a complex variable (either exactly

√
ω2με − iωμσ or ap-

proximately
√−iωμσ ). Therefore, as explained by Pirjola

(1982, p. 22), special care is needed to define the correct
argument ranges in the complex plane in which the square
root lies for positive and negative values of ω.
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Equation (14) shows explicitly that Ey(t) is not propor-
tional to the time derivative g(t) of Bx (t) but is also affected
by past values of g(t). However, the square root term

√
u

at the bottom of the integral implies that the weight of past
values decreases with an increasing time difference. Equa-
tion (14) also indicates that Ey(t) is not proportional to
Bx (t) either. (Note that these conclusions about the rela-
tions of Ey(t) to g(t) and to Bx (t) are not due to the use
of the approximate equation (14) instead of the exact for-
mula (13).) Referring to Section 2.2, Eq. (11), with the
definition (12), confirms the conclusions by showing that
Zp(ω) is neither independent of ω nor linearly dependent
on ω. Replacing k by

√−iωμσ in formula (11) shows that
Zp(ω) is proportional to the square root of ω, which means
that a uniform Earth is a high-pass filter from the magnetic
to the electric field. Substituting Zp(ω) from Eq. (11) with
k = √−iωμσ into formula (2) shows that, in the case of a
uniform Earth, the phase of −Ey is always 45 degrees ahead
of that of Bx . (This is directly seen for ω > 0 but requires
more examination when ω < 0.)

We now neglect the plane wave assumption and consider
the E polarisation case discussed in Sections 2.3, 2.4 and
2.5 but the Earth is kept uniform. The single angular fre-
quency ω considered is an implicit argument. It can be
shown that Zw(b) has the expression

Zw(b) = iωμ√
b2 − k2

(15)

(Pirjola, 1982, p. 51). Taking the inverse Fourier transform
(5) of Zw(b) gives Zw(x):

Zw(x) =
√

π

2
ωμH (2)

0 (kx) (16)

where an integral formula for the Hankel function of the
second kind and of the zero order H (2)

0 has been used (Pir-
jola, 1982, p. 128). Comparing Eq. (16) to the correspond-
ing expression presented by Pirjola et al. (2004), a small
difference caused by a different use of the 2π factor in the
Fourier transform pair is observed (cf. Section 2.5).

Let us consider the dependence of Zw(b) given by
Eq. (15) on the wavenumber b. Since Zw(b) is an even
function of b we may restrict to non-negative b values.
Equation (15) directly shows that Zw(b) goes to zero when
b approaches infinity. The maximum value of |Zw(b)| is
obtained at the value of b that makes the real part of the
function inside the square root at the bottom of Eq. (15) (=
Re

(
b2 − k2

)
) equal to zero, i.e. when b = ω

√
με (implic-

itly assuming that ω is non-negative). At b values smaller
than ω

√
με, |Zw(b)| is an increasing function of b, and

at larger values it decreases with b. As mentioned above,
σ � ωε in practical geoelectromagnetic situations, mak-
ing |Im (

k2
) | � Re

(
k2

)
. Thus, the term b2 − k2 is com-

pletely dominated by Im
(
k2

)
when b is small, and so the b

dependence of Zw(b) at the smallest values of b, including
the maximum of |Zw(b)|, cannot be seen in practice. This
means that |Zw(b)| looks practically like having its maxi-
mum at b = 0 and decreasing with b.

Pirjola et al. (1999) indicate that in the case of a layered

Earth Zw(b) can be approximated by

Zw(b) = iωμ0√
b2 − k2

u

(17)

The “equivalent propagation constant” ku, which is inde-
pendent of b, is defined by

ku = ku(ω) = ωμ0

Zp(ω)
(18)

where Zp(ω) is the plane wave (b = 0) surface impedance
(Section 2.2) for the particular layered Earth structure. Sim-
ilarly to Eqs. (15) and (16), formula (17) gives Zw(x) the
approximate expression

Zw(x) =
√

π

2
ωμ0 H (2)

0 (kux) (19)

3. Numerical Examples
We now present numerical results associated with the

equations discussed in Section 2. Following the statement
in Section 2.6, the permeability and permittivity of the Earth
are set equal to μ0 and 5ε0, respectively.

