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“Geomagnetically induced currents” (GICs) in ground-based networks are a manifestation of space weather
and a potential source of problems to the systems. Exact matrix equations, which are summarized in this paper, for
calculating GICs in a power system were formulated in the 1980s. These equations are reformulated here to show
how they lead to a direct relation between GICs and the horizontal geoelectric field. Properties of the matrices,
which enable the derivation of physical features of the flow of the GICs in a power system, are considered in
detail. A specific aim of this study was to show that the ratio of the GICs obtained at a station under two different
geophysical situations is independent of the total earthing resistance at that particular station. The behavior of
the elements of the transfer matrix between geovoltages and GICs confirms the earlier result that it is sufficient to
make a calculation of a small grid around the site if the GIC values at one site are of interest. Using the developed
technique, I have calculated the GICs of the old configuration of the Finnish 400-kV grid.
Key words: Geomagnetically induced current, GIC, power system, space weather, matrix calculation.

1. Introduction
“Geomagnetically induced currents” (GICs) flowing in

networks, such as electric power transmission grids, oil and
gas pipelines, telecommunication cables, and railway sys-
tems, are the ground end of “space weather” resulting from
the activity of the Sun (e.g. Lanzerotti et al., 1999). The
plasma physical and electromagnetic phenomena associated
with space weather constitute a complicated chain of pro-
cesses. Both space-borne and ground-based technology can
experience problems due to space weather.

Despite the complexities of the processes in the space
weather chain, the basic physical principle of the GICs is
easily understandable based on Faraday’s and Ohm’s laws:
rapidly changing currents in the Earth’s magnetosphere and
ionosphere during a space storm create temporal variations
in the geomagnetic field that induce a (geo)electric field,
which then drives currents in conducting materials. In ad-
dition to technological networks, the Earth itself is also a
conductor. Thus, currents induced in the ground also con-
tribute to the geomagnetic disturbance field and to the geo-
electric field occurring at the Earth’s surface (e.g. Water-
mann, 2007).

The effects of the GICs on technology were noted in tele-
graph systems as early as the 1840s (e.g. Boteler et al.,
1998; Lanzerotti et al., 1999; and references therein). In
power systems, the direct current (dc)-like GIC may sat-
urate transformers, possibly leading to problems that can
even cause a collapse of the whole system or permanent
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damage to transformers (e.g. Kappenman and Albertson,
1990; Kappenman, 1996; Bolduc, 2002; Molinski, 2002;
and references therein). Two well-known and documented
events are the blackouts in Québec, Canada, in March
1989 (Bolduc, 2002) and southern Sweden in October 2003
(Pulkkinen et al., 2005).

The GICs caused by intense geomagnetic disturbances
are a problem especially in high-latitude auroral regions,
but the auroral oval usually moves towards much lower lat-
itudes during major geomagnetic storms. The GIC ampli-
tudes are also affected by the grid topology, configuration,
and resistances. Furthermore, the sensitivities of systems
to the GICs depend on many engineering details; for exam-
ple, a small-amplitude GIC that does not at all disturb one
grid may be problematic to another. These facts suggest that
networks in lower latitudes may be affected by the GICs as
well. The increasing sizes of high-voltage power grids, the
complex interconnections, and the extensive transport of en-
ergy emphasize the importance of GIC issues at all latitudes
(Kappenman, 2004).

A calculation of GICs in a given ground-based system is
usually separated into two parts: (1) a “geophysical part”,
which encompasses the determination of the horizontal geo-
electric field occurring at the Earth’s surface; (2) an “engi-
neering part”, which covers the computation of GICs pro-
duced by the geoelectric field. The input of the geophys-
ical part includes information on ground conductivity and
data or assumptions about magnetospheric-ionospheric cur-
rents or about magnetic variations at the Earth’s surface; the
calculations are independent of the particular technological
grid. The engineering part uses the geoelectric field and the
network configuration and resistances as the input.
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Due to the low frequencies involved in geoelectromag-
netic phenomena and GICs, a dc treatment is acceptable
in the engineering part, in which the calculations can, in
principle, be performed exactly, using the given connec-
tions and resistances of the system. In practice, however, an
accurate description of all components affecting GICs in a
complex network is difficult. This paper focuses on the en-
gineering part of the GIC calculation in the case of a power
system, which constitutes a discretely earthed network hav-
ing earthings at transformer neutrals at (sub)stations.

Matrix equations that enable the calculation of GICs in a
power grid were originally derived by Lehtinen and Pirjola
(1985) and subsequently reported in many publications (e.g.
Pirjola, 2005a, 2007, 2008a). These are summarized in
Section 2 because they constitute the basis of the present
study. In addition, a simple matrix equation is derived
that couples GICs directly to the geoelectric field using the
given basic formulas that include the (geo)voltages along
the transmission lines associated with the geoelectric field.

