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We present the fundamentals of an electromagnetic sounding with an accurately controlled source signal.
In this method, the tensor transfer function between transmitted and received vector electromagnetic fields is
measured. We formulated the transfer function by introducing a ray model that describes the propagation of the
general electromagnetic field in the whole frequency region. The transfer function includes information of the
underground structure: electromagnetic parameters, propagation distance, and boundary planes. The information
of the electromagnetic parameters and the propagation distance is commonly described in all the tensor elements.
It is in a form of complex functions of frequency. The information concerning the boundary planes is described as
real coefficients of the complex functions. The coefficients are different for each of the tensor elements. When we
use an accurately controlled signal, we can estimate the information as a linear inversion problem. A profile of the
transfer function varies with the frequency region: it decays rapidly in the low-frequency region and oscillates in
the high-frequency region. Such a profile can be explained by the approximate form of the transfer function: a sum
of complex exponential functions in a narrow frequency band. The approximate form also provides a good model
for data decomposition.

1. Introduction
Electromagnetic-sounding methods with controlled

source signals are useful for exploration of the underground
(Strack, 1992; Zhdanov and Keller, 1994). Controlled
source audio-frequency magnetotellurics (CSAMT) is a
well-known method and measures the impedance tensor
(Kaufman and Keller, 1983). Transient electromagnetics
(TEM) and ground penetrating radar (GPR) are also popular
methods. Signals used are impulse, sinusoidal waves, and
pseudo-random sequences, and the electromagnetic field is
commonly measured in the time domain (Duncan et al.,
1980; Strack, 1992).

The electromagnetic accurately controlled routinely op-
erated signal system (EM ACROSS) is based on the same
principle as TEM and GPR. Ogawa and Kumazawa (1996),
Kumazawa (1998a, b), and Nakajima et al. (1998) first
proposed the concept of EM ACROSS and developed the
method with an accurately controlled continuous signal con-
sisting of a finite number of continuous sinusoids. The sig-
nal employed is different from those previously used, es-
pecially concerning the accuracy of the transmitted signal
and synchronization of transmitted and received signals. A
wave form of the signal is not tightly constrained and can
be designed to obtain an ideal signal level in the frequency
domain (Yokoyama et al., 2000b).

The first experimental system of the EM ACROSS was
developed by Nakajima et al. (2000). They succeeded
in transmitting an accurately controlled rectangular wave
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signal and achieved synchronization between receiver and
transmitter with a timing accuracy from 10−8 to 10−6 s. Us-
ing the signal, the signal to noise ratio (SNR) of the re-
ceived signal increased in proportion to the square-root of
the stacking duration, as theoretically expected, and a high
SNR was obtained. This advantage is not provided when a
non-accurately controlled signal was used because the av-
eraged signal level would not increase by stacking, as ex-
pected from theory. Accordingly, a high SNR is one advan-
tage of using the accurately controlled signal.

Another advantage of the accurately controlled signal is
that it allows measurement of the transfer function between
transmitted and received signals. Our purpose in this paper
is to show this advantage. To achieve this, firstly we clar-
ify the reason why the transfer function can be measured.
Secondly, we describe the relation between an electromag-
netic structure and the transfer function in order to clarify
the physical meaning of the transfer function. Then we
show numerical examples of the transfer function and ex-
plain their frequency profiles in a narrow frequency band.
Finally, the advantageous points of the present approach are
summarized. This study is also a fundamental study of the
theory of electromagnetic sounding with an accurately con-
trolled signal.

2. The Transfer Function
In this section, we show the reason why the transfer func-

tion can be measured in the case of an accurately controlled
signal. We consider the case where a controlled electromag-
netic signal x0(n), sampled at discrete time n, is transmitted
into the underground. The signal propagates in the ground
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and is observed as yobs(n) at the receiving point. The re-
ceived signal has a decayed amplitude and delayed phase
compared to the transmitted signal. The amplitude decay
and the phase delay together are described as the transfer
function h(n), which depends on both the frequency of the
signal and the electromagnetic structure of the underground.
The transfer function is set to be time-invariant by assuming
that the electromagnetic structure does not change during
the observation.

When we use an ordinary controlled signal, the actually
transmitted signal x(n) is a sum of the known signal x0(n)

and a transmitting noise εx (n):

x(n) = x0(n) + εx (n). (1)

The transmitting noise includes and a control error caused
by a clock error, environmental noise, dielectric polarization
of contacting place, state change of contacting place, and so
on. The received signal yobs(n) includes observation noise
εy(n) in addition to the propagated signal y(n):

yobs(n) = y(n) + εy(n), (2)

where

y(n) =
∞∑

m=−∞
x(m)h(n − m). (3)

In this case, the system of the transmitted and received sig-
nals is described as in Fig. 1(a). Because the observable
quantity yobs(n) includes unknown parameters εx (n), h(n),
and εy(n), we should estimate the transfer function h(n) us-
ing a proper model. This estimation is a non-linear problem
because the unknown parameters εx (n) and h(n) are con-
voluted in the observation yobs(n) (Oppenheim and Schafer,
1975). On the other hand, when we use the accurately con-
trolled signal, the estimation problem becomes linear. In
this paper, we define the accurately controlled signal by the
following two conditions:
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where X0(ω), Ex (ω), Y obs(ω), and Ey(ω), are the Fourier
transforms of x0(n), εx (n), yobs(n), and εy(n), respectively.
These conditions indicate a small transmitting noise εx (n).
This noise can be suppressed by using more stable hardware
and an accurate clock. Monitoring of the transmitted signal
also decreases the control error because the monitored data
can be used to convert some fraction of the unknown error
into known signal x0(n).

