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Confidence limit of the magnetotelluric phase sensitive skew
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The rotationally invariant phase sensitive skew parameter, an indicator of dimensionality of conductivity struc-
ture, is a complicated non-linear function of the impedance tensor elements. In the presence of noise in the
impedance data, skew can be significantly biased, leading to a false interpretation of dimensionality. Therefore,
the probability function distribution of the skew parameter is derived to obtain its confidence limit, rather than
treating a conventional linear propagation error. It is well known that the latter is only appropriate if the parameter
is a function of independent random variables with small relative errors. The confidence limit is estimated by de-
riving its conditional probability function in terms of the tensor elements density function, using the Jacobi-matrix
transformation of random variables, assuming the tensor elements to be normally distributed random variables. It
is shown with synthetic and experimental data that the statistical confidence limit derived here truly reflects a prob-
ability range for the skew value. Bias of skew is seen to be significant with a small 5% of random Gaussian noise
added to the tensor elements. Considering the 95% confidence limit instead of the measured skew itself results in
a plausible approach to analyse dimensionality. The procedure developed here to estimate the confidence limit can
also be extended to other functions of the tensor elements.

1. Introduction
When determining a parameter function of the impedance

tensor, its corresponding error is normally not taken into ac-
count if it is a complicated non-linear function of the ele-
ments. One specific example treated here is the phase sen-
sitive skew defined by Bahr (1991), which is a rotationally
invariant parameter of the impedance tensor.

The skew parameter is based on the hypothesis that the
impedance tensor is affected by telluric distortion, produced
by shallow three-dimensional (3-D) anomalies overlaying a
regional two-dimensional (2-D) structure (i.e., a superpo-
sition 2-D model). A 2-D model affected by telluric dis-
tortion implies equal phases between each pair of columm
tensor elements (in the regional coordinate system). Skew
measures these impedance phase differences and thus indi-
cates the departure from two dimensionality. It would be
zero if the telluric distortion hypothesis is valid for noise-
free data, whereas values over 0.3 can be considered as an
indicator of 3-D inductive effects (Bahr, 1991). However,
with the addition of noise to the tensor elements the skew
values can suffer significant bias, leading to a false interpre-
tation of dimensionality. A way to avoid this problem is to
estimate the probability function of skew, because the tensor
elements with errors can be considered analogous to random
variables. Thus, instead of the skew value itself, its proba-
bility threshold can provide a more plausible information on
dimensionality.

In this paper, the confidence limits of the regional skew
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are derived by expressing its distribution function in terms
of the tensor element density functions. The Jacobi-matrix
transformation of random variables is used in the deriva-
tion (e.g., Fisz, 1976). This procedure is valid for func-
tions which are continuous and continuously differentiable.
Skew fulfills these conditions. The transformation was con-
sidered by assuming the tensor elements as normally dis-
tributed random variables. The result is tested for synthetic
data with random Gaussian noise added to the tensor. An
example applied to measured data is also shown (Section 6).
These experimental data were processed with a robust pro-
cedure (Egbert and Booker, 1986), which estimates an error
covariance matrix for the impedance tensor, assumed to ap-
proach asymptotically a Gaussian distribution (Egbert, pers.
comm.).

The scope of this paper is to show that the mathemati-
cal procedure performed in the derivation of the probability
function distribution of the skew results in a feasible confi-
dence limit to analyze dimensionality. Examples with syn-
thetic and measured data demonstrates this. In a similar
manner, the confidence limits of any other non-linear func-
tion of the tensor elements and hence the measured data can
be estimated.

2. The Variable Transformation for Skew
Regional skew (η) is a continuous function of the tensor

elements. It has the following form:

η =
√

2 |x1x7− x4x6 + x2x8 − x3x5|√
(x2 − x3)2 + (x6 − x7)2

(1)

where,
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x1 = Re{Zxx } x2 = Re{Zxy}
x3 = Re{Zyx } x4 = Re{Zyy}
x5 = Im{Zxx } x6 = Im{Zxy}
x7 = Im{Zyx } x8 = Im{Zyy}.

(2)

These variables correspond to the real and imaginary part
of the impedance tensor (Z) elements defined in magnetol-
lurics:

Z =
[
Zxx Zxy

Zyx Zyy

]

.