In order to study the GICs in a system, the GICs at each
site of the grid are usually first calculated under a uniform
northward and a uniform eastward field of 1 V/km. The ef-
fects of the grid topology, configuration, and resistances on
the GIC distribution are then revealed without the effects of
complex electric field structures. In this way, sites that most
likely may experience GIC problems are identified, and the
locations of possible GIC recordings can be planned prop-
erly. The magnitude of 1 V/km is a typical value during a
geomagnetic storm, although larger values are also reported
in the literature (see e.g. Pirjola and Lehtinen, 1985; and ref-
erences therein). However, the values obtained for 1 V/km
are directly scalable to any other magnitude because GICs
are linearly dependent on the geoelectric field. Similarly,
GICs for a uniform horizontal geoelectric field of any direc-
tion are obtained as linear combinations from the results for
an eastward and a northward field. The ratio of GICs for the
northward and eastward cases is also a useful parameter be-
cause it gives the relative importance of the two geoelectric
components for the GIC at a particular site affected by the
grid configuration and resistances (see, for example, Wik et
al., 2008). In Section 3, I show that the ratio of the earthing
GICs at a station is independent of the earthing resistance at
the particular station under two different geophysical situa-
tions, such as a uniform northward and eastward geoelectric
field.

Although all computation techniques for the engineering
part should be basically identical as they are based on elec-
tric circuit theory, the equations and algorithms may be dif-
ferent. Thus, in order to ensure the validity of all differ-
ent techniques, comparative test calculations should be car-
ried out. Section 4 provides such a test power grid model,
which refers to the 400-kV power system in Finland in the
1970s. The size of this system may be regarded as ideal
for tests since the numbers of the stations and lines and the
complexity are high enough, but unnecessary troubles due
to very large matrices are avoided in the computations and
analyses. In Section 4, I also present the values of the earth-
ing GIC to (from) the Earth at every station and of the GIC
flowing in the lines due to a uniform eastward or northward
geoelectric field of 1 V/km.

Properties of the transfer matrix that couples the earthing
GICs to the geovoltages are studied in Section 5 by both a
theoretical analysis and a numerical calculation. By con-
sidering first an idealized linear grid with identical equidis-
tant earthed nodes lying in a uniform geoelectric field and
then a station of the Finnish 400-kV power system, Pirjola
(2005a) shows numerically that the calculated GIC at one
site does not change much if, instead of a large network,
only a smaller grid in the vicinity of the particular site is in-
cluded in the model. The same topic is studied in Section 5
by considering the behavior of the elements of the transfer
matrix.

In summary, this paper has three main objectives: to de-
rive an explicit linear relationship between the geoelectric
field and the earthing GICs in a power system (Section 2),
to introduce a power grid model applicable to test compu-
tations of GICs (Section 4), and to consider properties of
the transfer matrix between the geovoltages and the earth-
ing GICs (Sections 3 and 5). The first and third objectives
yield a new insight into the physical processes associated
with GICs.

2. Matrix Equations for GICs in a Power Grid
Since geoelectromagnetic variations are slow compared,

for example, to the 50- and 60-Hz frequencies used in elec-
tric power transmission, a dc modeling of GICs is accept-
able (at least as a first approximation). Figure 1 gives
a schematic view of a network having N discrete nodes,
called stations, earthed by resistances Re

i (i = 1, . . . , N ).
The resistance of a conductor line connecting stations i and
m (i , m = 1, . . . , N ) is denoted by Rn

im . Lehtinen and
Pirjola (1985) derived the following formula for the N ×
1 column matrix Ie, which consists of GICs, denoted by Ie,m

(m = 1, . . . , N ), and called the earthing GICs, to (from) the
Earth (with the positive direction into the Earth) at the sta-
tions:

Ie = (1 + YnZe)
−1Je (1)

This equation, which has been presented in many other pub-
lications as well (e.g. Pirjola, 2005a, 2007, 2008a), provides
a solution for the engineering part of a GIC calculation. The
symbol 1 is an N × N unit identity matrix. The N × N
earthing impedance matrix Ze and the N × N network ad-
mittance matrix Yn, as well as the N × 1 column matrix Je,
which includes the information about the geoelectric field,
are defined below.

Multiplying Ie by Ze gives the voltages between the
earthing points and a remote earth associated with the flow
of the currents Ie,m (m = 1, . . . , N ). Including the voltages
in an N × 1 column matrix Ucur, we thus have

Ucur = ZeIe. (2)

(Following the original notation by Lehtinen and Pirjola
(1985), the subscript ‘cur’ indicates that voltages associ-
ated with earthing currents are considered.) By the reci-
procity theorem, Ze is symmetric. If the stations are distant
enough, thereby making the effect of one earthing current
on the voltage at another station negligible, Ze is simply di-
agonal, with the elements equaling the earthing resistances
Re

i (i = 1, . . . , N ). Equation (2) should thus be considered
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Fig. 1. Network consisting of N nodes, called stations, earthed by resistances Re
i (i = 1, . . . , N ). The resistance of a conductor line between stations i

and m (i , m = 1, . . . , N ) is denoted by Rn
im . An external geoelectric field E produces geomagnetically induced currents (GICs) to (from) the Earth

denoted by Ie,i and in the conductors denoted by In,im . The GICs are calculated by using the geovoltages Vim obtained by integrating E along the
conductors. This figure is a slightly modified version of figure 1 by Lehtinen and Pirjola (1985).

as the definition of Ze. The voltages included in Ucur are
physically associated with the electric field that produces a
part of the (telluric) currents driven by the geoelectric field
flowing through the earthed network.