With the accurately controlled signal, the condition
∣
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Y obs(ω)

∣
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∣
 1 (6)

can be efficiently achieved by stacking (Nakajima et al.,
2000). EM ACROSS is designed to satisfy this condition.

The conditions of Eqs. (4) and (6) are necessary to make
the problem linear. With the conditions, the Fourier trans-
form H(ω) of the transfer function in Eq. (3) derived from
Eqs. (1)–(2),

H(ω) = Y obs(ω) − Ey(ω)

X0(ω) + Ex (ω)
, (7)

is approximated as

H(ω) � Y obs(ω)

X0(ω)

(

1 − Ey(ω)

Y obs(ω)
− Ex (ω)

X0(ω)

)

. (8)

Then, it is further approximated as

H(ω) � Y obs(ω) − Ey(ω)

X0(ω)
(9)

with the condition of Eq. (5). This approximated system in
the time domain is shown in Fig. 1(b). In this case, an input
of the transfer function h(n) is the accurately controlled
transmitted signal x0(n), which is known. Because of this,
we can define an observed transfer function H obs(ω) as

H obs(ω) = Y obs(ω)

X0(ω)
. (10)

and its observation noise as

Eh(ω) = Ey(ω)

X0(ω)
. (11)

Then we have

H obs(ω) = 1 · H(ω) + Eh(ω), (12)

which is equivalent to a system model shown in Fig. 1(c).
The system of the transfer function h(n) has an impulse

input, which is an inverse Fourier transform of unity. The
observation noise εh(n) and the final output hobs(n) are in-
verse Fourier transforms of Eh(ω) and H obs(ω), respec-
tively. As shown in Eq. (12) the estimation of h(n) by ob-
servation is a linear problem because the observable quan-
tity hobs(n) is the linear sum of unknown parameters εh(n)

and h(n). Thus, the accurately controlled transmitted signal
makes it possible to directly observe the transfer function
hobs(n) and adds the advantage of estimating the transfer
function h(n) as a linear problem. Such estimation can be
performed more precisely than in the case of a non-linear
problem, which should be solved as in the case of an ordi-
nary controlled signal.

This precise estimation of the transfer function h(n) with
the accurately controlled signal provides us with better in-
formation on the underground structure.

3. Description of the Transfer Function
In order to impart a physical meaning to the transfer func-

tion in frequency domain, H(ω), we describe it with a ray
model based on geometrical optics and Maxwell’s equa-
tions. We consider a plane wave in an isotropic homoge-
neous medium. Though there are transfer functions for both
electric and magnetic fields, we present only the case for an
electric field. The magnetic field case can be easily obtained
in a similar way (see Appendix A).
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Fig. 1. Systems of the transmitted and received signals in the cases of (a) non-accurately controlled signal and (b) accurately controlled signal, and (c) the
system equivalent to that of (b).

3.1 Ray model
The electric field E in an isotropic homogeneous medium

obeys the wave equation

μσ
∂E

∂t
+ με

∂2E

∂t2 = ∇2E, (13)

where μ, σ , and ε indicate magnetic permeability, electric
conductivity, and dielectric permittivity, respectively. In the
case of the plane wave, the solution of the wave equation
becomes

E(ω) = E0 exp i(ωt − k(ω) · r), (14)

where ω, k(ω), and r, respectively, indicate angular fre-
quency, wave number vector, and position vector. In order
to make the electric field decay in the positive r direction,
the amplitude of the wave number becomes

k(ω) = ω

√√
√
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2
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√√
√
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(√
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( σ

εω

)2
− 1

)

. (15)

The first term of the right-hand side of Eq. (15) indicates
phase delay, and the second term specifies amplitude atten-
uation. Even if the amplitude attenuation is large at low
frequency, the first term never will be zero. That is, the
electromagnetic field always propagates. Accordingly, we
can use the concept of the wave front generally defined in
physics and then describe the propagation of an electromag-
netic field along rays as shown in Fig. 2(a). Summarizing,
we can generally use the ray description in both cases of
diffusing and non-diffusing electromagnetic fields.

In order to describe the whole transmitted electromag-
netic field, which spreads in wide space, we need an infi-
nite number of rays. Once the receiving point is fixed, only
the rays that pass through the paths between the transmit-
ting and receiving points are relevant to the measurement
as shown in Fig. 2(b). The number of paths is limited be-
cause an electric field weaker than a threshold can be ig-
nored in practice. Hence, we can simplify the description of
the electromagnetic wave propagation with a finite number
of paths. We shall call such a simple description a ray model
and hereafter describe the transfer function with this model.
Note that the model describes both the cases of diffusing and
non-diffusing electromagnetic fields. That is, the model in-
cludes the case of a low-frequency region treated in MT and
TEM as well as the case of a high-frequency region treated
in GPR. We note that the ray model excludes the case in-
volving resonance, for which an infinite number of rays is
required.
3.2 Three factors of the transfer function

Let both the transmitted and received signals be electric
vector fields. The transfer function defined in Eq. (9) be-
comes a second-rank tensor with nine elements:

H(ω) =

⎛

⎜
⎝

Hxx (ω) Hxy(ω) Hxz(ω)

Hyx (ω) Hyy(ω) Hyz(ω)

Hzx (ω) Hzy(ω) Hzz(ω)

⎞

⎟
⎠ . (16)

The transfer function includes three types of information:
electromagnetic parameters, propagation distance, and
boundary planes of the underground. In the following sub-
sections, we derive the construction of the information.