Skew (η) is rotationally invariant and it vanishes if the re-
sponse is equivalent to that from the ideal 2-D superposition
model (i.e., electrostatic distortion without magnetic effect).
This means that each pair Zxx , Zyx and Zxy , Zyy have equal
phases.

Assuming a known density function distribution (d.f.)
f for the tensor elements X = (x1, . . . , x8) (Eq. (2))—
assumed as random variables (r.v.)—we can derive the func-
tion distribution (f.d.) of η in terms of X by using the Jacobi-
matrix J for the transformation of variables (e.g., Fisz,
1976).

The transformation of X into η is given by a space Y ,
which contains again the r.v.’s of X , except for one r.v. xp
which is replaced by η:

X = (. . . , xp−1, xp, xp+1, . . . ) → Y

= (. . . , xp−1, η, xp+1, . . . ). (3)

The Jacobi transformation is valid if η is continuously dif-
ferentiable in X . This property is valid in the space of X
where the sum of variables contained in the modulus in the
numerator of η (Eq. (1)) is either a negative or a positive real
number. Thus η is continuously differentiable in X except
at η(X) = 0, i.e., when the numerator of η does not vanish.
In order to fulfill this property for the further steps of the
d.f. derivation, η will be regarded statistically as a non-zero
positive real number. The lowest limit of η will be assigned
as 0+. Note here that a zero skew value is only possible for
noise-free data (for which no statistical error estimation of η

is required). Such data are only available from a numerical
calculation of a perfect regional 2-D model.

It is also required for the derivation of the skew d.f. that
η with regards to the r.v. xp should satisfy the following
conditions required by the Jacobi-transformation:

(1) η is monotonic with respect to xp , i.e., for a given
xap < xbp in the range (−∞, ∞), η is either monoton-
ically increasing if η(xap) < η(xbp), or monotonically
decreasing if η(xap) > η(xbp).

(2) The partial derivative is equivalent with the inversion
∂xp
∂η

=
(

∂η

∂xp

)−1
.

Condition (1) is not completely satisfied because η is an
absolute value as function of the tensor elements. A further
analysis is required to account for this (Section 3). The
second condition is true for the variables x1, x4, x5 and x8

having absolute partial derivatives of the form:

|∂xp
∂η

| = η · [(x2 − x3)
2 + (x6 − x7)

2]

|xi | (4)

for (p, i) = (1, 7), (4, 6), (5, 3), (8, 2).
In consequence, the choice of one of these xp’s is arbitrary

in the transformation due to the symmetry of | ∂xp
∂η

|. Note that
these variables are the diagonal impedance elements Zxx ,
Zyy , where η encounters a local minimum in them and is
symmetrical with respect to this minimum (Fig. 1).

The off-diagonal elements Zxy, Zyx do not fulfill condi-
tion (2) and therefore η is not symmetrical about a minimum
and a maximum value in the off-diagonal elements (Fig. 2).

Having satisfied these conditions, the density function
g(η) of skew takes the form (e.g., Fisz, 1976):

g(η) = | det[J (X/Y )]| · f (X); X = (x1, . . . , x8) (5)

data
η

local
extreme

Skew(Z )xx

Fig. 1. Characteristic surface plot from synthetic data of the regional
skew parameter (η) as function of the real and imaginary part of the
tensor element Zxx (km/s). The gridding interval of the variables is 0.01
centered on the extremal point, while the other tensor elements are kept
fixed at their synthetic values. This plot is also characteristic for the other
diagonal tensor element Zyy . Any of these 4 diagonal elements can be
used in the Jacobi-transformation of random variables.

data
local extreme

η

Global
maximum

Skew(Z )xy

Fig. 2. Characteristic surface plot from synthetic data of the regional skew
parameter (η) as function of the real and imaginary part of the tensor
element Zxy (km/s). Details as in Fig. 1. Skew has global positive and
negative extreme. This is also true for the other off-diagonal tensor ele-
ment Zyx . These 4 elements cannot be used in the Jacobi-transformation
of random variables (see text).
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The matrix J is of dimension 8 × 8 determined by the num-
ber of r.v.’s contained in X , and have the partial derivatives

of X at Y (Eq. (3)). Det[J (X/Y )] is its determinant
∣
∣
∣
∂xp
∂η

∣
∣
∣.