The matrix Yn is defined by

(i �= m) : Yn,im = − 1

Rn
im

, (i = m) : Yn,im =
N∑

k=1,k �=i

1

Rn
ik

(3)
which directly shows that Yn is a symmetric matrix. The
elements Je,m (m = 1, . . . , N ) of the column matrix Je are

Je,m =
N∑

i=1,i �=m

Vim

Rn
im

(4)

The geovoltage Vim is produced by the horizontal geoelec-
tric field E, which is external from the viewpoint of the net-
work in the engineering part of a GIC calculation. Thus,
Vim is obtained by integrating E along the path defined
by the conductor line from station i to station m(i, m =
1, . . . , N ):

Vim =
∫ m

i
E · ds (5)

Generally, the geoelectric field is rotational, which implies
that the integral in Eq. (5) is path-dependent, and the inte-
gration route has to correspond to the conductor between
i and m (Boteler and Pirjola, 1998). Equation (1) directly
shows that, assuming perfect earthings (“pe”), i.e., Ze = 0,
the GICs included in Ie equal the elements of Je, called the
“pe” earthing currents.

Additional details associated with the derivation of
Eqs. (1)–(5) are given by Lehtinen and Pirjola (1985). A
formula for the GIC flowing in a conductor between sta-
tions i and m (i , m = 1, . . . , N ), denoted by In,im , can
also be derived (Lehtinen and Pirjola, 1985; Pirjola, 2007,
2008a), but this formula is less important in practice than
Eq. (1) because the earthing GICs create problems by sat-
urating power system transformers. Referring to the elec-
trical circuit theory, we can say that the voltages Vim and

those in Ucur correspond to the open-circuit electromotive
force and the voltage drop in a battery, respectively, when
the currents In,im in the conductors are considered.

When applying Eqs. (1)–(5) to calculating GICs in a real
three-phase power system earthed via transformer neutrals
at stations, the three phases are usually treated as one circuit
element. The resistance of this element is then one third of
that of a single phase, and it carries a GIC threefold higher
than the current in a single conductor. For convenience, the
(total) earthing resistances of the stations are defined to in-
clude the actual earthing resistances, the transformer resis-
tances, and the resistances of possible neutral point reactors
(or any other resistors) in the earthing leads of transformer
neutrals (all resistances in series). It should be noted that
the technical reason for installing neutral point reactors is
to decrease possible earth-fault currents, which is important
for the safety of the power system. In terms of GICs, a
neutral point reactor just provides an additional resistance
in the earthing lead as a “spin-off”. Mäkinen (1993) and
Pirjola (2005a) describe the application of Eqs. (1)–(5) to a
power grid in further detail.

Here, I use the Cartesian coordinate system standard in
geoelectromagnetics with the xy plane lying at the Earth’s
surface and the x , y, and z axes pointing to the north,
to the east, and downwards, respectively. The horizontal
geoelectric field E = (Ex , Ey) is assumed to be known
at M grid points. In this study, we do not specify the
details of the grid, except that its size and location have to
enable the estimation of the electric field at all points of
the network in which the GICs are investigated. The grid
may be either regular or irregular, it can be rectangular or
it may follow the latitudes and longitudes, and so on. For
example, Wik et al. (2008) made a GIC calculation of the
southern Swedish 400-kV power system using an 88-point
grid (see their Fig. 2). The voltages Vim are assumed to be
linear combinations of the values of the field components
Ex,k and Ey,k at the grid points (k = 1, . . . , M):

Vim =
M∑

k=1

(
λim

k Ex,k + ηim
k Ey,k

)
(6)
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Fig. 2. Finnish 400-kV electric power transmission grid in its configu-
ration valid in October 1978 to November 1979 (Pirjola and Lehtinen,
1985; Pirjola, 2005a). The names of the stations numbered from 1 to 17
are given in Table 1.

The coefficients λim
k and ηim

k have the dimension of length.
They depend on the numerical method of computing the in-
tegral in Eq. (5), which involves both the interpolation from
the grid points k to x , y values lying at the conductor and the
numerical integration itself. It is clear that the coefficients
λim

k and ηim
k decrease with increasing distance from the grid

point k to the conductor connecting stations i and m. Differ-
ent techniques exist for the interpolation. The only implicit
assumption included in Eq. (6) is that the linear dependence
on the geoelectric field components is maintained (which
is a very natural requirement). In this paper, however, I
will not go into the details of the numerical computations
of λim

k and ηim
k because the purpose of presenting Eq. (6) is

to derive a simple linear relationship between the geoelec-
tric field and the GICs rather than to provide detailed in-
structions and advice for numerical calculation techniques
of λim

k and ηim
k . Moreover, the examples of the calculation

in Sections 4 and 5 refer to Eqs. (1)–(5) under a uniform
geoelectric field.