According to the ray model, the transfer function becomes
the sum of a finite number, M , of ray functions Hm(ω) of
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Fig. 2. (a) Rays and wave fronts, and (b) paths between the transmitting and receiving points.

path m as

H(ω) =
M∑

m=1

Hm(ω). (17)

The ray function is a product of the factors that indicate am-
plitude attenuation and phase delay accompanied by propa-
gation in the homogeneous medium, together with reflection
and refraction. Hence, we need to derive the factors con-
cerned with propagation, reflection, and refraction to obtain
the transfer function H(ω).

We first derive the function of propagation HP(ω), which
indicates amplitude attenuation and phase delay accompa-
nied with propagation. This function HP(ω) in an isotropic
homogeneous medium is independent of polarization of the
electric field. Then it is written with an identity matrix I as

HP(ω) = H P(ω)I. (18)

From Eq. (14), H P(ω) becomes

H P(ω) = exp (−ik(ω) · r) . (19)

Next, we derive the function of reflection HR(ω), which
indicates amplitude attenuation and phase delay induced by
reflection. This function is calculated at a boundary plane
between Medium 1 with parameters μ1, ε1, and σ1, and
Medium 2 with parameters μ2, ε2, and σ2. The function
of reflection consists of a rotation matrix and reflection co-
efficients. The rotation matrix S written by the form

S =

⎛

⎜
⎝

s11 s12 s13

s21 s22 s23

s31 s32 s33

⎞

⎟
⎠ (20)

and the elements satisfy the relations

s2
11 + s2

12 + s2
13 = s2

21 + s2
22 + s2

23

= s2
31 + s2

32 + s2
33 = 1 (21)

and

s11s21 + s12s22 + s13s23 = s21s31 + s22s32 + s23s33

= s31s11 + s32s12 + s33s13

= 0. (22)

Therefore, the transpose and inverse of the matrix are equal:

S−1 = ST . (23)

This matrix transfers the firstly set coordinates (x, y, z) to
(x ′, y′, z′) in order to set the ray on x ′z′-plane and to set the
boundary on x ′y′-plane.

The reflection coefficients depends on the polarization of
the electric field. The coefficients for x ′, y′, and z′ polariza-
tions are (Ward and Hohmann, 1987)

H R
x ′ (ω) = −μ1k2 cos θ1 + μ2k1 cos θ2

μ1k2 cos θ1 + μ2k1 cos θ2
, (24)

H R
y′ (ω) = −μ1k2 cos θ2 + μ2k1 cos θ1

μ1k2 cos θ2 + μ2k1 cos θ1
, (25)

and

H R
z′ (ω) = −H R

x ′ (ω). (26)

In Eqs. (24)–(26), angle of incidence θ1 and angle of re-
fraction θ2 (complex when θ1 exceeds the critical angle) are
related by

cos2 θ2 = 1 −
(

k1

k2

)2

sin2 θ1. (27)

The wave number k1 in Medium 1 and k2 in Medium 2 are
respectively defined as

k1
2 = μ1ε1ω

2

(

1 − i
σ1

ε1ω

)

(28)

and

k2
2 = μ2ε2ω

2

(

1 − i
σ2

ε2ω

)

. (29)

Here x ′z′-polarization indicates a parallel incidence to the
reflection plane and y′-polarization indicates a normal inci-
dence.

Combining the rotation and the reflection matrices, the
function of the reflection HR(ω) becomes

HR(ω) = S−1

⎛

⎜
⎝

H R
x ′ (ω) 0 0

0 H R
y′ (ω) 0

0 0 −H R
x ′ (ω)

⎞

⎟
⎠ S. (30)
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Substituting the elements of the rotation matrix into
Eq. (30), we have

HR(ω) = H R
x ′ (ω)(A − C) + H R

y′ (ω)B, (31)

where

A =

⎛

⎜
⎝

s11
2 s11s12 s11s13

s11s12 s12
2 s12s13

s11s13 s12s13 s13
2

⎞

⎟
⎠ , (32)

B =

⎛

⎜
⎝

s21
2 s21s22 s21s23

s21s22 s22
2 s22s23

s21s23 s22s23 s23
2

⎞

⎟
⎠ , (33)

and

C =

⎛

⎜
⎝

s31
2 s31s32 s31s33

s31s32 s32
2 s32s33

s31s33 s32s33 s33
2

⎞

⎟
⎠ . (34)

The function of the reflection HR(ω) consists of two com-
plex scalar functions H R

x ′ (ω) and H R
y′ (ω), and three real

symmetric matrices A, B, and C, which are independent of
frequency. Hence, the elements of the tensor HR(ω) have
common scalar functions H R

x ′ (ω) and H R
y′ (ω) and different

coefficients.
The function of refraction HT (ω), which indicates ampli-

tude attenuation and phase delay accompanied by refraction,
is derived in a similar way to that of reflection:

HT (ω) = S−1

⎛

⎜
⎝

H T
x ′ (ω) 0 0

0 H T
y′ (ω) 0

0 0 H T
z′ (ω)

⎞

⎟
⎠ S, (35)

where

H T
x ′ (ω) = 2μ2k1 cos θ2

μ1k2 cos θ1 + μ2k1 cos θ2
, (36)

H T
y′ (ω) = 2μ2k1 cos θ1

μ1k2 cos θ2 + μ2k1 cos θ1
, (37)

and

H T
z′ (ω) = tan θ2

tan θ1
H T

x (ω). (38)

Then, we have

HT (ω) = H T
x ′ (ω)A + H T

y′ (ω)B + H T
z′ (ω)C. (39)

Elements of the tensor function HT (ω) are linear combi-
nations of common scalar functions H T

x ′ (ω), H T
y′ (ω), and

H T
z′ (ω) with different coefficients.

