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A new three-dimensional (3D) MT modeling scheme conserving electric current and magnetic flux is developed.
The scheme is based on finite difference (FD) staggered rectangular non-uniform grid formulation for the secondary
electric field with continuous components of tangential electric and normal magnetic fields, in contrast to existing
FD algorithms with a discontinuous E-field at the face of the cells. The scheme leads to a sparse 13-band complex
symmetrical system of linear equations, which is effectively solved by fast and stable conjugate gradient (CG)
methods. The preconditioning procedure was used to decrease the condition of a number of an ill-conditioned
matrix system by several orders and stably and quickly solves the matrix system. The special module for the
correction of divergence-free current J greatly increased the speed of convergence and accuracy, especially at
low frequencies and for high-contrast resistivity or conductivity structures. A special procedure was developed
to improve the accuracy of tangential magnetic and vertical electrical components at the Earth’s surface and at the
interface with a large conductivity contrast. The validity of the new algorithm was demonstrated for difficult models
with high-contrast resistivity structures including topography and for COMMEMI project models.

1. Introduction
Much progress has been made in three-dimensional (3D)

EM modeling with integral equation (IE), finite difference
(FD), and finite element (FE) methods in the recent years
(e.g. Wannamaker, 1991; Mackie et al., 1993; Alumbaugh et
al., 1996; Smith, 1996; Avdeev et al., 1997; Weidelt, 1999;
Xiong et al., 1999; Fomenko, 1999; Varentsov, 1999; and
Sasaki, 1999). Models with an arbitrarily complex 3D resis-
tivity distribution, including topography and high-resistivity
contrast, require a large number of grid nodes. These mod-
els are especially difficult for using IE methods due to a
full matrix system of order N 3 (N : number of nodes), thus
these problems are mainly solved by FD or FE schemes.
Known FD and FE schemes are incomplete for solving such
difficult problems and thus require improvement. The fol-
lowing issues should be addressed: good accuracy over a
wide range of frequencies, non-monotonic behavior of the
residual, causing uncertainty of termination criteria, speed
of convergence and stability of the numerical scheme. Thus,
special attention has been devoted to schemes which obey
the conservation laws of electric current and magnetic flux
in a frequency domain for quasi-stationary electromagnetic
fields. This approach leads to success in staggered finite dif-
ference (SFD) schemes based on magnetic fields (Mackie et
al., 1993) and on electric fields (Smith, 1996; Alumbaugh et
al., 1996; Weidelt, 1999; Xiong et al., 1999).

This paper describes a new step in the development of an
electric-field solution leading to a fast, accurate, economi-
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cal, and conservative SFD scheme for wide-band frequen-
cies and high-contrast structures. Our SFD scheme is based
on an electric secondary field with continuous components
at a staggered grid.

2. Algorithm
2.1 Approximation and conservation laws

First, we introduce a rectangular, non-uniform ‘Normal
Grid’ with coordinates of the nodes xi , y j , zk and grid cells
�i = xi+1 − xi , � j = y j+1 − y j , �k = zk+1 − zk . We
also define a ‘Central Grid’ with coordinates of the nodes
x ′
i = (xi + xi+1)/2, y′

j= (y j + y j+1)/2, z′
k= (zk + zk+1)/2

and grid cells �′
i = (�i + �i+1)/2, �′

j = (� j + � j+1)/2,
�′

k = (�k + �k+1)/2. Based on these grids, we construct a
staggered grid (Fig. 1). The electric field (E) is taken to be at
the center of the prism edges, and the magnetic field (H) is
taken to be at the center of the interfaces. Thus, E is always
tangential and H is always normal to the conductivity and
both are always continuous at the staggered grid.

Assuming the time harmonic dependence e−iωt (ω: an-
gular frequency) and ignoring the displacement current in
magnetotelluric modeling, Maxwell’s equations for the total
electric field (E) and magnetic field (H) in a staggered grid
lead to

∮
Hdl′ =

∫∫
σEds′, (1)

∮
Edl = iωμ

∫∫
Hds, (2)

∮

dVi jk

(σE)ds = 0, or div (σE) = 0, (3)
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Fig. 1. A staggered grid cell V (i, j, k). Tangential electric and normal
magnetic field components are sampled at the center of edges (E) and
at the center of interfaces (H), all of them are continuous. �i , � j , �k
denote the sizes of the cells.

∮

dVi jk

(H)ds = 0, or div H = 0, (4)

where μ is the magnetic permeability and σ is the conduc-
tivity distribution in the cells of a normal grid.

We will use the formulation for secondary fields because
it usually provides more stable and accurate solutions than
formulations for total fields. The primary fields Ep, Hp

are selected to satisfy (1)–(4) for a model with primary
conductivity σp. For the secondary fields Es= E − Ep,
Hs= H − Hp and the secondary current js = (σ − σp)Ep,
we have

∮
Hsdl′ =

∫∫
(σEs + (σ − σ p)Ep)ds′

=
∫∫

(σEs + js)ds′, (1′)
∮

Esdl = iωμ

∫∫
Hsds, (2′)

where dl, ds correspond to the normal grid cells and dl′, ds′

to the central grid cells.

dsxi jk= � j−1�k−1nx, dsyi jk= �k−1� j−1ny,

dszi jk= �i−1� j−1nz,

dlx = �i−1ni , dly = � j−1n j , dlz = �k−1nk,

ds′
x, ds′

y, ds′
z and dl′x, dl′y, dl′z are given by the same equa-

tions with primes (e.g. ds′
xi jk= �′

j−1�
′
k−1nx). nx, ny, nz are

unit vectors correspondingly along the x , y, z directions.
After staggered finite difference (SFD) approximation of