Substituting Eq. (6) into Eq. (4) gives

Je,m =
M∑

k=1

(
Ex,k

N∑
i=1,i �=m

λim
k

Rn
im

+ Ey,k

N∑
i=1,i �=m

ηim
k

Rn
im

)
(7)

Let us define N × M matrices as αααααααα and ββββββββ so that their
elements are

αmk =
N∑

i=1,i �=m

λim
k

Rn
im

, βmk =
N∑

i=1,i �=m

ηim
k

Rn
im

(m = 1, . . . , N ; k = 1, . . . , M) (8)

Using Eqs. (7) and (8), the matrix Je can be expressed as
the sum of two matrix products in the form

Je = ααααααααEx + ββββββββEy (9)

where Ex and Ey are M × 1 matrices giving the geoelectric
components Ex,k and Ey,k at the grid points. We combine
theαααααααα andββββββββ matrices to be one single N × 2M matrix A
so that Ai j = αi j for j = 1, . . . , M , and Ai j = βi j−M

for j = M + 1, . . . , 2M . Similarly, the 2M × 1 matrix
E is a combination of Ex and Ey , such that Ek = Ex,k for
k = 1, . . . , M and Ek = Ey,k−M for k = M + 1, . . . , 2M .
Equation (9) is then simplified to be

Je = AE (10)

From Eqs. (1) and (10), I then obtain

Ie = GE (11)

where the N × 2M matrix (1 + YnZe)
−1A is denoted by

G. The line and earthing resistances of the power grid are
included in the matrices Yn and Ze. The matrix A charac-
terizes the geometry of the network and the numerical com-
putation of the voltages in Eq. (5), and it is also affected by
the line resistances via Eq. (8). Separating the influences of
the different factors by analyzing the matrix G is obviously
a challenge in practice.

Although the time t is not explicitly included in the above
discussion, the matrices E = E(t) and Ie = Ie(t) are
functions of time. The matrix G does not depend on time
(except for the fact that it varies with possible changes in
the power system configuration or resistances, but it is a
different issue). Considering L time moments, we may still
use Eq. (11), but Ie is an N × L matrix and E is a 2M ×
L matrix, with the columns corresponding to consecutive
times. Let us then denote a single row of the matrix Ie by g
and the corresponding row of the matrix G by W. We thus
refer to a particular station of the network, for example, one
equipped with GIC measurements. The rows g and W are 1
× L and 1 × 2M matrices, respectively, and

g = WE (12)

Time series of measured GIC data and of calculated geo-
electric field values combined with Eq. (12) can enable the
determination of W. For example, a least-square fitting can
be used, which, as well as the possibility of applying neural
network techniques, has preliminarily been considered in
the context of studies of GIC in the southern Swedish 400-
kV power grid (private communication). Using these tech-
niques, we can avoid the power system modeling presented
by Eq. (1)–(5) and included implicitly in W and, instead, an
experimental relation would be obtained between GICs and
geoelectric data. Details of such investigations are, how-
ever, beyond the scope of this paper. It is important to note
that W depends on the power grid configuration and a set of
resistances—and is not valid for other power grid configu-
rations and sets of resistances. Therefore, the W should be
updated after every change in the power system.
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3. Effect of Changing the Value of an Earthing
Resistance on GICs at a Station

Let a and b denote a GIC at a site in a power system pro-
duced by a uniform northward or a uniform eastward geo-
electric field of 1 V/km, respectively. Then, due to linearity,
a GIC created by any uniform horizontal geoelectric field
can be expressed as

GIC(t) = aEx (t) + bEy(t) (13)

where the north and east components of the field, as well
as GIC, are regarded as being dependent on the time t . A
unit of a and b is expressed as amperes times kilometer
per volt (A km/V), when Ex and Ey are expressed in volts
per kilometer (V/km) and the GIC is expressed in amperes.
Considering separate time moments t = t1,. . ., tL , Eq. (13)
is actually a special case of Eq. (12) with M = 1.

Equation (13) can also be applied to an experimental de-
termination of the coefficients a and b by using measured
GIC data together with geoelectric field values computed
from geomagnetic recordings (compare the end of Sec-
tion 2; see, for example, Wik et al., 2008). The values of
a and b obtained by measurements are often different from
the values by a model calculation performed with a uniform
field of 1 V/km because the geoelectric field significantly
depends on the Earth’s conductivity. However, the ratio a/b
is expected to be the same for both the experimental and the-
oretically calculated coefficients. The ratio indicates the rel-
ative importance of the two geoelectric components for the
GIC at the considered site and depends on the grid configu-
ration and resistances (see, for example, Wik et al., 2008).
In practical situations, the calculated geoelectric field am-
plitudes may be scaled to incorrect values due to lack of the
precise ground conductivity data, but the two geoelectric
components should obtain the correct relative weight when
the calculated values are fitted to the measured GIC data.

Based on Eq. (1), I now investigate the effect of the (total)
earthing resistance Re

j of a given station j ( j = 1, . . . , N )
on the ratio a/b associated with the earthing GIC, Ie, j at the
same station. In practice, such a study may be useful when
we cannot obtain reliable information on an additional resis-
tor in the earthing lead of a transformer neutral during GIC
measurements. The diagonal elements Ze,i i of the earthing
impedance matrix equal the resistances Re

i (i = 1, . . . , N ).
As mentioned in Section 2, the total earthing resistances
of the stations include the actual earthing resistances, the
transformer resistances, and the resistances of any resistors
in the earthing leads of transformer neutrals. Based on the
definition of Ze, it is clear that the off-diagonal elements
of Ze are associated with the actual earthing resistances of
the stations, which implies some coupling with the diago-
nal elements as well. However, we now assume that possi-
ble changes in the (total) earthing resistance Re

j considered
do not refer to the actual earthing resistance, which agrees
with thinking of an installation or a removal of a resistor in
the neutral lead. Consequently, the only quantity affected
by the change and included in the GIC calculation is the
element Ze, j j (= Re

j ).