3.3 Form of the transfer function
We derived the three factors of the transfer function, the

functions of propagation HP(ω), reflection HR(ω), and re-
fraction HT (ω), in the previous subsection. Because the ray
function of path m, Hm(ω), is a product of the three factors,
the ray function consists of complex scalar functions Fm

� (ω)

and real coefficient matrices Gm
� as

Hm(ω) =
Lm∑

�=1

Gm
� Fm

� (ω), (40)

where

Fm
� (ω) =

I∏

i=1

H Pmi (ω)

J∏

j=1

{
H

Rmj

x ′ (ω)

H
Rmj

y′ (ω)

}

×
K∏

k=1

⎧
⎪⎨

⎪⎩

H Tmk
x ′ (ω)

H Tmk
y′ (ω)

H Tmk
z′ (ω)

⎫
⎪⎬

⎪⎭
(41)

and

Gm
� =

J∏

j=1

{
Amj − Cmj

Bmj

}
K∏

k=1

⎧
⎪⎨

⎪⎩

Amk

Bmk

Cmk

⎫
⎪⎬

⎪⎭
. (42)

In the above equations, { } indicates a selection operation.
The symbols I , J , and K , respectively, indicate the number
of the three following behaviors, propagation, reflection and
refraction. A product of the matrices in Eq. (42) should be
written in turn of occurrences of reflection and refraction,
for example, reflection-reflection-reflection, or refraction-
reflection-refraction. However, a general expression of the
turn is difficult, so that we write it as in Eq. (42) for con-
venience. From Eqs. (41) and (42), the number of Fm

� (ω)

and Gm
� doubles when a reflection occurs and triples when a

refraction occurs, so that

Lm = 2J 3K . (43)

Because the transfer function H(ω) is a sum of the ray
functions Hm(ω), we finally have

H(ω) =
M∑

m=1

Hm(ω) =
M∑

m=1

Lm∑

�=1

Gm
� Fm

� (ω), (44)

where M is the number of paths. Equation (44) is a form of
the transfer function based on the ray model.
3.4 Special cases

The tensor transfer function H(ω) derived as in Eq. (44)
generally has nine elements. However, there are four cases
when the transfer function does not have nine independent
elements. The special cases are summarized in Table 1.

The first case is that of a homogeneous structure. The
transfer function equals Eq. (18) in this case, and has one
independent element.

The second and third cases are of a horizontal multi-lay-
ered structure. We set the coordinates to make the path on
the xz-plane and to make the boundary layers parallel to the
xy-plane. Hence, we can set the rotation matrix S as a unit
matrix. Then the transfer function, which is a product of
Eqs. (18), (30) and (35), becomes a diagonal matrix. Though
the diagonal matrix generally has three different elements, it
has only two elements when refraction does not occur.

The last case is a 3D structure, but reflection or refraction
occurs only one time. In this case, the transfer function is
a product of Eqs. (18) and (31) or Eqs. (18) and (39). Then
the function has a symmetric form because matrices A, B,
and C are symmetric.
3.5 Structure of the transfer function

We formulated the transfer function H(ω) as in Eq. (44).
Applying the derived form to the system in Fig. 1(c), an el-
ement of the tensor transfer function H(ω) can be displayed
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Table 1. Independent elements and tensor form of the transfer function.

structure independent matrix form

elements

homogeneous 1

⎛

⎜
⎜
⎝

Hxx (ω) 0 0

0 Hxx (ω) 0

0 0 Hxx (ω)

⎞

⎟
⎟
⎠

horizontal mutilayers

(no refraction)
2

⎛

⎜
⎜
⎝

Hxx (ω) 0 0

0 Hyy(ω) 0

0 0 −Hxx (ω)

⎞

⎟
⎟
⎠

horizontal multilayers

(general)
3

⎛

⎜
⎜
⎝

Hxx (ω) 0 0

0 Hyy(ω) 0

0 0 Hzz(ω)

⎞

⎟
⎟
⎠

3D

(single reflection/refraction)
6

⎛

⎜
⎜
⎝

Hxx (ω) Hxy(ω) Hxz(ω)

Hxy(ω) Hyy(ω) Hyz(ω)

Hxz(ω) Hyz(ω) Hzz(ω)

⎞

⎟
⎟
⎠

3D

(general)
9

⎛

⎜
⎜
⎝

Hxx (ω) Hxy(ω) Hxz(ω)

Hyx (ω) Hyy(ω) Hyz(ω)

Hzx (ω) Hzy(ω) Hzz(ω)

⎞

⎟
⎟
⎠

as in Fig. 3. Here the system is initially expanded into M
branches of the paths, and then into Lm branches of the po-
larizations. The system input is Fm

� (ω)-operated and Gm
� -

amplified on each branch. The sum of the output from all
branches with additional observation noise is the system out-
put.