Figure 1 presents the absolute value of the plane wave
surface impedance |Zp(ω)| as a function of the frequency
( f = ω/2π = 1/T , T = period) for a two-layer Earth
in which the thickness of the upper layer and the conduc-
tivity of the lower layer are 150 km and 2.6 �−1 m−1,
respectively. The three curves from the bottom to the
top, two of which are practically straight lines in this log-
log plot, are associated with the upper layer conductiv-
ities 1000 �−1 m−1 (blue), 0.01 �−1 m−1 (green) and
10−5 �−1 m−1 (red). In each case, |Zp(ω)| varies much
with the frequency indicating no proportionality between
Ey(t) and Bx (t) but the larger the Earth’s conductivity the
smaller the relative change of |Zp(ω)| in the frequency
range considered. Since |Zp(ω)| grows with the frequency
the Earth behaves as a high-pass filter. The curves in Fig. 1
also imply the well-known fact that a lower conductivity
and a higher frequency result in larger horizontal electric
fields (assuming the same magnetic field). The former con-
clusion emphasises the risk for large GIC in networks ly-
ing in resistive areas. Note that an Earth conductivity of
1000 �−1 m−1 is too large to be encountered in practical
situations.

The Earth model included in Fig. 2, which presents
|Zp(ω)| as a function of the frequency, should be considered
less probable in practice due to the poorly-conducting half-
space (10−5 �−1 m−1) below a thin surface layer (10 km)
but it offers an interesting conclusion about Ey(t) and Bx (t)
in one case. The three curves from the bottom to the top
correspond to the upper layer conductivities 1000 �−1 m−1

(blue), 0.01 �−1 m−1 (green) and 1.1·10−5 �−1 m−1 (red).
The skin depth for the largest conductivity is much less
than the thickness of the upper layer even at the lowest fre-
quency considered, so the lower layer does not play any
role for the blue curve, which further means that the blue
curves of Figs. 1 and 2 are identical (note the different fre-
quency ranges considered). The variation of |Zp(ω)| with
frequency is quite small in the green curve indicating a
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Fig. 1. Absolute value of the plane wave surface impedance Zp(ω) as a function of the frequency f = ω/2π . The Earth has two layers. The thickness
of the upper layer and the conductivity of the lower layer are 150 km and 2.6 �−1 m−1, respectively. The three curves from the bottom to the top
refer to the upper layer conductivities 1000 �−1 m−1 (blue), 0.01 �−1 m−1 (green) and 10−5 �−1 m−1 (red).

Fig. 2. Similar to Fig. 1 but the thickness of the upper layer and the conductivity of the lower layer are 10 km and 10−5 �−1 m−1, respectively, and the
three curves from the bottom to the top refer to the upper layer conductivities 1000 �−1 m−1 (blue), 0.01 �−1 m−1 (green) and 1.1·10−5 �−1 m−1

(red).
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Fig. 3. Absolute value of the plane wave surface impedance Zp(ω) as a function of the frequency f = ω/2π . Four different Canadian layered Earth
models are considered: “Quebec”, 5 layers, blue (Boteler and Pirjola, 1998): thicknesses = [15, 10, 125, 200, ∞] km, resistivities = [20000, 200,
1000, 100, 3] � m. “Ontario—Model 1”, 3 layers, green: thicknesses = [0.3, 200, ∞] km, resistivities = [100, 20, 1] � m. “Southern Manitoba”,
8 layers, red: thicknesses = [0.02, 0.18, 14.8, 10, 75, 300, 200, ∞] km, resistivities = [20, 100, 40000, 2000, 1000, 100, 10, 1] � m. “British
Columbia”, 8 layers, black (Boteler and Pirjola, 1998): thicknesses = [4, 6, 5, 20, 65, 300, 200, ∞] km, resistivities = [500, 150, 20, 100, 300, 100,
10, 1] � m.

rough proportionality between Ey(t) and Bx (t). Figure 2
only shows the absolute value of the surface impedance, and
definite conclusions about the dependence of the complex
quantity Zp(ω) on ω would require the investigation of its
phase angle, too, but in this paper we are mostly interested
in the magnitudes of the geoelectric field (via the absolute
values of the surface impedance), and so the phases are less
important.