Eqs. (1) and (2), we obtain six scalar equations shown as (5)
and (6):

(Hz
j+1/2 − Hz

j−1/2)�
′
k−1 − (Hy

k+1/2 − Hy
k−1/2)�

′
j−1

= 〈σ 〉xi, j−1,k−1Ex
i−1/2, j,k�

′
j−1�

′
k−1, (5.1)

(Hx
k+1/2 − Hx

k−1/2)�
′
i−1 − (Hz

i+1/2 − Hz
i−1/2)�

′
k−1

= 〈σ 〉yi−1, j,k−1Ey
i, j−1/2,k�

′
k−1�

′
i−1, (5.2)

(Hy
i+1/2 − Hy

i−1/2)�
′
j−1 − (Hx

j+1/2 − Hx
j−1/2)�

′
i−1

= 〈σ 〉zi−1, j−1,kEz
i, j,k−1/2�

′
i−1�

′
j−1, (5.3)

(Ez
j − Ez

j−1)�k−1 − (Ey
k − Ey

k−1)� j−1

= iωμHx
i, j−1/2,k−1/2� j−1�k−1, (6.1)

(Ex
k − Ex

k−1)�i−1 + (Ez
i − Ez

i−1)�k−1

= iωμHy
i−1/2, j,k−1/2�k−1�i−1, (6.2)

(Ey
i − Ey

i−1)� j−1 − (Ex
j − Ex

j−1)�i−1

= iωμHz
i−1/2, j−1/2,k�i−1� j−1, (6.3)

where, for example,

〈σ 〉zi−1, j−1,k = [σi, j,k�i� j + σi−1, j,k�i−1� j

+ σi, j−1,k�i� j−1

+ σi−1, j−1,k�i−1� j−1]/(4�′
i−1�

′
j−1).

The original system describing (5), (6) is a pair of coupled
first-order equations for E and H. In order to decrease the
number of equations, we eliminate H-field from Eq. (5)
using the right-hand side of Eq. (6). The second-order SFD
equation was introduced as follows:

Ã(Es + Ep) = ÃEtotal = 0. (7)

The matrix Ã is neither Hermitian nor symmetric, but
it can be transformed to the complex symmetric matrix Â
by multiplying the obtained equations by factor �i for Ex

members in the right side, � j for Ey and �k for Ez .
We introduce SFD operators ∇s f d , divs f d , ∇s f d × F at the

staggered grid as

(∇s f dF)i jk= {(Fx
i − Fx

i−1)/�
′
i−1, (F

y
j − Fy

j−1)/�
′
j−1,

(Fz
k − Fz

k−1)/�
′
k−1}, (8.1)

(divs f d F)i jk = (Fx
i − Fx

i−1)/�
′
i−1 + (Fy

j − Fy
j−1)/�

′
j−1

+ (Fz
k − Fz

k−1)/�
′
k−1, (8.2)

(∇s f d × F)z,i jk = (Fy
i − Fy

i−1)/�i−1

− (Fx
j − Fx

j−1)/� j−1, etc. (8.3)

After moving the primary field Ep to the right-hand side,
we obtain the final complex symmetric linear system for the
secondary electric field Es with second-order SFD matrix
operators Â, Âp and right-hand side vector b

ÂEs= −ÂEp = b = f − ÂpEp

or
⎛

⎜
⎝

Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎞

⎟
⎠

⎡

⎢
⎣

Ex,s

Ey,s

Ez,s

⎤

⎥
⎦

=

⎡

⎢
⎣

f x

f y

f z

⎤

⎥
⎦−

⎛

⎜
⎝

Ap
xx Ap

xy Ap
xz

Ap
yx Ap

yy Ap
yz

Ap
zx Ap

zy Ap
zz

⎞

⎟
⎠

⎡

⎢
⎣

Ex,p

Ey,p

Ez,p

⎤

⎥
⎦ =

⎡

⎢
⎣

bx

by

bz

⎤

⎥
⎦ ,

(9)

where

Â = (∇s f d × ∇s f d − iωμσ I)dv′,

Âp = (∇s f d × ∇s f d − iωμσpI)dv′,
f x = iωμ〈σ − σ p〉xi, j−1,k−1�i�

′
j−1�

′
k−1Ex,p

i−1/2, j,k,

f y = iωμ〈σ − σ p〉yi−1, j,k−1�
′
i−1� j�

′
k−1Ey,p

i, j−1/2,k,

f z = iωμ〈σ − σ p〉zi−1, j−1,k�
′
i−1�

′
j−1�kEz,p

i, j,k−1/2,
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I is the identity matrix.
The block operators Axx , Axy , Axz can be written as

AxxEx = {[(Ex
k − Ex

k+1)/�k + (Ex
k − Ex

k−1)/�k−1]

/�′
k−1}�i�

′
j−1�

′
k−1

+ {[(Ex
j − Ex

j+1)/� j + (Ex
j − Ex

j−1)/� j−1]

/�′
j−1}�i�

′
j−1�

′
k−1

− iωμ〈σ 〉xi, j−1,k−1Ex
i−1/2, j,k�i�

′
j−1�

′
k−1,

AxyEy = (Ey
i+1, j+1/2 − Ey

i+1, j−1/2

− Ey
i, j+1/2 + Ey

i, j−1/2)�
′
k−1,

AxzEz = (Ez
i+1,k+1/2 − Ez

i+1,k−1/2

− Ez
i,k+1/2 + Ez

i,k−1/2)�
′
j−1.