The first M branching of the system is caused by the
different electromagnetic structure where the ray passed
through. The second Lm branching is due to the different
polarized directions of the electric field. The reflection co-
efficient is different for x ′z′-polarization and y′-polarization,
so that the response includes two functions of Fm

� (ω). In the
case of refraction, the response includes three functions of
Fm

� (ω). The electric field changes its polarization when it is
reflected and refracted, and a total combination of polariza-
tions becomes Lm , as in Eq. (43).

On each branch, the input is operated with the complex
function Fm

� (ω). The Fm
� (ω)-operation leads amplitude at-

tenuation and phase delay depending on the path m and
the polarization �. This attenuation and delay have infor-
mation on electromagnetic parameters and propagation dis-
tance, because Fm

� (ω) consists of propagation function, re-
flection coefficients, and refraction coefficients. The out-
put of Fm

� (ω)-operation is amplified by the real coefficient
Gm

� . Because the coefficient Gm
� consists of the elements of

the rotation matrix, it carries information of the boundary
planes.

Summarizing, elements of the tensor transfer function
H(ω) consist of three types of information: electromagnetic
parameters, propagation distance, and boundary planes.

G1
1

GLM
M

G1
M

G2
M

FLM
M

F1
2

F2
2

FL2
2

FL1
1

GL2
2

G1
2

G2
2

G2
1

GL1
1

F1
1

F2
1

F1
M

F2
M

path2

pathM

path1

 εh(n)

hobs(n) δ(n)

Fig. 3. Construction of physical information in the transfer function. The
system is expanded into branches of the paths and then into branches of
the polarization.

Among the types of information, that of electromagnetic pa-
rameters and distance is common to nine elements of the ten-
sor. On the other hand, information of the boundary planes
is included in a different form by the elements.
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4. Numerical Examples
We show simple numerical examples of the transfer func-

tion H(ω) in this section. We calculated the transfer func-
tions in three different frequency regions considering simple
structures with three different scales.
4.1 A structure example

We consider the two-layer structure shown in Fig. 4. The
transmitting and receiving points are separated by a distance
2a, and their mid-point is set as O . We define a coordi-
nate system (x, y, z) of the surface that sets the x-axis on a
straight line between the transmitting and receiving points.
The other horizontal axis is set as y, and the vertical axis
is z.

The structure includes two layers. The upper layer has
electromagnetic properties μ1, σ1, and ε1, and the lower
layer has μ2, σ2, and ε2.

The boundary of the two layers consists of two planes.
One of the planes is parallel to the xy-plane and at depth d.
The other plane is inclined with angles ξ and η. This plane
is obtained by two rotations. The first rotation with angle ξ

is around the axis on the parallel plane. This axis is in the
x-direction and at a distance b from the normal line drawn
from O to the parallel plane. The coordinates (x ′, y′, z′)
on the rotated plane is set to include a normal line from O
on y′z′-plane. The second rotation with angle η is around
the y′-axis. The coordinates of the secondary-rotated plane,
the inclined plane, (x ′′, y′′, z′′) is set to include a normal
line from O in x ′′z′′-plane. Then, the relation between the
coordinates (x, y, z) and (x ′′, y′′, z′′) is written as

⎛

⎜
⎝

x ′′

y′′

z′′

⎞

⎟
⎠ = S

⎛

⎜
⎝

x

y

z

⎞

⎟
⎠ , (45)

where S is the transformation matrix of coordinates

S =

⎛

⎜
⎝

cos η − sin η sin ξ sin η cos ξ

0 cos ξ sin ξ

− sin η − cos η sin ξ cos η cos ξ

⎞

⎟
⎠ . (46)

For the following calculation, we set three scale parame-
ters a, b, and d as a = b = d for simplicity. We calculated
the transfer function of three different cases: the scales of
the structure are 10 km, 100 m, and 50 m. Angles of the
inclined plane and the electromagnetic parameters are set as
shown in Table 2.
4.2 Paths

We consider three paths in the example cases. Though we
should consider more paths of multi-reflection in general,
here, for simplicity, we consider the paths of single reflec-
tion, Path 1 connects the transmitting and receiving points
with a straight line. Paths 2 and 3 connect the points of re-
flection on the parallel plane and the inclined plane, respec-
tively.

For the first step to obtain the total transfer function H(ω),
we calculate the ray functions Hm(ω). The function of
Path 1, H1(ω) is that of a propagation distance of 2a, so
that we have

H1(ω) = HP1(ω) = H P1(ω)I, (47)

Table 2. Structure parameters.

symbol value

ξ 10
◦

η 30
◦

μ1 μ0

σ1 10−3 S/m

ε1 10ε0

μ2 μ0

σ2 10−1 S/m

ε2 ε0

μ0: permeability in vacuum.
ε0: permittivity in vacuum.

where

H P1(ω) = exp (−2ik1(ω)a) . (48)

Next, we calculate the function of Path 2, H2(ω). This
function consists of operations of propagation with distance
s1, reflection with angle of incidence θ , and again propaga-
tion with distance s1. Then, we have