The elements of the matrix 1 + YnZe, denoted by D, are

Dmp = δmp +
N∑

s=1

Yn,ms Ze,sp (m, p = 1, . . . , N ) (14)

where the symbol δmp stands for the Kronecker delta (=
1 if m = p, and = 0 if m �= p). Equation (14) shows
that Ze, j j only affects the elements of D that lie in the j th
column, i.e. p = j . (In fact, all elements Ze,r j (r =
1, . . . , N ) only directly contribute to the j th column of
D but because Ze,r j = Ze, jr indirect effects also appear
elsewhere.) Consequently, the cofactors of the elements
in the j th column of D do not depend on Ze, j j . From the
elementary matrix calculus, we know that the inverse of D,
needed in Eq. (1), is obtained by transposing the matrix
composed of the cofactors of D and by dividing by the
determinant of D (= det(D)). Thus, Ze, j j contributes to
the elements in the j th row of D−1 only through a common
denominator det(D).

Equation (1) gives that

Ie, j =
N∑

i=1

(
D−1

)
j i

Je,i (15)

By using the above-mentioned facts,

Ie, j = 1

det(D)

N∑
i=1

ψ j i Je,i (16)

where ψ j i ( j, i = 1, . . . , N ) is an element of the transposed
matrix of the cofactors of D denoted by [cof(D)]∗. (The as-
terisk means transposing.) It is important that the elements
ψ j i included in Eq. (16) are not affected by Ze, j j (= Re

j ).
According to Eqs. (4) and (5), the column matrix Je is in-
dependent of all earthing resistances, including Re

j . Conse-
quently, the effects of possible changes of Re

j on Ie, j , i.e., on
the earthing GIC at the site j considered, only come by the
term det(D) in Eq. (16). The elements Je,i (i = 1, . . . , N )
introduce the information on the geoelectric field.

It thus follows that if Ie, j is calculated in two different
geoelectric field situations, expressed by Je,i (1) and Je,i (2)

(i = 1, . . . , N ), and the results are Ie, j (1) and Ie, j (2), the
ratio Ie, j (1)/Ie, j (2) is not affected by changes in Re

j . For
example, we obtain a = I j (1) and b = I j (2) for a uniform
northward and eastward geoelectric field of 1 V/km, as
discussed above. Thus, the ratio a/b at each station is
independent of the installation or removal of an additional
resistor in the neutral point of the transformer.

4. Test Model for GIC Calculations
Although the solution of the engineering part in the cal-

culation of GICs in a power system is based on fundamental
circuit theory, including Ohm’s and Kirchhoff’s laws, the
final algorithms and programs to be used may be different.
This could be due to the inclusion of the transformer re-
sistances in the (total) earthing resistances of the stations,
as is done in this paper, to differences in the treatments
of autotransformers, at which two different voltage levels
are in a galvanic connection, thereby enabling the flow of
GICs from one level to another, or to any other differences.
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Table 1. Stations of the Finnish 400-kV power grid shown in Fig. 2. Their
Cartesian east and north coordinates and their (total) earthing resistances
are also given (Pirjola and Lehtinen, 1985).

For example, the Mesh Impedance Matrix Method (MIMM)
and the Network Admittance Matrix Method (NAMM),
both of which also refer to load-flow calculation techniques
traditionally used by electric power industry, are applicable
to GIC computations (Boteler and Pirjola, 2004). NAMM
can be shown to be equivalent with the method developed
independently by Lehtinen and Pirjola (1985), called LP
and summarized in Section 2. In fact, LP is slightly more
general as it allows the possibility of non-zero off-diagonal
elements in the earthing impedance matrix. The computa-
tions and formulas discussed in this paper are based on LP.

For the comparisons, it is necessary to apply different
GIC computation methods to the same power grid model.
Figure 2, which refers to the Finnish 400-kV system in Oc-
tober 1978 to November 1979 (Pirjola and Lehtinen, 1985;
Pirjola, 2005a), is a recommendable choice for such a test
model because the numbers of stations and transmission
lines are high enough (17 stations and 19 transmission lines)
but it is not too large to unnecessarily complicate the com-
putations and analyses. (Note that between stations 11 and
13 there are actually two transmission lines but that in the
GIC studies these are treated as a single line.) The earth-
ing resistances of the stations and the resistances of the
transmission lines are given in Tables 1 and 2, respectively.
These data have also been presented by Pirjola and Lehti-
nen (1985). As indicated in Section 2, the three phases are
considered to be one circuit element, and the earthing resis-
tances include the effects of both the station earthings and
the transformers. No neutral point reactors (or other resis-
tors) in the earthing leads are assumed. This is reasonable
because most of the reactors were installed in the Finnish
400-kV system later than the period referred to in Fig. 2;
as such, the test model remains simpler. Similar to Pirjola

Table 2. Lines and their resistances between stations A and B of the
Finnish 400-kV power grid shown in Fig. 2 (Pirjola and Lehtinen, 1985).

and Lehtinen (1985), the earthing resistances of stations 16
and 17 are set equal to zero to approximately account for
the connection to the Swedish 400-kV network. Thus, the
currents Ie,16 and Ie,17 are actually not earthing GICs but
include currents that flow between the Finnish and Swedish
systems.