Other elements of the operator Â have similar forms.
Let us now consider the conservation laws describing (3)

and (4) on the staggered grid. The SFD operators, intro-
duced in (8.1)–(8.3), automatically provide the following
vector equalities:

∇s f d × (∇φ) = 0 for any SFD scalar φ, (10.1)

div(∇s f d × F) = 0 for any SFD vector F, (10.2)

∇s f d × ∇s f d × F = −∇2
s f dF + ∇s f d divs f d F

for any SFD vector F, (10.3)

and the following two SFD conservation laws on the stag-
gered grid are introduced, when the div operator is applied
to the original equations (5) and (6) for the total fields:

divs f d jtotal = divs f d (σE) = 0, (11)

iωμ divs f d H = 0. (12)

Equations (11), (12) do not hold automatically when σ =
0 (in the air) or ω = 0 (static case), as well as at low frequen-
cies where computer round-off errors increase, even if dou-
ble precision is used. Our transformation from the pair of
coupled E-H equations of the first order (5), (6) to the final
stand-alone second-order Eq. (9) for E field cannot automat-
ically provide conservation laws (11), (12) in these cases,
due to the elimination of matrix entries associated with re-
gions where σ = 0 in the E-H formulation. In the regions
where σ = 0 (air or insulator layer/body in the earth), if E
is an SFD solution, any E + ∇φ is also an SFD solution.
Moreover, the final linear system (9) is ill-conditioned be-
cause the main part of its operator (Axx , Ayy, Azz) contains
an ill-conditioned Laplace operator. In order to overcome
these problems, we use σ = 10−8∼10−10 S/m instead of
σ = 0 and solve Eq. (9) for the Es-field together with Eq.
(11), periodically making divergence-free corrections to the
current j = σE to suppress computer round-off errors (see
the details in Subsection 2.7).

At ω = 0, the electric field becomes curl-free, thus it can
be expressed as E = ∇φ. If we add Eq. (11), we will avoid
uncertainty when calculating the electric field, because these
two equations follow in the stationary equation �φ = 0.

It is very important to note that solving Eq. (9) without the
conservation law (11) as a stand-alone equation causes inac-
curate calculations of the E and H fields, especially at low

frequencies, in the vicinity of a dipole source (Alumbaugh et
al., 1996), and for large grids containing 100,000 and more
cells (the condition number of the matrix is more than 108).

The H-field is calculated using the curl-operator in the
generalized Eq. (5) and (6) after solving Eq. (9) and (11) at
the staggered grid (see Subsection 2.6). Due to the vector
equality (10.2) and (6), the resulting magnetic field is auto-
matically divergence-free with staggered grid and satisfies
the conservation law in (12).

Using the Taylor series, it is easy to show that the pro-
posed scheme has second-order approximation at the uni-
form grid (�i = � j = �k) and first-order approximation in
the area of non-uniform grid cells.
2.2 Boundary conditions

Equations (1)–(4) for the all E, H components uniquely
determine the current σE and magnetic field H throughout
the 3D model, when the tangential E or H components are
specified at the boundary (Harrington, 1961).

In this study, we used simple boundary conditions (BC)
for the tangential components of the secondary electric field
Es
tang at each vertical boundary surface;

Es
tang = 0. (13)

If the modelling area has 2D anomalous bodies, we set

∂E/∂n = 0 or ∂Es/∂n = −∂Ep/∂n (14)

at the vertical plane, which is normal to the 2D prolongated
body.

Along the top and bottom faces, bilinear interpolated hor-
izontal fields from the four corner 1D sections are specified.

Asymptotic boundary conditions (ABC), considered to be
more accurate, can be constructed for the Es field at the
staggered grid using a generalization of the approach offered
by Zhdanov et al. (1982) and Spichak (1985). Taking into
account the behavior of the electric field toward infinity,
use of the ABC reduces the size of the 3D modeling area
but, in our case, leads to the loss of symmetrical property
of the matrix which requires us to store 13 bands of the
matrix in the computer memory, instead of three bands in the
symmetrical case. Moreover, the ABC require knowledge
of the three components of the E field at the boundary. By
this reason we did not use ABC. We retain the simple BC
(13) and (14), even for large grids (250,000 cells following
in 750,000 equations). We overcame the issues using an
effective preconditioning of the matrix and a fast solver,
which are described below.
2.3 Primary E-field

In magnetotellurics, a primary field Ep is usually based
on a 1D normal section (E1D) or solution of a 2D-simplified
problem on the outer grid (E2D) (Mackie et al., 1993). The
primary fields Ep, Hp must satisfy (1)–(4) for a model with
primary σp conductivity distribution. In particular, when 1D
normal sections are equal at both left and right sides, the
member ÂpEp in the right-hand side of Eq. (9) equals zero.
The member ÂpEp is not zero for other models due to the
appearance of a secondary current at the conjunction of 1D
sections.
2.4 Preconditioning of the matrix

The matrix operator Â in Eq. (9) is usually ill-condi-
tioned. The main part of the operator contains an ill-condi-
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tioned Laplace operator. The condition number (cond Â)
usually takes a range of 107∼1014, which depends on the
number of grid cells and the irregularity of the grid. More-
over, the matrix operator Â is indefinite because it contains
∇ operator (see (10.3)). Thus, we have to make precon-
ditioning before solving the linear system (9) in order to
greatly diminish the condition number. We use effective ILU
preconditioner (Implicit LU factorization by Cholesky) for
the main blocks of Axx , Ayy , Azz only because the main part
of the ill-conditioned matrix operator Â is concentrated in its
main blocks. This operation decreases the condition number
by several orders, resulting in a linear system with cond Â
being not more than 103, and greatly accelerates speed of
convergence (Smith, 1996; Fomenko, 1999).