H2(ω) = HP2(ω)HR2(ω)HP2(ω) = (H P2(ω)
)2

×

⎛

⎜
⎝

H R2
x (ω) 0 0

0 H R2
y (ω) 0

0 0 −H R2
x (ω)

⎞

⎟
⎠ , (49)

where

H P2(ω) = exp (−ik1(ω)s1) (50)

and

s1 =
√

a2 + d2. (51)

The functions H R2
x (ω) and H R2

y (ω) are calculated from Eqs.
(24) and (25) using

θ = tan−1 a

d
. (52)

The function of the last Path 3 H3(ω) consists of opera-
tions of propagation with distance s ′′

1 , reflection with angle
of incidence θ ′′, and propagation with distance s ′′

2 . Then we
have

H3(ω) = HP31(ω)HR3(ω)HP32(ω)

= H P31(ω)H P32(ω)

× S−1

⎛

⎜
⎝

H R3
x ′′ (ω) 0 0

0 H R3
y′′ (ω) 0

0 0 −H R3
x ′′ (ω)

⎞

⎟
⎠ S,

(53)

where

H P31(ω) = exp
(−ik1(ω)s ′′

1

)
, (54)

H P32(ω) = exp
(−ik1(ω)s ′′

2

)
, (55)

s ′′
1 = cos η

cos θ ′′ (d cos ξ + b sin ξ − a tan η), (56)
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Fig. 4. An example for two layer structure. The boundary consists of two planes: one is pararell to the xy-plane and the other is inclined with angles ξ

and η.

Table 3. Parameters of propagation and reflection.

frequency region path propagation reflection reflection coefficient cycle

(frequency, scale) distance angle
∣
∣H R

x

∣
∣ arg H R

x

∣
∣H R

y

∣
∣ arg H R

y

low Path 1 20 km — — — — — 15 Hz

(15 Hz, 10 km) Path 2 28 km 45
◦

0.75 180
◦

0.77 180
◦

11 Hz

Path 3 23 km 41
◦

0.87 180
◦

0.86 180
◦

13 Hz

intermediate Path 1 200 m — — — — — 290 kHz

(600 kHz, 100 m) Path 2 280 m 45
◦

0.75 180
◦

0.76 180
◦

200 kHz

Path 3 230 m 41
◦

0.87 180
◦

0.86 180
◦

250 kHz

high Path 1 100 m — — — — — 1.0 MHz

(8.0 MHz, 50 m) Path 2 140 m 45
◦

0.63 160
◦

0.65 160
◦

0.73 MHz

Path 3 120 m 41
◦

0.79 170
◦

0.78 170
◦

0.89 MHz

and

s ′′
2 = s ′′

1 + 2a sin η

cos θ ′′ . (57)

In this case, the functions H R3
x ′′ (ω) and H R3

y′′ (ω) are, respec-
tively, the same to H R2

x (ω) and H R2
y (ω), but

θ ′′ = tan−1 a

d cos ξ + b sin ξ
. (58)

The transfer function H(ω) is calculated from Eqs. (47),
(49), and (53) as

H(ω) = H1(ω) + H2(ω) + H3(ω). (59)

This tensor is symmetric and has six independent elements
as shown in Table 1, because multi-reflection is not consid-
ered.
4.3 The ray functions and the transfer functions

Using the structure and the ray model mentioned above,
we present numerical examples in three cases. We consid-
ered low-, intermediate-, and high-frequency regions repre-
sented by ranges of 1–30 Hz, 200 kHz–1 MHz, and 6–10
MHz, respectively. Then, we combined the ranges, respec-
tively, with the 10 km, 100 m, and 50 m scale structures.

The calculated ray functions Hm(ω) in the case of low
frequency and large scale are shown in Fig. 5(a). In order to
help in the interpretation of the result, parameters of prop-
agation and reflection at the central frequency of the range
are given in Table 3. All the elements of the ray functions
rapidly decay as frequency increases, because the attenua-
tion increases as frequency increases. Because the tensor
function of Path 1 indicates propagation in a homogeneous
medium, it has an independent diagonal element, as shown
in Table 1. The tensor function of Path 2 includes reflection
on the parallel plane and has two independent diagonal ele-
ments. The tensor function of Path 3 is symmetric because
it includes reflection on the inclined plane. Such reflections
accompany phase reversal with the parameter in Table 2, so
that H m

xx of Paths 2 and 3 has mostly opposite signs to that
of Path 1. Smaller amplitudes of the functions of Paths 2
and 3 are the results of the reflections and also of the longer
propagation distances.

The tensor transfer function H(ω) calculated from the ray
functions is shown in Fig. 5(b). The diagonal elements of the
tensor transfer function are sums of the diagonal elements
of the three ray functions Hm(ω). Concerning Hxx and Hyy ,
amplitudes of the elements are smaller than those of Path
1. This is because of the opposite signs of the elements of
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Fig. 5. Numerical example of (a) the ray functions and (b) the transfer function in the low-frequency region. Solid and broken lines indicate a real part
and an imaginary part, respectively.

Paths 2 and 3 to those of Path 1. On the other hand, H 2
zz

has mostly the same signs to H ′
zz , so that Hzz of the transfer

function is larger than the element of Path 1. Off-diagonal
elements of the transfer function are equal to those of Path
3. Because there is no contribution from the function of the
shortest Path 1, the off-diagonal elements are smaller than

diagonal elements.
When we observe such a transfer function, we can learn

about the underground only from the outline of the function.
Firstly, single reflection is known from the symmetry of the
tensor function. Secondly, the 3D underground structure
is known from the existence of the off-diagonal elements.
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Fig. 6. Numerical example of (a) the ray functions and (b) the transfer function in the intermediate frequency region. Solid and broken lines indicate a
real part and an imaginary part, respectively.