Table 1 also gives the east and north coordinates of the
stations in kilometers in a Cartesian coordinate system.
(The origin located southwest of Finland does not play any
role because only the relative positions of different parts and
sites of the power grid are important.) The coordinates have
been simply measured from a map and, therefore, possibly
contain small inaccuracies. The resistance values presented
in Tables 1 and 2 are based on information received from
the power company in the beginning of the 1980s when GIC
model calculations were initiated in Finland. In particular,
the resistance data given in Table 1 may include approxi-
mations. The power grid model provided by Fig. 2 and Ta-
bles 1 and 2 is sufficient for GIC calculation tests, although
the data of the model are slightly different from those of the
old Finnish 400-kV system.

Based on the formulas given in Section 2 and the coor-
dinate and resistance data expressed in Tables 1 and 2, Ta-
ble 3 gives GICs that flow to (positive) or from (negative)
the Earth at the stations of the grid considered under a uni-
form eastward and a uniform northward geoelectric field of
1 V/km. Table 4 presents GICs in the transmission lines
(as positive from station A to station B). The GICs in these
lines are calculated using the formula given, for example,
by Pirjola (2008a) (see Section 2). In the present calcula-
tion, I assumed that the earthing impedance matrix Ze is
diagonal. (Naturally, a more general test model should re-
quire the possibility of non-zero off-diagonal elements of
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Table 3. GICs at the stations of the Finnish 400-kV power grid shown
in Fig. 2 under northward and eastward 1-V/km uniform horizontal
geoelectric fields. GICs flowing to (from) the Earth are defined as
positive (negative).

Table 4. GICs flowing between stations A and B (as positive from A to
B) in the lines of the Finnish 400-kV power grid shown in Fig. 2 under
northward and eastward 1-V/km uniform horizontal geoelectric fields.

Ze, too, but such a complication is neglected now.)
Tables 3 and 4 show that GICs in the lines tend, on av-

erage, to exceed those through transformers. The means
of the absolute values of the GICs in Table 3 are 41.9 A

(eastward) and 38.9 A (northward), and the corresponding
values for Table 4 are 51.3 A (eastward) and 75.7 A (north-
ward). This result is in agreement with the theoretical calcu-
lation using an ideal system and the numerical computation
using the Finnish 400-kV grid (Pirjola, 2005b). The GICs
flowing through several earthings concentrate in lines in the
middle of the network. As a result of this, the average GICs
in the lines exceed the average earthing GICs. A compar-
ison of Tables 3 and 4 with the GIC results given by Pir-
jola and Lehtinen (1985) reveals small differences. This is
due to the fact that the calculations discussed by Pirjola and
Lehtinen (1985) were based on another earlier measurement
of the station coordinates from a map, and there are minor
deviations. Although the GIC magnitudes in Tables 3 and
4 vary largely from site to site, the same order of GICs was
measured in the Finnish high-voltage system during geo-
magnetic storms (Elovaara et al., 1992). This provides an
indirect verification of the validity of the calculations, al-
though an exact agreement with a space storm event cannot
be presumed because real geoelectric fields are not precisely
uniform and equal to 1 V/km northwards or eastwards.

5. Properties of the Transfer Matrix
Equations (1) and (4) express the GIC flowing through

transformers to (from) the Earth in terms of the voltages
associated with the horizontal geoelectric field along the
transmission lines expressed by Eq. (5). The matrix formu-
las (11) and (12) give a direct relation between GICs and
the geoelectric field. Although these formulas look simple,
their interpretation is complicated because the transfer ma-
trices G and W include the network parameters as well as
the integration of the geoelectric field.

Let us now consider in greater detail the N × N ma-
trix (1 + YnZe)

−1 appearing in Eq. (1) and denoted by C.
According to formulas (1) and (4), C plays the role of a
transfer matrix between the geovoltages and the earthing
GICs. Perfect earthings (i.e., Ze = 0), make C the iden-
tity matrix so that the earthing GICs Ie equal the “pe” cur-
rents Je (see Section 2). Lehtinen and Pirjola (1985) also
give another interpretation of the equations derived for the
currents produced by the geoelectric field in the earthings
and the conductor lines by replacing the geoelectric field
with an external injection of the “pe” currents Je,i into the
nodes (i = 1, . . . , N ). Although it is not said explic-
itly, this formulation clearly corresponds to the use of Nor-
ton’s equivalent current sources instead of geovoltages in
the transmission lines (see also Boteler and Pirjola, 2004).
The external injection results in a correct formula (1) for
the earthing GICs, but the “pe” line GICs (= Vim/Rn

im ; i ,
m = 1, . . . , N ) have to be added to the currents resulting
from the injection. Consequently, if we do not think about
an external injection but feed the “pe” currents Vim/Rn

im
along the existing lines, no special addition is needed any
more.