The original system ÂEs = b is replaced by a precondi-
tioned system with appropriate K1 and K2 preconditioners:

(K−1
1 ÂK−1

2 )(K2Es) = K−1
1 b, (15)

where a preconditioned matrix K−1
1 ÂK−1

2 is close enough to
the identity matrix I. The preconditioner M for the operator
Â = L + D + U is constructed by using Cholesky’s ILU
factorization of matrix Â:

M = (D̃ + L)(D̃)−1(D̃ + U), (16)

where a new diagonal D̃ is calculated using the matrix diag-
onal D, lower L and upper U triangular sub-matrices without
diagonal D. The SSOR preconditioning, a simple particular
case of LU preconditioning, uses matrix D instead of D̃ in
(16). The simplest, but only rough, is the diagonal (or Ja-
cobi) preconditioner M = D−1, where K1 = K2 = D1/2.
We used a right preconditioning scheme where K1 = I and
K2 = M in this study.
2.5 Solvers of the linear system

A comprehensive study of the numerical effectiveness for
a new advanced group of conjugate gradient iterative solvers
BICGSTAB (Van der Vorst, 1992), BICGSTAB2 (Steijpen
et al., 1994), QMRSTAB (Chan et al., 1994), Chebyshev’s
solver (Manteuffel et al., 1995) was numerically examined
by Varentsov (1999) and Fomenko (1999). All of these CG
methods belong to the group of three-step methods, which
provide the global minimization of the residual within cer-
tain iterations and give fast quasi-monotonic convergence.
This group of methods is essentially more stable and faster
than the CG methods of the previous generation such as gen-
eralized minimal residuals algorithm (MRA—Mackie et al.,
1993), BI-CG and its modifications (Smith, 1996; Weaver
et al., 1999; Fomenko, 1999) or successive over relaxation
method (SOR—Spichak, 1992). The latter methods be-
longed to the group of two-step methods which provides
minimization of the residual at the current iteration only.
More important, the new methods provide fast convergence
for the difficult models with high resistivity contrasts and a
large variety of grid cell sizes where the old methods (MRA,
SOR) fail (Fomenko, 1999).

The criteria for the normalized ‖r‖/‖ro‖ and precondi-
tioned

√
〈M−1r, r〉/‖ro‖ residual r = b − ÂEs , as well as

for the D ∗ | div J|/‖J‖ value (D: average size of the cells)
and ‖En+1 − En‖/‖En+1‖ (n: number of iteration) were

usually achieved (1% accuracy) in the first tens of itera-
tions for grids of moderate size (30,000–60,000 cells) when
QMRSTAB or BiCGSTAB solvers were used. These crite-
ria were sometimes evaluated by ‖En − Eref‖/‖Eref‖ < ε in
relation to the ‘reference’ solution which is calculated with
maximum accuracy (10−12 and better) (Fomenko, 1999). A
more accurate and reliable termination criterion was pro-
posed by Varentsov (1999) for the magnetic field, and it has
been transformed to the electric field in this study. The cri-
terion is given by:

‖ del E‖/‖Es‖ < ε, (17)

where del E means the difference in l2 norm between the E
field before the divergence correction (18) and the corrected
E field solution.
2.6 Calculation of H-field

The H field is calculated using the curl-operator in Eq. (6)
after solving Eqs. (9) and (11) at the staggered grid. Tan-
gential electric and normal magnetic field components are
continuous at the staggered grid due to our selection of grid
nodes. It helps to stably calculate the magnetic Hz com-
ponent in the center of cell interfaces xi+1/2, y j+1/2 at each
level z = zk by using formula (6.3). The horizontal com-
ponents Hx and Hy are first calculated at the levels z = z′

k
and z = z′

k−1 by using formulae (6.1)–(6.2). Then we cal-
culate Hx and Hy at z = zk by vertical linear interpolation,
involving Hx and Hy values at z = z′

k , z = z′
k−1.

A special algorithm was derived to improve the accuracy
of the horizontal magnetic components Hx and Hy at the sur-
face level zk0 = 0 and at the interfaces zk with high-contrast
of the conductivity/resistivity. This program does not use
rot E operator, where its derivative are not accurately calcu-
lated in the area of large conductivity contrasts. First, val-
ues of continuous components Ex , Ey and Hz are interpo-
lated vertically to the level zk−1/4 involving the correspond-
ing values at zk and zk−1. Then, instead of (5.1)–(5.2), we
write modified formulae (5.1′)–(5.2′) for the cell between
xi−1 and xi , y j−1 and y j , zk and zk−1/2

(Hz
i−1/2, j+1/2,k−1/4 − Hz

i−1/2, j−1/2,k−1/4)�k/2

− (Hy
i−1/2 j,k − Hy

i−1/2 j,k−1/2)�
′
j−1/2

= (σ j−1� j−1 + σ j� j )/(� j−1 + � j )

· Ex
i−1/2, j,k−1/4�

′
j−1�k/4, (5.1′)

(Hx
i, j−1/2,k − Hx

i, j−1/2,k−1/2)�
′
i−1/2

− (Hz
i+1/2, j−1/2,k−1/4 − Hz

i−1/2, j−1/2,k−1/4)�k/2

= (σi−1�i−1 + σi�i )/(�i−1 + �i )