Lastly, an order of magnitude estimation of the depth of the
reflection point is known from the differences between the
diagonal elements.

We show the ray functions Hm(ω) and the transfer func-
tion H(ω) in the case of intermediate frequency and middle-
scale structure in Fig. 6. In this case, the decay of the func-

tions is slow and an oscillatory tendency appears. The re-
lation between the three ray functions and that between the
elements of the tensor transfer function are similar to the
first case.

We show the case of high frequency and small-scale struc-
ture in Fig. 7. The ray functions in this case scarcely decay,
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Fig. 7. Numerical example of (a) the ray functions and (b) the transfer function in the high frequency region. Solid and broken lines indicate a real part
and an imaginary part, respectively.

but they do oscillate. The cycle of the oscillation is slightly
different for the ray functions shown in Table 3. Such differ-
ence of the cycle also exists in the previous cases, though it
is not clear because of the decay with frequency. The cycle
of the oscillation roughly concerns group delay, which we
explain in the following section. The relation of amplitudes

among the ray function Hm(ω) is mostly the same as the
previous two cases. Concerning the transfer function H(ω),
dependency of the amplitude on frequency is different from
the previous cases: amplitudes of the diagonal elements of
the transfer function change with frequency. This amplitude
modulation is a part of a beat synthesized from the ray func-
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tions with different cycles.
The typical profile of the transfer function is thus depen-

dent on frequency. This is explained by the character of the
medium. It acts as a conductor in low frequency and as a
dielectric in the high frequency region.

5. Approximated Model of the Transfer Function
In the previous section, we showed that the profiles of the

transfer functions H(ω) are different throughout frequency
regions. In this section, we represent the profiles in a narrow
band with a simple function to improve our understanding.

The frequency function Fm
� (ω) has information of elec-

tromagnetic properties and propagation distance as men-
tioned above. From another viewpoint, the function indi-
cates amplitude attenuation and phase delay. Describing the
attenuation and the delay together, Fm

� (ω) is a function of
complex attenuation. This function is related to the function
of complex phase delay φm

� (ω) as

Fm
� (ω) = exp iφm

� (ω). (60)

Here we consider a linearization of the frequency function
Fm

� (ω) or φm
� (ω) to retain the physical meaning. Comparing

linearization errors of cases Fm
� (ω) and φm

� (ω), the approx-
imation is valid in the wider frequency range in the case of
φm

� (ω) (see Appendix B for proof). Hence, we adopted a
linearization of φm

� (ω).
With Taylor expansion of φm

� (ω) around a center angular
frequency ω0, we have

φm
� (ω) � φm

� (ω0) + φ̇m
� (ω0)(ω − ω0), (61)

defining

φ̇m
� (ω0) = dφm

� (ω)

dω

∣
∣
∣
∣
ω=ω0

. (62)

Substituting Eq. (61) into Eq. (60), we have

Fm
� (ω) � Fm

� (ω0) exp
{
i φ̇m

� (ω0)(ω − ω0)
}
. (63)

Then the transfer function in Eq. (44) becomes

H(ω) �
M∑

m=1

Lm∑

�=1

Gm
� F

m
� (ω0) exp

{
i φ̇m

� (ω0)(ω − ω0)
}

=
M∑

m=1

Lm∑

�=1

βm
� exp

{
iαm

� (ω − ω0)
}
, (64)

defining

αm
� = φ̇m

� (ω0) (65)

and

βm
� = Gm

� F
m
� (ω0). (66)

The simplified transfer function in Eq. (64) is a linear
combination of exponential functions eiα

m
� ω, whose ampli-

tude is βm
� and initial angular frequency is ω0. The value

Fm
� (ω0) indicates amplitude attenuation and phase delay at

ω0. The exponential function is generally a decaying or

growing oscillation because αm
� is generally complex. A cy-

cle of the oscillation is 2π/ Re αm
� , where the real part of

αm
� indicates group delay at ω0 from the definition in Eq.

(65). The imaginary part of αm
� concerns an attenuation of

the wave packet.
We understand the typical frequency profile of the transfer

function with the approximated form. The rapidly decaying
part of the transfer function in the low-frequency region can
be approximated with a sum of real exponential functions,
because the imaginary part is dominant in αm

� . On the other
hand, the real part is dominant in the high-frequency region,
and the transfer function can be approximated with a sum of
sine curves. In the intermediate-frequency region, the profile
is that of complex exponential functions. Such profiles are
also recognized in the examples in Figs. 5 to 7.

6. Discussion and Conclusions
We pointed out that the transfer function between trans-

mitted and received electromagnetic fields is observable
when an accurately controlled signal is used. We also de-
rived a form of transfer function based on the ray model.
From the result, physical properties and the construction of
physical information concerning the transfer function were
clarified. The transfer function is not influenced by the trans-
mitting signal but is a straight forward information of the
underground structure. In other words, measurement of the
transfer function is regard as direct measurement of the un-
derground structure, and this measurement becomes possi-
ble by using an accurately controlled signal.