Figures 3 and 4, which present |Zp(ω)| and |Zp(ω)/ iω|,
refer to four realistic layered Earth models from Canada:

• “Quebec”, 5 layers, blue (Boteler and Pirjola, 1998)
layer thicknesses = [15, 10, 125, 200, ∞] km
layer resistivities = [20000, 200, 1000, 100, 3] � m

• “Ontario—Model 1”, 3 layers, green
layer thicknesses = [0.3, 200, ∞] km
layer resistivities = [100, 20, 1] � m

• “Southern Manitoba”, 8 layers, red
layer thicknesses = [0.02, 0.18, 14.8, 10, 75, 300, 200,
∞] km
layer resistivities = [20, 100, 40000, 2000, 1000, 100,
10, 1] � m

• “British Columbia”, 8 layers, black (Boteler and Pir-
jola, 1998)
layer thicknesses = [4, 6, 5, 20, 65, 300, 200, ∞] km
layer resistivities = [500, 150, 20, 100, 300, 100, 10,
1] � m

Similarly to Fig. 1, a clear high-pass filter property is exhib-

ited by every model in Fig. 3 whereas the curves in Fig. 4
have a low-pass filter character. A comparison between
Figs. 3 and 4 shows that |Zp(ω)/ iω| changes relatively less
than |Zp(ω)| with ω indicating that Ey(t) resembles more
g(t) than Bx (t). This confirms the use of the magnetic field
time derivative as a proxy for the geoelectric field and GIC.

Figure 5 depicts |Zs(x, ω)| (Eq. (8)) as a function of x
when the electric and magnetic fields are produced by a line
current parallel to the y axis at x = 0 and at the height
−z = 110 km, and the period is T = 300 s (= 2π/ω). The
Earth is assumed to have the five-layer “Quebec” structure.
The computation of the fields was performed by applying
the Fast Hankel Transform (Johansen and Sørensen, 1979;
see also Pirjola, 1985; Pirjola and Boteler, 2002). The
limit that |Zs(x, ω)| approaches at large values of x equals
the absolute value of the plane wave surface impedance
corresponding to the situation with no x variation. We
can also easily verify that the real and imaginary parts of
Zs(x, ω) approach the corresponding plane wave quantities
separately. This behaviour of Zs(x, ω) is in agreement with
the statement about source effects in Section 2.2.

Figure 5 shows that |Zs(x, ω)| varies much with x and
that the statement given by Albertson and Van Baelen
(1970) that the plane wave case would result in the largest
electric field if the magnetic field is kept constant is not true.
Anyway, it can be seen from Fig. 5 that at and near x = 0
the plane wave electric field is larger than that produced by
a line current (for the same magnetic field), and in fact, this
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Fig. 4. Absolute value of the quantity Zp(ω)/ iω as a function of the frequency f = ω/2π where Zp(ω) is the plane wave surface impedance and
ω is the angular frequency. Thus, the curves represent the transfer function between the electric field and the time derivative of the magnetic field.
Similarly to Fig. 3, four different Canadian layered Earth models are considered.

Fig. 5. Absolute value of the space-domain surface impedance Zs(x, ω) (Eq. (8)) as a function of the x coordinate. The electric and magnetic fields are
produced by an infinitely long line current parallel to the y axis at x = 0 and at the height of −z = 110 km. The period considered is T = 300 s
(= 2π/ω). The Earth has the five-layer “Quebec” structure (see the caption of Fig. 3).
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Fig. 6. Absolute value (black solid curve) and real (red dashed curve) and imaginary (blue dot-dashed curve) of the surface impedance Zw(b, ω)

(Eq. (9)) as a function of the wavenumber b. The period considered is T = 60 s (= 2π/ω). The Earth has a layered structure: “Central Finland”, 5
layers (Viljanen and Pirjola, 1994): thicknesses = [12, 22, 16, 50, ∞] km, resistivities = [30000, 3000, 50, 1000, 5000] � m.

Fig. 7. Similar to Fig. 6 but the Earth has a different layered structure: “Nova Scotia”, 3 layers: thicknesses = [4, 196, ∞] km, resistivities = [0.3, 10,
0.3] � m.

is the location that Albertson and Van Baelen only consider.
Häkkinen et al. (1989) use a more sophisticated ionospheric
electrojet current system model and demonstrate even more
pronounced and unpredictable differences from the plane

wave case at particular values of x when investigating the
magnetotelluric apparent resistivity ρa as a function of the
period. The quantity ρa is proportional to the square of the
absolute value of the surface impedance times the period, so



258 R. PIRJOLA et al.: SURFACE IMPEDANCE AND SPACE WEATHER

Fig. 8. Similar to Fig. 6 but the Earth is assumed to have the five-layer “Quebec” structure (see the caption of Fig. 3).