· Ey
i, j−1/2,k−1/4�

′
i−1�k/4, (5.2′)

which contain interpolated values Ex , Ey and Hz at a depth
zk−1/4, earlier calculated Hx or Hy at a depth zk−1/2 and
do not contain Ez . Components Hx

i, j−1/2,k or Hy
i−1/2, j,k are

calculated at the level zk in the center of the edges by using
formula (5.2′) or (5.1′). Finally, Hx and Hy components are
interpolated horizontally from the center of the edges to the
center of the cell interfaces xi−1/2, y j−1/2, zk .
2.7 Div J correction and accuracy control during an

iterative process
The constructed SFD solution σE is divergent-free in (11)

at the area of modeling, but it loses this property in the area



E. YU. FOMENKO AND T. MOGI: STAGGERED GRID OF 3D EM FIELD 503

where σ = 0 or ω = 0 and also at the low frequencies dur-
ing the iterative process due to computer-rounding errors.
Thus, following Smith (1996) and Mackie et al. (1993), we
also make an adaptive correction of the E-field by adding a
gradient of unknown SFD potential φ to the iterative solu-
tion E(N ) at the N th iteration. The corrected electric field
E(N ,cor) = E(N ) + ∇φ satisfies the equation,

div j(N ) = div(σE(N ,cor)) = 0 = div σE(N ) + div(σ∇φ).

The potential φ is calculated from the scalar SFD boundary
problem:

− div(σ∇φ) = div(σE(N )), (18)

with boundary condition φ |bnd= 0.
Equation (18) is numerically solved using termination cri-

teria

‖ div(σE(N ) + ∇φ)‖/‖ div(σE(N ))‖ ≤ ε.

Numerical experiments demonstrated that ε = 10−2∼
10−4 is efficient and correction should be done after 6∼30
iterations. Correcting is especially useful after a significant
increase (10∼50% depending on the grid size and solver)
of the residual within three successive iterations, resulting
in great acceleration of the speed of convergence for the
following criteria in l2 norm:

(a) ‖r(N )‖/‖r(0)‖ < ε and
√

〈M−1r(N ), r(N )〉/‖ro‖ < ε for
the relative residual,

(b) D · ‖ div j(N+1)‖/‖j(N )‖ < ε for the total current j(N )

(D is the average cell size),

(c) ‖E(N ),s − E(N−1),s‖/‖E(N ),s‖ < ε for the numerical
solution E(N ),s .

Numerical results can be found in the papers of Smith
(1996), Varentsov (1999) and Fomenko (1999). Maximum
acceleration (up to 100 times) was achieved at low frequen-
cies.
2.8 The essential features of the algorithm

The advantages of the algorithm presented here are sum-
marized as follows:

(a) The matrix Â is complex symmetric and sparse, the
algorithm requires very economical computer memory. Ma-
trix Â has 13 bands. We need not store in the memory the
eight bands in blocks Axy , Axz , Ayx , Ayz , Azx , Azy , because
these bands contain only short arrays of grid cells; �′

i−1,
�′

j−1, �′
k−1. Other blocks (Axx , Ayy , Azz) have five bands,

but we need to store only three bands in the memory due to
the complex symmetry of these blocks. Moreover, only the
diagonal is complex, others bands are real.

FD algorithms for the magnetic field (Mackie et al., 1993;
Varentsov, 1999) require the storing of at least seven bands
in the memory (matrix has 13 bands). FE methods have at
least 27 bands and require 14 bands to be stored (Xiong et
al., 1999).

(b) Our choice of staggered grid nodes (Fig. 1) allows us
to simplify the formulation of the boundary conditions. We
use only two components of the electric field at the boundary
planes. These components are tangential and continuous,

so we do not need values of the normal component of the
electric field.

(c) The effective ILU preconditioning of the ill-condi-
tioned matrix essentially decreases the condition number in
comparison with more simple preconditioning procedures
(Alumbaugh et al., 1996; Weidelt, 1999; Xiong et al., 1999;
Spichak, 1992) providing with fast convergence, high accu-
racy and stable solution follows in a wide range of frequen-
cies, even in conductivity contrasts of up to 500,000 times
(Fomenko, 1999). A comparison of different precondition-
ers was made by Fomenko (1999) and Varentsov (1999).

(d) The correction of divergence-free current during the
iteration process allows us to obtain highly accurate results
in the air nodes and in a wide range of frequencies, and the
correction greatly accelerates the speed of convergence at
low frequencies. Numerical results were demonstrated by
Smith (1996) and Fomenko (1999).

(e) The proposed FD algorithm allows effective model-
ing at irregular staggered grids in comparison with IE meth-
ods that mainly use regular grids. The numerical results for
the 3d2 COMMEMI model in the next section demonstrate
the high accuracy at irregular grids, which is no less than the
accuracy of IE methods. The usage of irregular grids allows
us to decrease the number of equations and calculation time,
because we can only take small cell sizes near the conduc-
tivity breaks.

3. Numerical Examples
The validity of the proposed algorithm was checked using

several models simulated with independent methods.
3.1 Methodical research

To demonstrate the essential features and effectiveness
of the algorithm, we will show some methodical calcula-
tions. These calculations were made for the 3d2 COM-
MEMI model (Fig. 2), i.e. one of the 3D models of the Com-
parison of Modeling in Electromagnetic Induction (COM-
MEMI) project (Zhdanov et al., 1997).