Such a measurement provides us with the potential to esti-
mate information of an underground structure without noise
as a linear inversion problem. This is in direct contrast to the
methods with non-accurately controlled signals. In the latter
cases, only the received electromagnetic field is observable
and the transfer function cannot be measured. The unknown
transmitting noise is convoluted in the observed signal, so
that an estimation of information of the underground struc-
ture becomes a non-linear problem. On the other hand, the
accurately controlled signal provides information on under-
ground structures without involving a non-linear inversion
problem. This is an advantage of using the accurately con-
trolled signal in addition to the technical advantage of ob-
taining high SNR data (Nakajima et al., 2000).

We also approximated the transfer function with simple
functions. It helped us to understand a rough frequency pro-
file of the transfer function in a narrow band. It is also use-
ful to make a plan of data processing. In order to estimate
the underground structure, we remove noise and process the
data before the estimation of the structure. In this process,
the structure estimation benefits from the decomposition of
the data into components with physical meaning. Hence, we
can adopt an approximated transfer function, whose physi-
cal meaning is clarified, as mentioned in the previous sec-
tion, as the decomposition model.

The approximated transfer function in Eq. (64) with ob-
served noise can be reduced to an autoregressive (AR)-type
model of the extended Prony method or Sompi method (Kay
and Marple, 1981; Kumazawa et al., 1990). These methods
are useful in decomposing the transfer function with weak
decay, such as in Fig. 7. The decomposition was initially



Y. YOKOYAMA et al.: TRANSFER FUNCTION OF ACCURATELY CONTROLLED SIGNAL METHOD 471

tried for an analysis of seismological data by Hasada et al.
(2001), although their algorithm is not suitable to decom-
pose the electromagnetic data. We developed a useful al-
gorithm and succeeded in the decomposition of the transfer
function in the case of two horizontal layers (Yokoyama et
al., 2000a). An estimation of the structure using the de-
composed components was also successful. From this ex-
perience, the decomposition seems to be also useful for an
estimation of general 3D structure. Development of an algo-
rithm that works in the case of strong decay, such as in the
cases of Figs. 5 and 6, is an unresolved problem to realize a
decomposition method.

Acknowledgments. We thank Dr. P. Weidelt for reviewing the
manuscript critically.

Appendix A.
The transfer function of a magnetic field can be derived

in a similar way to that shown in Section 3. But, HR
x ′ (ω),

HR
y′ (ω), HR

z′ (ω), HT
x ′ (ω), HT

y′ (ω), and HT
z′ (ω) in Eqs. (24)–

(26) and Eqs. (36)–(38) should be replaced by

HR
x ′ (ω) = μ1k2 cos θ2 − μ2k1 cos θ1

μ1k2 cos θ2 + μ2k1 cos θ1
, (A.1)

HR
y′ (ω) = μ1k2 cos θ1 − μ2k1 cos θ2

μ1k2 cos θ1 + μ2k1 cos θ2
, (A.2)

HR
z′ (ω) = −HR

x ′ (ω), (A.3)

HT
x ′ (ω) = 2μ1k2 cos θ2

μ1k2 cos θ2 + μ2k1 cos θ1
, (A.4)

HT
y′ (ω) = 2μ1k2 cos θ1

μ1k2 cos θ1 + μ2k1 cos θ2
, (A.5)

and

HT
z′ (ω) = tan θ2

tan θ1
HT

x ′ (ω). (A.6)

Appendix B.
We compare linearization errors of the functions Fm

� (ω)

and φm
� (ω) in Eq. (60). Setting the angular frequency range

as �ω1, the error of the function Fm
� (ω) becomes

�Fm
� (ω) = Fm

� (ω) − (Fm
� (ω0) + Ḟm

� (ω0)�ω1
)
. (B.1)

On the other hand, the error of the function φm
� (ω) in the

range �ω2 becomes

�Fm
� (ω) = Fm

� (ω) − Fm
� (ω0) exp i φ̇m

� (ω0)�ω2. (B.2)

Setting both errors at the same level, we have

Fm
� (ω0) + Ḟm

� (ω0)�ω1

= Fm
� (ω0) exp i φ̇m

� (ω0)�ω2. (B.3)

From the above equation, the ratio of the two frequency
ranges becomes

�ω1

�ω2
= Fm

� (ω0) exp i φ̇m
� (ω0)�ω2 − Fm

� (ω0)

Ḟm
� (ω0)�ω2

= exp i φ̇m
� (ω0)�ω2 − 1

i φ̇m
� (ω0)�ω2

, (B.4)

using the relation

Ḟm
� (ω) = i φ̇m

� (ω)Fm
� (ω) (B.5)

derived from Eq. (60).
Defining

i φ̇m
� (ω0)�ω2 = a + bi, (B.6)

we have
∣
∣
∣
∣
�ω1

�ω2

∣
∣
∣
∣

2

= e2a − 2ea cos b + 1

a2 + b2
. (B.7)

In the above equation, ea implies amplitude decay of wave
packet, so that a ≤ 0 is physically constrained. In this
region, the ratio is limited as

0 <

∣
∣
∣
∣
�ω1

�ω2

∣
∣
∣
∣

2

≤ 1. (B.8)

Then, we have the relation

|�ω1| ≤ |�ω2| . (B.9)

This relation implies that the linearization of φm
� (ω) can

be applied in a wider frequency range than in the case of
Fm

� (ω).
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