Based on Eq. (4) and on the relations Vim = −Vmi and
Rn

im = Rn
mi , we easily obtain that the sum of the “pe”

currents Je,i (i = 1, . . . , N ) is zero. (It should be noted that
the sum of the earthing GICs Ie,m (m = 1, . . . , N ) is zero
as well.) The external injections described by Lehtinen and
Pirjola (1985) thus mean that an equal amount of current
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Table 5. Transfer matrix C = (1+YnZe)
−1 included in Eqs. (1) and (17) for the Finnish 400-kV power grid shown in Fig. 2. To make the table smaller,

the last two columns (= 16 and 17) are not shown. Their only non-zero elements, equal to one, are on the diagonal. The row and column numbers
are also shown.

flows into and out of the network. However, the injections
at the nodes are obviously independent of each other, which
means that the current fed into (from) a single station flows
in the form of earthing GICs Ie,m (m = 1, . . . , N ) to (from)
the Earth. Taking into account the equation

Ie = (1 + YnZe)
−1Je = CJe (17)

it can be seen that the part of an injected current Je,i that
is associated with the earthing GIC Ie,m is Cmi Je,i (i , m =
1, . . . , N ). Consequently,

Je,i =
N∑

m=1

Cmi Je,i ⇒
N∑

m=1

Cmi = 1 (18)

i.e., the sum of the elements in every column of C is equal
to one. This can be easily verified numerically by consid-
ering, for example, the Finnish 400-kV grid introduced in
Section 4, for which N = 17. The matrix C for this spe-
cial case is presented in Table 5 (without showing the last
two columns). It should be emphasized that although the
earthing impedance matrix Ze is assumed to be diagonal in
the present numerical calculations for the Finnish 400-kV
system, the result on the sum of the column elements in C
is always true because the theoretical derivation of Eq. (18)
does not include any assumptions of Ze.

As in Section 3, the matrix 1 + YnZe is denoted by D,
i.e., C = D−1. Thus, referring to Eq. (16), we can write

C = 1

det(D)
[cof(D)]∗ (19)

As, similarly to Section 3, the elements of [cof(D)]∗ are

denoted by ψ jk ( j , k = 1, . . . , N ), Eqs. (18) and (19) give

1

det(D)

N∑
m=1

ψmi = 1 (20)

for all values of i = 1, . . . , N . By the definition of a
determinant,

det(D) =
N∑

m=1

Dkmψmk (21)

for all values of k = 1, . . . , N . Equations (20) and (21)
result in a special property of the matrix D = 1 + YnZe,
which for i = k can be written as

N∑
m=1

(1 − Dim)ψmi = 0 (22)

for all values of i = 1, . . . , N . Finally, it is worth noting
that although 1, Yn, and Ze are symmetric, the matrices C
and D need not be symmetric (see Table 5). Thus, for ex-
ample, the sums of the elements in the rows of C generally
differ from one.

The matrix C for the Finnish 400-kV power system can
now be considered. Table 5 shows that on each row of
C the largest element is on the diagonal. When the GIC
process is described by the injection of the “pe” currents
Je, each earthing GIC Ie,m (m = 1, . . . , 17) gets its greatest
contribution from the injection at this same station m, which
would appear to be a natural result. It is also seen that the
largest element in every column is found on the diagonal,
with the exception of the third column in which the element
(5, 3) is the largest (i.e., slightly larger than the diagonal
element (3, 3)). Thus, a large part of an injected current
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Table 6. Elements C(10, j) ( j = 1, . . . , 17) of the tenth row of the
transfer matrix C = (1 + YnZe)

−1 included in Eqs. (1) and (17) for the
Finnish 400-kV power grid shown in Fig. 2. The elements are arranged
in order of value. The distance is given a distance between station 10
and station j . The neighborhood number is the number of stations from
station 10 to station j : it is 1 for the nearest stations, 2 for the second
nearest stations, and so on.

Je,i (i = 1, . . . , 17) flows into (from) the Earth at this same
station i . The exception can be explained by the facts that
stations 3 and 5 lie very close to each other and the earthing
resistance at station 3 is larger than at station 5, so a large
part of the current injected at station 3 has an easy path to
go into (from) the Earth at station 5. The only non-zero
elements in columns 16 and 17 (not shown in Table 5) of
the matrix C are the ones on the diagonal. This results
from the zero earthing resistances at stations 16 and 17,
which lead to the direct flow of the “pe” currents injected
at these stations to (from) the Earth at the same sites. It is,
however, worth noting that as the rows 16 and 17 also have
non-zero off-diagonal elements, the currents Ie,16 and Ie,17

receive contributions from other injections as well. (Note
the comment of the nature of Ie,16 and Ie,17 in Section 4.)