The 3d2 COMMEMI model consists of two adjacent 1
and 100 �m blocks of dimensions X : 20 × Y : 40 ×
Z : 10 km. The normal section of the model consists of
three layers with resistivities of 10, 100, and 0.1 �m. The
upper two layers are 10 and 20 km thick, respectively. The
conductivity contrast ratio in this model is up to 1000 and
the main difficulty for the calculations is the presence of a
strong resistivity contrast at the surface.

The irregular grid was used in this study. The cell size in
the central part of the anomalous bodies was X : 2 × Y :
2× Z : 0.84 km. The smaller cells were taken to be near the
adjacent planes and the cell sizes extended to large distances
from the blocks. The difference between the maximum and
minimum size of the grid cell was two orders, the model was
composed of 32 × 28 × 24 = 21,504 cells. The condition
number of the linear system in (9) was more than 1010. The
computations were made at a period of 100 sec, and used the
double precision on the PC (CPU: Pentium-III 500 MHz).

Figure 2(a) demonstrates the effectiveness of different
solvers. The normalized residual ‖r‖/‖ro‖ and | div J|/
| div J0| have shown fast quasi-monotonic convergence as
geometrical series (almost a straight line in log 10-scale) for
the QMRSTAB and BICGSTAB solvers (three-step solvers).
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Fig. 2. The 3d2 COMMEMI model simulation at 100 sec., Ex polarization. The panel (a) demonstrates the effectiveness of different solvers. Panel (b)
shows the significance of using the div J correction procedure. The effectiveness of the different preconditioners (LU, SSOR and Diag.) is shown in
panel (b). Panel (c) illustrates the convergence of an iterative solution to the reference solution for different solvers.

BICGSTAB is faster but shows more oscillations. It provide
high-accuracy solutions (up to 12 order) within 200 itera-
tions and less than 1% accuracy in 20 iterations. The sec-
ond group of solvers (MRA, BICG : two-step solvers, see
Mackie et al., 1993 and Smith, 1996) showed essentially
slower convergence which was not so smooth. The third
group: SSOR, SOR (see Spichak, 1992) could not calculate
the 3d2 model effectively at the irregular grid. The SSOR
showed very slow convergence and practically stopped at
10% accuracy both for the residual and for the E-solution
(Figs. 2(a) and 2(c)), and the SOR does not provide conver-
gence at all.

We also investigated preconditioned normalized resid-
ual
√

〈M−1r, r〉/‖ro‖, relative error for the secondary field
‖En+1 − En‖/‖En+1‖, and normalized error for the refer-
ence solution ‖En − Eref‖/‖Eref‖ at each iteration. All of
them have the same quasi-monotonic behavior, thus the first
and second ones are not shown here. The illustration of
convergence to the reference solution is shown in Fig. 2(c).
The normalized error ‖En − Eref‖/‖Eref‖ also has quasi-
monotonic behavior. The reference solution was calculated
with the best accuracy model (IG6 grid, see Table 1) by us-
ing the termination criterion shown in (17) for ε = 10−10.
Our numerous calculations showed that obtaining each next
order of accuracy depend only slightly on the period and size
of matrix when we use the best three-step solvers, in contrast

to the second and third group of solvers.
Figure 2(b) shows the effectiveness of different precon-

ditioning schemes and the importance of the div J correc-
tion procedure. The lines ‘LU’, ‘SSOR’ and ‘Diag’ demon-
strate convergence for the different preconditioners without
div J correction, and the lines ‘LU, div J ’, ‘SSOR, div J ’
and ‘Diag, div J ’ show convergence when the div J correc-
tion procedure is used. It is obvious that the div J correction
procedure greatly accelerates convergence. The LU precon-
ditioner is several times faster than the SSOR and 20–100
times faster than the simple diagonal preconditioner (de-
pending on the grid size, frequency, and model). The diago-
nal preconditioning (Diag) is very rough for ill-conditioned
systems, it may require thousands of iterations to obtain 1%
accuracy (Alumbaugh et al., 1996; Xiong et al., 1999).

Our numerical experiments at different periods confirmed
the theoretical expectations discussed in Subsection 2.7.
The maximum acceleration of the convergence (up to 100
times) was obtained at low frequencies due to div J correc-
tion, similar to the results of Smith (1996).

Next, we carried out methodical research into the ac-
curacy for using quasi-homogeneous and irregular grids.
Some of the results are shown in Fig. 3. Three quasi-
homogeneous grids (HG) and six irregular grids (IG) were
constructed. Quasi-homogeneous grids used equal cells in-
side the anomalous bodies for the X , Y directions and ex-
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Fig. 3. The COMMEMI 3d2 model simulation at 100 sec. The convergence at the sequence of quasi-homogeneous and irregular grids to the reference
solution. Panels (g) and (h) show normalized amplitudes of Ex/EN

x and Ey/EN
y components for Ex and Ey polarization, respectively. The left panels

(a), (c), (e) show the difference between solutions at a given grid and reference solution ‖Ex−Eref
x ‖/‖Eref

x ‖ at the homogeneous grids HG, right panels,
(b), (d), (f) for the irregular grids IG (Ex polarization).