The expression for the multi-variate probability function
of skew in terms of Eq. (5) is:

G(η) =
ηo∫

0+

g(η)dη

=
ηo∫

0+

⎛

⎝
∞∫

−∞

∞∫

−∞
· · ·

∞∫

−∞

∣
∣
∣
∣
∂xp(η, . . . , xp−1, xp+1, . . . )

∂η

∣
∣
∣
∣

· f (. . . , xp−1, xp+1, . . . ) · · · dxp−1dxp+1 · · ·
⎞

⎠ dη.

(6)

Solving this multi-variate integration is complicated; to
make further progress we simplify the problem to a uni-
variate system. This implies determination of a conditional
probability function for η in terms of one r.v. xp, while the
other variables of X are kept fixed at their respective mean
values ui (i = 1, . . . , 8 with i �= p). As mentioned above in
regards to conditions 1 and 2 to validate the variable trans-
formation, the r.v. xp should be one of the diagonal tensor
elements.

3. Derivation of the Probability Distribution of the
Regional Skew Parameter

The conditional probability function (p.f.) P of η(xp) =
ηp, given the known mean values ui of the tensor elements
(i �= p), will be expressed as:

Gp(η̃p) = P(ηp < η̃p). (7)

The derivation of P should satisfy condition (1) of the vari-
able transformation, i.e., η should be either monotonically
increasing or decreasing with respect to xp. Also, the r.v. xp
should be one of the diagonal tensor elements.

In order to simplify the following equations for the further
derivation of Gp, the skew parameter from Eq. (1) will be
expressed with the new term:

ηp =
√

2|xp(siui ) + c|
d

(8)

where the sub-index pairs (p, i) are as in Eq. (4), and d =
(u2 − u3)

2 + (u6 − u7)
2 is in the denominator of η at the

corresponding mean values. The parameter c contains 6
conditional variables at their respective mean values and,
si = ±1 corresponds to the sign of the respective pair xpxi
in Eq. (1).

Analysing for example the conditional probability for the
r.v. x1 (i.e., Re(Zxx ); Eq. (2)), then ui = u7, s7 = 1 and
c = −u4u6 + u2u8 − u3u5.

In the following, the p.f. P of η (Eq. (7)) is expressed
in terms of Eq. (8), and after a change of variables a new
expression is derived:

Gp(η̃p) = P

(√
2|xpsiui + c|

d
< η̃p

)

= P

(

|xpsiui + c| <
η̃2
pd

2

)

= P

(

− η̃2
pd

2
< (xpsiui + c) <

η̃2
pd

2

)

. (9)

Assuming that the tensor elements are normally distributed,
the r.v. xp has a normal d.f. φ(xp) with mean u p and stan-
dard deviation σp.

The conditional p.f. Gp(η) (Eq. (9)) for normally dis-
tributed tensor elements, expressed in terms of the standard
distribution having a variance of 1 and mean 0 (ψo) is:

Gp(η) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


o

(
x+

p
(η) − u p

σp

)

− 
o

(
x−

p
(η) − u p

σp

)

if siui > 0


o

(
x−

p
(η) − u p

σp

)

− 
o

(
x+

p
(η) − u p

σp

)

if siui < 0
(10)

where the variables:

x+
p (η) = η2d

2siui
− c

siui
(11)

x−
p (η) = −η2d

2siui
− c

siui
.

The p.f. of η (Eq. (10)) is related to the standardized folded
normal distribution function (e.g., Dudewicz and Mishira,
1988). The two relations on the right comes from the mono-
tonic condition for a valid transformation of spaces. The
derivation of Gp(η) is given in the appendix.

4. Confidence Limit
The confidence limit (C.L.) of the skew (η) is defined as

the probability (P) that its true value ηo has to lie within
a certain range [ηa, ηb]. We use the conditional p.f. Gp(η)

of skew (Eq. (10)) to derive the confidence limit C.L., ex-
pressed as:

P(ηa < ηo < ηb) = C.L. = Gp(ηb) − Gp(ηa).