Fig. 9. Similar to Fig. 6 but the period is 1 s and the Earth is assumed to have the eight-layer “British Columbia” structure (see the caption of Fig. 3).

the behaviour of ρa also reflects the properties of the surface
impedance.

We now compute Zw(b) (Eq. (9), ω is implicit) for spec-
ified realistic layered Earth models. Figures 6–11 then de-
pict the real and imaginary parts and the absolute value of
Zw(b) as functions of b. Note the differences in the scales

both on the horizontal and on the vertical axes. Figures 6, 7,
8 and 10 refer to a period T = 60 s (= 2π/ω) and to Earth
models corresponding “Quebec” and “British Columbia”
introduced above and to “Central Finland” and “Nova Sco-
tia” (Canada):
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Fig. 10. Similar to Fig. 9 but the period is 60 s.

Fig. 11. Similar to Fig. 9 but the period is 600 s.

• “Central Finland”, 5 layers, (Viljanen and Pirjola,
1994)
layer thicknesses = [12, 22, 16, 50, ∞] km
layer resistivities = [30000, 3000, 50, 1000, 5000]
� m

• “Nova Scotia”, 3 layers,
layer thicknesses = [4, 196, ∞] km

layer resistivities = [0.3, 10, 0.3] � m

Sometimes (but not in this paper) the “Central Finland”
model is also assumed to include a highly-conducting bot-
tom of 1 � m starting at the depth of 150 km (e.g. Pirjola et
al., 2000). The “British Columbia” model is used in Figs. 9
and 11 as well but the periods T equal 1 s and 600 s, respec-



260 R. PIRJOLA et al.: SURFACE IMPEDANCE AND SPACE WEATHER

tively.
In all Figs. 6–11, the real and imaginary parts of Zw(b)

are non-negative, which can also be concluded analytically
from Eq. (15) for a uniform Earth (for ω > 0). Based
on Eq. (9), this means that the phase of −Ey is ahead of
that of Bx by an angle in the range from zero to 90 de-
grees. It is seen that the imaginary part of Zw(b) almost al-
ways clearly exceeds the real part, especially at large values
of b. This indicates an almost 90-degree phase difference
between the electric and magnetic fields. When using the
highly-conducting “Nova Scotia” model (Fig. 7) the differ-
ence between Re(Zw(b)) and Im(Zw(b)) generally seems
to be smaller than in the other examples. For “Quebec”
(Fig. 8) and “British Columbia” (Fig. 10), Re(Zw(b)) and
Im(Zw(b)) are practically equal at b = 0 whereas for “Cen-
tral Finland” (Fig. 6), there is a clear difference even at
b = 0. In fact, the only situation in the examples where
Re(Zw(b)) exceeds Im(Zw(b)) is encountered for “British
Columbia” at a long period T = 600 s and at small b values
(Fig. 11).

Roughly speaking, the decay of Zw(b) with b is similar
for “Central Finland” (Fig. 6) and “Quebec” (Fig. 8). For
“British Columbia” (Fig. 10) the decay is somewhat slower,
which obviously results from the fact that “Central Finland”
and “Quebec” are more resistive than “British Columbia”.
To see the different decay rates, the different b scale in
Fig. 10 compared to Figs. 6 and 8 must be noted. The
absolute value of Zw(b) has a clear maximum at a non-
zero value of b for the “British Columbia” model (Fig. 10),
and a maximum at b �= 0 may also be seen in the “Central
Finland” case (Fig. 6).

Figure 7 indicates that a highly-conducting Earth makes
the variation of Zw(b) with b small. Comparing Figs. 9,
10 and 11 shows that a decrease of the period also reduces
the variation of Zw(b) with b. Thus, for large Earth con-
ductivities and short periods, the dependence of Zw(b) on
b is small making Zw(x) resemble the delta function, and
the plane wave approximation becomes more acceptable as
discussed above in Sections 2.2 and 2.5.