tended the cell size to outside the bodies. The irregular
grids used small cells near conductivity breaks, thus provid-
ing better approximation in these areas. The 3D modeling
area was X : [−165 km, 165 km], Y : [−165 km, 165 km],
Z : [−100 km, 40 km], and the extent of drawing the re-
sults X : [−40 km, 40 km], Y : [−40 km, 40 km] at the
surface z = 0. The solution at the best grid IG6 was taken
as the reference solution and it was calculated at the best
accuracy level using the termination criterion shown in (17)
for ε = 10−10%. Solutions at the other grids were calcu-

lated with ε = 0.1% level of reliable practical solution. A
PC with Pentium-III, 500 MHz CPU was used for the com-
puting. Run time for grids of different sizes are shown in
Table 1. Table 1 also shows that irregular grids allow one
to obtain more accurate solutions, especially in the vicinity
of conductivity break area, using fewer cells and fewer it-
erations. The misfits between the amplitude of Ex for the
solution at each grid and the reference solution are shown in
Fig. 3 for the Ex polarization case, at a period of 100 sec.
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Table 1. The convergence condition for various quasi-homogeneous and irregular grids. Model: 3d2 COMMEMI, computing period at 100
sec. Ex , Hy were computing at the Ex polarization case and Ey , Hx were computed at the Ey polarization case. Error was estimated as
δEx (%) = ‖E ref

x − Ex‖/‖E ref
x ‖ · 100. The computing used BiCGSTAB as the solver and terminated at ε = 0.1% by using the termination crite-

ria shown in (17). The run-time shown in this table is the case using a PC with Pentium III/500 MHz CPU.

Grid Number Number Aver. cell δEx δEy δHx δHy Number of Run-time

of cells of equat. size (km) (%) (%) (%) (%) iterations (sec.)

HG1 28 28 15 55,854 2.99 7.41 15.2 12.7 16.7 70 75

HG3 44 44 20 165,555 2.52 4.40 9.28 5.14 8.55 120 371

HG5 58 58 27 357,894 1.59 3.13 6.60 5.46 7.22 192 1352

IG1 34 30 18 78,640 0.99 3.27 6.57 2.92 3.54 96 135

IG2 38 34 22 103,181 2.18 3.04 6.48 3.14 3.37 96 177

IG3 44 38 22 153,675 2.18 1.49 2.96 1.48 1.58 110 316

IG4 52 44 22 209,325 1.56 0.90 1.53 1.34 1.58 165 571

IG5 60 53 24 319,017 1.34 0.06 0.04 0.05 0.10 168 954

IG6 60 53 27 348,318 1.06 210 1355

Fig. 4. The 3d2 COMMEMI model simulation at 100 sec. for Ex polarization. Panels (a) and (b) are apparent resistivities Rxy and Ryx , respectively,
while panels (c) and (d) are phases of impedances Zxy and Zyx . The comparison are between results from Avdeev et al. (1997) IE code–“ie akp”,
Wannamaker (1991) IE code–“ie wan”, Mackie et al. (1993) FD code–“fd mac” and our FD code in this study–“fd our”.

3.2 Comparison for 3d2 COMMEMI model
We calculated MT responses at a period of 100 sec. and

compared our results with the IE solution of Avdeev et al.
(1997), the IE solution of Wannamaker (1991), and the FD
solution of Mackie et al. (1993). The results of Avdeev et al.
(1997) were obtained directly from the authors, other results

were redrawn from the figures of Mackie et al. (1993).
Our result used the irregular IG6 grid composed of 32 ×

28 × 24 = 21,504 cells (see Subsection 3.1), where the
average size of the cell is of a volume of 1.06 km3, and X :
2 × Y : 2 × Z : 0.84 km cells. The cell in the central part of
the blocks and small cells up to X : 0.2 ×Y : 0.2 × Z : 0.15
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km, are near the boundaries. The run time for ε = 0.01% in
stop-criteria (17) was 88 sec. on a PC with Pentium-II/400
MHz . Avdeev et al. (1997) used a homogeneous grid inside
the block with horizontal dimensions of X : 1 × Y : 1 km
and with vertical dimensions of Z : 1, 1.5, 2, 2.5 and 3 km
in the block area. The run time for 40×40×5 = 8,000 cells
using a Pentium/586 PC was approximately 5 min. Mackie
et al. (1993) used a rougher irregular grid with X : 5×Y : 5
km horizontal dimensions in the central part of the blocks
(28 × 28 cells on XOY plane) and X : 1.25 × Y : 1.25 km
cells near the conductivity contrasts. The run time was 25
min for Mackie’s code using a CRAY-2/4-256 computer.

Figure 4 shows the apparent resistivities Rxy , Ryx and
phases of impedance Zxy , Zyx along the central profile y =
0. In general, all results showed good agreement between
the curves. Our results are closest to the IE solution of
Wannamaker (1991). In spite of using a horizontal cell
size in the central part of the blocks that was twice larger
than that of Avdeev et al. (1997), we only had small misfits
with their results, because we used the irregular grid. Some
visible differences were seen between our results, the IE
solutions (Wannamaker, 1991; Avdeev et al., 1997) and the
Mackie et al. (1993) FD results. We explain this by using a
rough grid in the central part of the blocks of Mackie et al.