Since the p.f. Gp depends on the standardized normal distri-
bution 
o, which is symmetrical around the expected value,
the desired confidence limit will be given by the following
upper and lower limits:

Gp(ηb) = ψo

(
x+

p
(ηb) − u p

σp

)

− ψo

(
x−

p
(ηb) − u p

σp

)

= 1 + C.L.

2

Gp(ηa) = ψo

(
x+

p
(ηa) − u p

σp

)

− ψo

(
x−

p
(ηa) − u p

σp

)

= 1 − C.L.

2
(12)

if siui > 0, otherwise the indexes a with b and b with a
should be exchanged, as indicated in Eq. (10).
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The confidence limit (ηa, ηb) can be determined numer-
ically with some iterative algorithm, since this cannot be
solved directly by simply inverting the folded standard func-
tion 
+

o − 
−
o . The variables ηa, ηb are the quantiles of the

d.f. Gp at the values 1−C.L.
2 , 1+C.L.

2 , respectively (provided
that siui > 0, otherwise the limits are reversed). Public
function libraries written in Fortran as well as in C language
can be used to calculate the quantile of a desired distribution
function (e.g., Brandt, 1992). The algorithm to find C.L.
consists of minimizing the function:

min
{(

Gp(n
j
a,b) − 1 ± C.L.

2

)}

(13)

with η
j
a,b ( j = 0, 1, 2, . . . ) chosen iteratively in order to

take appropriate values for the minimization function.
The result is dependent on the variable xp chosen, which

can be either the element ReZxx , ImZxx , ReZyy or ImZyy .
It is however advisable to select the variable which brings
the largest confidence limit (Sections 5, 6).
4.1 95% confidence limit

To show an example of the 95% confidence limit in terms
of an explicit random variable xp, consider this to be the
element x1 = ReZxx (Eq. (2)), which, expressed in terms of
η (Eq. (1)) is:

xp(η, xp−1, . . . ) = x1(η, x̂2, . . . , x̂8)

= ±η2

2x̂7
·
[(
x̂2 − x̂3

)2 + (x̂6 − x̂7
)2]

+ (x̂4 x̂6 − x̂2 x̂8 + x̂3 x̂5)

x̂7
.

The variables of Eq. (11), derived from the transformation
of limits of the probability function of η (Gp(ηp); Eq. (9)),
are:

x+
1
(η) = η2d

2x̂7
− c

x̂7
, x−

1
(η) = −η2d

2x̂7
− c

x̂7

where

c = −x̂4 x̂6 + x̂2 x̂8 − x̂3 x̂5

d = (x̂2 − x̂3
)2 + (x̂6 − x̂7

)2

si = s7 = 1 and ui = x̂7.

Each x̂i is the measured data considered as the mean value
of the respective variable.

To derive the 95% confidence limit of η, i.e., C.L. = 0.95,
the function to minimize through successive iterations is:

min
{(

G1(n
j
a,b) − 1 ± 0.95.

2

)}

with j = 0, 1, 2, . . .

until the lower and upper limits ηa , ηb are found for a given
tolerance. G1(η) is the probability function of Eq. (10) at
p = 1, which approaches the lower and upper limits ηa, ηb
(or viceversa) as expressed in Eqs. (12).

5. Example with Synthetic Data
The confidence limit of η was tested to the responses of

a forward 3-D model, calculated with a modified version

(Mackie and Booker, 1999) of the algorithm developed by
Mackie et al. (1994).

The model consists of a shallow 3-D conductive vertical
dike (of 5 �m and 8 km depth) with horizontally finite
extensions (8 × 40 km2). It is embedded in a resistive
medium (500 �m), and one of its edges is connected to a 2-
D conductive block (1 �m), which reaches a depth of 5 km.
The dike strikes by 45◦ with respect to the conductive block.
In Fig. 3, an horizontal view of the 3-D model at 2 km depth
is presented. The skew values of two sites (ORI and CC0)
were considered in the test. Site ORI is located near the
centre of the dike and site CC0 is above and near the edge
of the dike (Fig. 3).

Gaussian noise was added to the tensor elements of the
model responses with standard deviation of 2% and 5% of
the largest tensor element amplitude. The procedure was
repeated 100 times. The mean value of the random sample
is the estimate of the noisy tensor element, and its error the
estimate of the standard deviation.