4. Discussion and Concluding Remarks
The surface impedance expresses the relation between

the horizontal geoelectric and geomagnetic fields at the
Earth’s surface being in general a 2 × 2 tensor. However,
in many cases including this paper, the surface impedance
is a scalar defined to equal the ratio of a horizontal electric
component to the perpendicular horizontal magnetic com-
ponent at the Earth’s surface. Similarly to the electric and
magnetic fields, the surface impedance primarily depends
on time variations of the magnetospheric and ionospheric
current system and is secondarily affected by currents and
charges induced in the Earth. Most applications concern the
latter dependence, and the surface impedance and other pa-
rameters derived from it are commonly used to characterise
the Earth’s conductivity structure. This kind of geomag-
netic induction and magnetotelluric studies are well-known
and have already been carried out for a long time all over
the world.

In this paper we consider the surface impedance from a
different point of view referring to space weather effects at

the Earth’s surface, i.e. to geomagnetically induced currents
(GIC) in ground-based technological systems. The horizon-
tal geoelectric field drives GIC and is thus the key quantity.
In a usual situation in practice, geomagnetic data are avail-
able and we need to calculate the geoelectric field in order
to be able to estimate GIC in a network. Knowing the sur-
face impedance thus enables the determination of the elec-
tric field leading to a solution of the practical problem.

Since the electric and magnetic fields at the Earth’s sur-
face are functions of two space coordinates and time the
surface impedance can be defined in the same domains or
from field components Fourier transformed from the space
coordinates to the wavenumbers and/or from the time to the
frequency. The common convention is to use Fourier trans-
formed quantities (which is an assumption in this paper, too,
except for a short discussion where field components de-
pendent on a space coordinate are applied to defining the
surface impedance that is thus a function of the frequency
and a space coordinate). Inverse Fourier transforming the
equation that gives the electric field as the product of the
surface impedance and the magnetic field in the frequency
or wavenumber domain results in convolution integrals in
the time or space domains. These relations are summarised
in this paper. For simplicity, the discussion is restricted to
one space coordinate and wavenumber.

We pay special attention to the relations of the electric
field with the magnetic field and with its time derivative,
which may be concluded from the surface impedance in the
frequency domain. Numerical examples show that the abso-
lute value of the surface impedance usually increases with
the frequency indicating a high-pass filter character whereas
the corresponding transfer functions between the electric
field and the magnetic time derivative are of a low-pass fil-
ter type. However, the relative change of the latter trans-
fer function with frequency is smaller than of the surface
impedance, so in the time domain, the electric field should
have more similarities with the magnetic time derivative
than with the magnetic field. An artificial Earth conduc-
tivity model is also demonstrated that leads to a surface
impedance which does not change much with the frequency
indicating a rough proportionality between the electric and
magnetic fields in the time domain. Observational evidence
exists both for a proportionality between the electric and
magnetic fields and for a close relation between the electric
field and the magnetic time derivative. These issues consti-
tute a subject that needs more research in the future.

The absolute value of the space-dependent surface
impedance can be either larger or smaller than the absolute
value of the plane wave surface impedance showing that
the statement sometimes expressed that the plane wave case
would give the largest electric fields is not true. A numeri-
cal example shows that, as expected, the surface impedance
approaches the plane wave value at large distances from the
ionospheric source current.

A discussion of a wavenumber-dependent surface
impedance included in this paper indicates that in some
space-dependent situations it is possible to apply the plane
wave relation between surface electric and magnetic fields
locally. Numerical examples particularly confirm that an
increase of the Earth’s conductivity or of the frequency im-
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proves the validity of the plane wave approximation. This
conclusion agrees with the well-known fact in geoelectro-
magnetics that source effects distorting the plane wave as-
sumption are more serious at long periods and in resistive
areas.

Numerical calculations show that the absolute value
of the surface impedance decreases with an increasing
wavenumber although the maximum may also be achieved
at a non-zero value of the wavenumber. It is seen that the
imaginary part of the surface impedance usually much ex-
ceeds the real part, both of which are positive (for positive
frequencies).

An assumption of a uniform Earth is a rough idealisation
but it enables closed-form equations and thus makes phys-
ical interpretations easier. In this paper, we explicitly give
the plane wave relation between the electric field and the
magnetic time derivative in the time domain and see that
the former depends on all past values of the latter with a de-
creasing weight. The dependence of the surface impedance
on the wavenumber including an expression for the corre-
sponding convolution kernel is also investigated under the
uniform-Earth approximation.
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