The size of the grid is very important for the accuracy, as
shown in the comprehensive comparison of the 3d2 COM-
MEMI model and two other models (Varentsov et al., 2000).
Four algorithms; two IE methods (Wannamaker, 1991;
Xiong et al., 1999) and two FD methods (Varentsov, 1999;
Fomenko, 1999) were compared. This comparison used a
modern powerful PC and large grids with smaller cells than
the former COMMEMI-I project (Zhdanov et al., 1997). In
particular, this new COMMEMI comparison showed that the
size of the grid essentially influences the approximation and
accuracy of the calculation of E and H components. Mackie
et al. (1993) used a grid with the average size as used in
COMMEMI-I. Our FD method here, Avdeev et al. (1997)
and Wannamaker (1991) used grids with smaller cells, so
we obtained good coincidence between all of us and a vis-
ible difference from Mackie et al. (1993). The referenced
COMMEMI report (Varentsov et al., 2000) contains many
comparative results.
3.3 2D topography model

Topography is represented as an anomaly in the air layer
in our program. To do this, we should overcome the problem
of a large resistivity contrast between the air layer and the
ground. We selected a 2D-topography model ‘trapezoidal
hill’ (Fig. 5) to check the validity of our method for a re-
sistivity contrast 106 times between air and the hill. Con-
ductivities of the host and the hill have 10−2 S/m, air has
10−8 S/m, and the frequency is 2 Hz. In the hill area, we
used X : 50 × Y : 100 × Z : 28 m cells (the hill consists
of 16 rows of cells). Outside the hill, irregular cells were
used. The ratio between the maximum and minimum size
of the grid cell was 90. The total number of nodes were
64 × 25 × 38 = 60,800.

We compared the calculated apparent resistivity Rxy and
Ryx with the FD results of Ngoc (1980) and the FE results
by Wannamaker et al. (1986). One percent accuracy for the
normalized residual ‖r‖/‖r0‖ is achieved after 43 iterations

Fig. 5. 2D MT simulation of a trapezoidal hill at 2 Hz. Our FD results,
‘Rxy fom’ and ‘Ryx fom’, are compared with the FD results of ‘Rxy
ngoc’, ‘Ryx ngoc’ (Ngoc, 1980) and FE results of ‘Rxy wan’ and ‘Ryx
wan’ (Wannamaker et al., 1986). The hill is composed of 16 grids in the
vertical direction and each cell size is X : 50 × Y : 100 × Z : 28 m.

in the Ex polarization (TM mode) and 72 iterations in the
Ey polarization (TE mode), and it required 115 and 190 sec.
of computing time, respectively, using a PC with Pentium
166 MHz CPU. The H-field was calculated as described
in Subsection 2.6. The E and H fields were computed at
the center of the rectangular cell faces x ′

i , y
′
j at each level

z = zk . Our results agree well with the FE solution of
Wannamaker et al. (1986), for both TM (Rxy) and TE (Ryx )
modes. Ours and the FE solution, however, have visible
differences from the FD solution of Ngoc (1980) for Rxy ,
but have good coincidence for Ryx .
3.4 Model with topography and water reservoir

We considered a model that studies the interaction of
the topography with subsurface structures such as a low
resistivity water reservoir. The topography is represented
by a local 3D hill of 500 m width in the x direction, 200 m
in the y direction and a height of 50 m (Fig. 6). The hill is
formed by the cells with conductivity σ = 10−2 S/m. The
first layer is 300 m thick and σ1 = 10−2 S/m, the second
layer (host)—σ2 = 10−3 S/m; σair = 10−8 S/m.

There are two water reservoirs with conductivity σwater =
1.0 S/m under the hill. Their sizes are shown in Fig. 5.
The left reservoir is represented by 4 × 4 × 4 cells, the
right reservoir by 4 × 4 × 2 cells. The model is composed
of 37 × 26 × 41 = 39,442 cells. One percent accuracy
for ‖r‖/‖r0‖ was obtained within 19 iterations in the Ex

polarization case and nine iterations in the Ey polarization
case using a BICGSTAB solver, and the calculation time
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Fig. 6. The MT simulation of water reservoir with a topography model computing at 10 Hz. The upper panels show the XY section of the model, panel
(b) at z = 200 m and panel (a) at z = 250 m, bold contours show the perimeter of the hill at z = 50 m. Panel (c) shows the XOZ section of the model at
y = 0. Panel (d) shows the calculated normalized electric field amplitude |Ex/Ep

x | for Ex polarization.

required 105 sec. using a PC (Pentium 166 MHz CPU). The
normalized amplitude of the electric field |Ex/E

p
x | for the

Ex polarization case is shown in Fig. 6. The results of 3D
modeling accurately represent the water reservoir contour in
the XOZ plane in spite of using a rough grid with only a few
cells for each body and only two cells in the Z direction for
the second body. The value of Ex/E

p
x falls five times inside

the water reservoir.

4. Conclusions
The fast, accurate, and economical staggered grid finite

difference method is developed for calculating 3D conser-
vative electromagnetic fields in 3D media with topography
and high resistivity contrasts over a wide range of frequen-
cies. It has a good choice of staggered grids, a simple but
effective preconditioner, support of divergence-free current,
and powerful CG solvers. The proposed scheme is econom-
ical: computer memory requirements depend linearly on the
number of grid cells because the matrix of the linear sys-
tem is banded. Most of the applied problems can be solved
with a PC of 64–128 MB memory. The algorithm has ob-
tained 1% accuracy with quasi-monotonic convergence of
normalized residual within the first ten iterations using grids
of moderate size (30,000–100,000 cells), and within hun-
dred of iterations for extremely high accuracy. The accu-
racy of our FD code is comparable with the accuracy of
IE algorithms. The effective preconditioning allows high-
accuracy results using irregular grids, which decreases the
number of cells and calculation time, because we can take
small cells only near the conductivity breaks. The method

is effectively applicable to models with large resistivity con-
trasts and complicated topography.

Due to the high accuracy of wide-band frequencies (up
to 10 decades), the method is applicable for computing a
time-domain response. Another additional advantage of the
presented method is that the conductivity distribution is con-
centrated only at the diagonal of the matrix. Because of this,
the approach is attractive for use in inverse problems.
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