The right hand plots of Figs. 4 and 5 show the 5%
noisy tensor elements with their errors, compared against
the model responses. The skew parameters calculated from
the model responses (ORI, CC0) and the noisy data (ran)
are shown on the left hand plots of the figures. The 2% and
5% random noise data are illustrated separately with their
respective 95% confidence limits. The latter comes from the
conditional probability function of skew (Gp(η); Eq. (10)),
which minimizes Eq. (13), for the variable xp (of one the
diagonal tensor elements; Eq. (2)) resulting in the largest
confidence limit, since this was seen to cover the region of
the model response.

At site CC0 (located above the end of the dike; Fig. 3), the
skew of the model response indicates that at the period range
100–500 s the departure from the 2-D superposition model
is the highest, which means the most significant induction
effect at these penetration depths. The noisy skew has been
down biased indicating in contrast that the best fit with the 2-
D model hypothesis is at this period range. The confidence
limit indeed reflects the range of the 95% probability in
which the true skew value can lie.

0.1

1

10
50

200
1000

  Ohm.m 

0 52 km
0 km

52

Fig. 3. Horizontal view of the 3-D model at 2 km depth. The model
responses at sites ORI and CC0, located next to the thin conductor, were
used in the estimation of the skew confidence limits.
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Fig. 4. An example of skew values using synthetic data (left), estimated from the tensor elements shown in right (units in km/s). The elements of the
model response (lines) are shown over the data scattered with 5% Gaussian noise (dots). The skew of the model response (CC0; in Fig. 3) is shown over
the noisy skew (ran) within its 95% confidence limit. Above: Skew from the elements with 2% Gaussian noise. Below: Skew from the elements with
5% Gaussian noise.
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Fig. 5. As for Fig. 4, but with station ORI (from 3-D model; Fig. 3).

By site ORI (close to the centre of the dike; Fig. 3), the
confidence limit of skew also reflects the 95% range prob-
ability of the true value. Their thresholds follow generally
the trend of the real skew.

6. Example with Field Data
As an example, data from two stations (TIQ and GER)

obtained from MT measurements carried out in the South-
ern Central Andes, within the framework of the German
Collaborative Research Center “Deformation Processes in
the Andes” (SFB 267, 2001), are shown. Time series data

were processed using the robust technique of Egbert and
Booker (1986), performing also a remote reference site to
improve the data quality. The impedance tensor is estimated
with an error covariance matrix, which is assumed to follow
an asymptotically Gaussian distribution. This assumption
of course improves with increasing number of sample data
recorded.

Figure 6 shows the tensor elements of sites TIQ and GER,
and the skew values with their confidence limits. The latter
was estimated for the diagonal element variable which gave
the largest confidence limit, analogous to the synthetic data
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Fig. 6. Example with field data for site TIQ (left) and GER (right) located in the Southern Central Andes (SFB 267, 2001). Above: The tensor elements of
the field data processed with a robust procedure (units in km/s). Below: The skew parameters of the data (dots) within the 95% confidence limits (lines).

example. The greatest uncertainties of skew (i.e., a broader
confidence limit) are seen at the shortest and longest peri-
ods, where the relative errors of the tensor elements are the
largest. At long periods, the smallest skew values close to
the lower confidence limit could reflect a strong down bias
from the true values, since the upper confidence limit is fur-
ther higher.

The upper confidence limit for the skew can be used to
analyse dimensionality, provided that the confidence limit
value is not too large. For example, in this study area are
cases where this upper threshold is far greater than 0.3, while
the lower confidence limit is near zero. Such values indicate
an unreliable value for the skew due to large tensor elements
error. As a result, further interpretation of dimensionality of
the conductivity structure is inappropriate.

7. Conclusions
The derivation of the conditional probability function of

the skew parameter allows estimation of a plausible confi-
dence limit of the true value.