In general, the value of an element away from the diag-
onal becomes small in the matrix C. This result, together
with the numbering of the stations shown in Fig. 2, which
implies that a small difference in the numbers generally
means that the particular stations do not lie in very distant
areas of the grid, indicates that remote parts of the network
do not interact to any great extent. In other words, if earth-
ing GIC values at a particular station are of interest, then
it is sufficient to just take into account the neighborhood of
the station. As an example, we consider the tenth row of
the matrix C, which gives the value of Ie,10 in terms of the
“pe” currents Je,i (i = 1, . . . , 17). (We could, of course,
consider any other row as well, but this particular row is
chosen just because it refers to the station Huutokoski, at
which Finnish GIC recordings were started in the 1970s
(Pirjola, 1983).) Table 6 shows C(10, j)( j = 1, . . . , 17)

arranged in order with its value. The corresponding value

of j and the distance between stations 10 and j as well as a
“neighborhood number” are also given. The neighborhood
number is the number of stations from station 10 to station
j : it is 1 for the nearest stations, 2 for the second nearest sta-
tions, and so on. We clearly see that the elements C(10, j)
generally decrease with both an increasing distance and an
increasing neighborhood number. A closer look at Table 6
reveals that the neighborhood number plays a more impor-
tant role for the elements C(10, j) than the distance. Conse-
quently, only the nearby part of the grid affects GICs at sta-
tion 10. This result is in full agreement with the conclusion
presented by Pirjola (2005a), who considered an idealized
linear network and the Finnish 400-kV power grid.

The matrix C = (1+YnZe)
−1 has no explicit dependence

on the distances between the stations or on the neighbor-
hood numbers, but the influences come by the resistances
Re

i (i = 1, . . . , 17) and Rn
im(i, m = 1, . . . , 17). If the

neighborhood number between two stations becomes large,
the “pe” current injected at one of them mostly goes into
(from) the Earth before it reaches the other. This makes the
corresponding element of the matrix C small. In any case,
the currents always find the paths with the smallest resis-
tance, which may lead to an explanation, for example, for
the smaller value of C(10, j) for j = 8 than for j = 3 or
15 even though the neighborhood number of station 8 is less
than that of stations 3 and 15. A large part of the injected
current Je,8 goes, in addition to station 8 itself, to (from) the
Earth at station 7 with a small earthing resistance (Table 1).
This explanation is supported by the large element C(7, 8)

(Table 5). I have conducted this study using station 10,
but the conclusions are clearly more generally valid. The
earthing impedance matrix Ze is assumed to be diagonal in
these calculations, but it is an irrelevant issue in this study
because Pirjola (2008a, b) show that the off-diagonal ele-
ments of Ze are of minor importance in practice. Thus, the
assumption of Ze to be diagonal obviously has no essential
effect on the results in this paper.

6. Concluding Remarks
“Geomagnetically induced currents” in electric power

transmission grids and in other conductor networks are pro-
duced by space storms that result from solar activity. Re-
search on GICs has a lot of practical relevance because the
GICs may cause problems to the systems and their opera-
tion. The GICs play a particularly important role at high
latitudes, but GIC magnitudes and possible harmful effects
also depend on the technological structures and details of
the networks, so the GICs should be taken into account at
lower latitudes as well. Furthermore, the continuously in-
creasing dependence of people on reliable technology em-
phasizes the practical significance of the GICs and other
space weather issues.

Modeling of the GICs in a network is usually carried
out in two parts: (1) the determination of the horizontal
(geo)electric field at the Earth’s surface and (2) the com-
putation of GICs driven by the field. The first part, which
requires space physical and geophysical data and models,
is more demanding and can be performed in practical terms
only approximately. The second part is based on electric
circuit theory and is exact in principle, but in the case of
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a complex network, in practice, assumptions are necessary
for simplification. In this paper, I discuss the second part
for an electric power transmission grid that is discretely
earthed at transformer neutrals. Convenient matrix-type
equations exist for the computation of both the earthing
GICs to (from) the Earth at the stations and the GICs flow-
ing in the transmission lines.

The standard formulation includes the (geo)voltages ob-
tained by integrating the geoelectric field along the paths
defined by the transmission lines. In this paper, I derive a
matrix equation that directly couples the earthing GIC to
the horizontal geoelectric field. On one hand, such a formu-
lation can be considered to be simple and straightforward
but, on the other hand, the transfer matrix is complicated
because it is affected both by the numerical computation of
the geovoltages and by the resistances of the system. The
separation of these two contributions is obviously not easy
in practice.

This paper also provides new theoretical and numerical
analyses of the properties of the transfer matrix between
the geovoltages and the earthing GICs in a power system.
A particular result, which is important in practice, is that
the ratio of the GICs flowing to (from) the Earth at a station
under two different geophysical situations is independent
of the total earthing resistance at this station. The studies
made in this paper aim at a better understanding of the phys-
ical processes associated with the GICs. This is particularly
achieved when describing the flow of GICs by assuming
that the geoelectric field is replaced by the injection of “pe”
currents into the network. An important result obtained by
analyzing the behavior of the elements of the transfer ma-
trix in this paper is that, when considering GICs at one site,
model calculations can be limited to a smaller grid around
the site. This is a confirmation of earlier conclusions drawn
in a different way. Numerical computations discussed in
this paper refer to an old configuration of the Finnish 400-
kV electric power transmission grid. I believe that this par-
ticular system is useful for testing different GIC calculation
techniques, algorithms, and programs.
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