To analyse dimensionality on field data, it is advisable
to treat the upper 95% confidence limit instead of the skew
value itself. It was shown with synthetic data that the skew
estimated from tensor elements scattered with 2% and 5%
random Gaussian noise could suffer strong bias with regards
to the true skew value. Where the confidence limit becomes
extreme large (	0.3), the data should be discarded from the

analysis.
The statistical procedure developed here can also be anal-

ogously applied for any other parameter which is a continu-
ous and continuous differentiable non-linear function of the
tensor elements.
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Appendix A. Derivation of the Probability Func-
tion of Skew for Normal Distributed
Tensor Elements

The conditional probability function (p.f.) of skew
Gp(η̃p) derived from the transformation of variables
(Eq. (9)) is:

Gp(η̃p) = P

(

− η̃2
pd

2
< (xpsiui + c) <

η̃2
pd

2

)

(A.1a)

where xp is the conditional r.v. valid for the transformation
of spaces (diagonal tensor element; Fig. 1), ui is the mean
value of the variable xi , si and c as defined in Eq. (8).

We make the variable transformation:
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y(xp) = yp = (xpsiui + c) → xp = yp − c

siui
(A.1b)

yp = η2
pd

2
(A.1c)

to treat the upper limit of p.f. written in Eq. (A.1a) in terms
of the r.v. xp. We refer to this as the p.f. F(ỹ(xp)):

F
(
ỹ(xp)

) = P

(

yp <
η̃2
pd

2
= ỹp

)

= P

(

xp <
ỹp − c

siui
= xp(η̃p)

)

. (A.2a)

The transformation of variable from yp to xp is valid since
they fulfill the required properties for a valid transformation
of spaces. The p.f. F (Eq. (A.2a)) is transformed to the space
of xp, thus F can be determined given a known p.f. for xp.
The r.v. xp is assumed normally distributed with d.f.

φ(xp), mean value u p and standard deviation σp. Consid-
ering Eq. (A.2a), the p.f. F as function of ỹ(xp) = η̃2

pd/2
(Eqs. (A.1b), (A.1c)) takes the form:

F

(
η̃2
pd

2

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xp(η̃p)∫

−∞
φ(xp)dxp = ψo

(
xp(η̃p) − u p

σp

)

if (siui ) > 0

∞∫

xp(η̃p)

φ(xp)dxp = 1 − ψo

(
xp(η̃p) − u p

σp

)

if (siui ) < 0
(A.2b)

where ψo is a Gaussian distribution with unit variance and
zero mean. The two relations in the right side of Eq. (A.2b)
come from the first condition of a valid transformation of
spaces, i.e., yp (= η2

p d/2) is monotonic in xp. For exam-
ple, if siui < 0, the r.v.’s defined in Eq. (A.1b) approach
yp(xbp) < yp(xap) if xbp > xap. This implies reversing the
integration limits in Eq. (A.2b).
The p.f. of η written in Eq. (A.1a) corresponds to a

folded distribution, which is related to the p.f. F defined in
Eq. (A.2b) by the form (e.g., Dudewicz and Mishira, 1988):

F

(
η2
pd

2

)

− F

(
−η2

pd

2

)

= 
o

⎛

⎜
⎝

(
η2
pd

2si ui
− c

si ui

)
− u p

σp

⎞

⎟
⎠

− 
o

⎛

⎜
⎝

(−η2
pd

2si ui
− c

si ui

)
− u p

σp

⎞

⎟
⎠ (A.3)

after expressing xp in terms of ηp =
√

2|xp(si ui )+c|
d (Eq. (8)).

The right term is obtained after standardizing F , valid for
siui > 0.
With the variable transformations

x+
p (η) = η2d

2siui
− c

siui
(A.4)

x−
p (η) = −η2d

2siui
− c

siui

a final expression is defined for the conditional p.f. of η, by
introducing these variables (Eq. (A.4)) in Eq. (A.3):

Gp(η) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


o

(
x+

p
(η) − u p

σp

)

− 
o

(
x−

p
(η) − u p

σp

)

if siui > 0


o

(
x−

p
(η) − u p

σp

)

− 
o

(
x+

p
(η) − u p

σp

)

if siui < 0.
(A.5)

This p.f. is related to the standardized folded normal distri-
bution function (e.g., Dudewicz and Mishira, 1988). The
two relations on the right come from the monotonic condi-
tion for a valid transformation of spaces as mentioned above
(Eq. (A.2b)).
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