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We apply a modified genetic algorithm, the “recombinant genetic analogue” (RGA) to the inversion of magne-
totelluric (MT) data from two different geothermal areas, one in El Salvador and another in Japan. An accurate
2-D forward modelling algorithm suitable for very heterogeneous models forms the core of the inverse solver. The
forward solution makes use of a gridding algorithm that depends on both model structure and frequency. The RGA
represents model parameters as parallel sets of bit strings, and differs from conventional genetic algorithms in the
ways in which the bit strings are manipulated in order to increase the probability of convergence to a global min-
imum objective function model. A synthetic data set was generated from a chessboard model, and the RGA was
shown capable of reconstructing the model to an acceptable tolerance. The algorithm was applied to MT data from
Ahuachapan geothermal area in El Salvador and compared with other interpretations. Data from the geothermal
area of Minamikayabe in Japan served as a second test case. The RGA is highly adaptable and well suited to
non-linear hypothesis testing as well as to inverse modelling.

1. Introduction

This paper reports on the application of a genetic algo-
rithm (GA) to the nonlinear inversion of magnetotelluric
data from the geothermal areas of Ahuachapan, El Salvador
and Minamikayabe, Japan. Genetic algorithms were first ap-
plied to the magnetotelluric problem by Everett and Schultz
(1993). In the present work, we have applied an improved
forward modeling method. In the previous work the grid
used to solve the governing differential equation was fre-
quency dependent according to a simple scaling law, i.e. a
denser grid was used at higher frequencies. In the work de-
scribed here we used the 2-D Cartesian forward modeling al-
gorithm developed by Weaver and co-workers (Weaver and
Brewitt-Taylor, 1978; Poll, 1994). The genetic algorithm
demands accurate forward solutions for models that can at
times be very heterogeneous and have large conductivity
contrasts. After tests with such models we found the Weaver
forward modeling algorithm more stable numerically than
alternatives. This stability arises in part because the grid to
solve the TE and TM mode is both frequency and model de-
pendent. Accurate solutions are found for both modes, even
for high conductivity contrasts. The algorithm discretizes
only the earth half-space for the TE mode by means of in-
tegral boundary conditions (Weaver, 1994), with the advan-
tage that the forward solution is very fast.

The rapid solution and the automatic gridding features of
the forward algorithm are particularly useful for GA-based
inversions, because in each iteration (“generation”) of the in-
version a set of quasi-randomized models are proposed, with
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attributes inherited from the previous generation of models,
according to a bit string encoding particular to GAs and re-
lated algorithms (e.g. Everett and Schultz, 1993). The mod-
els whose responses are closer to the observed data, sub-
ject to a number of side conditions, survive and transmit
their winning characteristics to the next generation of mod-
els. The measure of closeness is determined by a norm ap-
plied to an objective function. An objection function can
be selected to minimize model roughness, so that the ini-
tial collection of very heterogeneous models can converge
to increasingly smoother models, with response functions
increasingly closer to the data being inverted.

The genetic algorithm applied here differs from that of
Everett and Schultz (1993). The new algorithm, a “recom-
binant genetic analogue” (RGA) uses a different model rep-
resentation than the conventional GA, with model charac-
teristics represented by parallel sets of bit strings rather than
the single string used conventionally. The process of “cross-
over” involves splitting the bit strings along parallel strands
as well as permitting individual strands to be split longitu-
dinally, as in e.g. Everett and Schultz. We find this method
improves convergence properties significantly. Heterogene-
ity in model attributes is also encouraged through the pro-
cess of “mutation” or random parity changes in individual
bit strings during the cross-over process. At later stages of
the inversion, we fine-tuned the convergence properties by
permitting only one mutation per model (bit string) instead
of several. We also introduce a priori constraints for some
of the model parameters (prism resistivities) in order to in-
troduce independent information, e.g. from boreholes, or to
represent the sea as in the coastal Minamikayabe data.

A test with synthetic data contaminated by noise shows



608 M. A. PEREZ-FLORES AND A. SCHULTZ: APPLICATION OF GAs TO MT

us the self-consistency of the RGA. The model obtained for
Ahuachapan resembles previously published models. We
have also compared our results for the Minamikayabe data
against a model proposed by Cerv and Pek (1997), and
lithological data from two boreholes. These comparisons
demonstrate that the RGA is a viable, highly flexible, albeit
computationally-intensive alternative to linearized inversion
methods. The algorithm is also extremely well-suited to
parallelization, promising nearly linear speed improvements
as a function of the number of available processors.

2. GA/RGA Requirements for Solution of the For-
ward Problem

In contrast to many inverse methods, nonlinear inversions
based on the GA/RGA method do not require explicit or im-
plicit calculation of the Hessian matrix. There is no direct
knowledge of the slope of the misfit surface, rather informa-
tion about the ability of a given model to fit the data is stored
implicitly, and entirely within the bit string encoding of the
model’s features. There is effectively “genetic” knowledge
of how well a given population does or does not fit a given
data set. This lack of knowledge of how previous models
have mapped onto a misfit surface has the consequence that
there is no direct knowledge of steepest descent paths. As a
result, convergence to a model with desirable misfit features
tends to be dramatically slower than for steepest descent,
Newton or other related minimization algorithms. The par-
ticular genetic encoding of GAs/RGAs, and the cross-over
and mutation process provides the advantage however, that
GAs/RGAs are far more resistant to descending into a lo-
cal minimum. They share this feature with purely stochastic
Monte Carlo methods, yet have demonstrable convergence
properties, i.e. in all but the most pathological test cases thus
far, we find that the RGA will converge close to the global
minimum in a countably finite time.

For 2-D MT inversions based on the GA/RGA, we there-
fore need not require the forward solution to calculate
derivatives of the fields with respect to changes in model
parameters. Rather we need only calculate the E field from
the TE mode and the B field from the TM. From these fields
we derive the complex impedances and the apparent resis-
tivities and phases for both modes. After testing with sev-
eral codes we found that Weaver and co-workers’ method
was the most useful for our purpose (Brewitt-Taylor and
Weaver, 1976; Poll, 1994), because this makes use of an
automatically generated grid that depends both on the de-
tails of the model as well as on the frequency. The grid
is denser for increasingly heterogeneous models, and for
higher frequencies. The study area is discretized as a set
of 2-D prisms of infinite extent in the x-direction. The grid
used to solve the governing differential equations depends
within each prism on the skin depth appropriate to the re-
sistivity of the prism (Weaver, 1994). The 2-D domain is
imbedded in an automatically-generated 1-D model at ei-
ther side of the study area. The domain is bounded below by
a constant resistivity half-space whose resistivity is the ge-
ometric average of the adjacent prism resistivities. For the
TE mode an integral boundary condition is applied in order
to avoid discretizing the overlying air half-space (Weaver,
1994).

3. Recombinant Genetic Analogue

Genetic Algorithms are quasi-stochastic optimization
techniques. GAs solve complex optimization problems by
mean of proposing random hypotheses, and selecting from a
population of models only those models with the most desir-
able features. The desirability of the features within a model
is defined mathematically by applying a norm to an objective
function (e.g. desirable models may be those whose appar-
ent resistivity and phase curves are of minimum RMS misfit
to a given data set, etc.). Models with undesirable features
are not permitted to pass on those features to successive it-
erations of the inversion. The method used in GAs and in
the present RGA distinguishes them from other “evolution-
ary” algorithms. The model parameters (resistivities, prism
geometries etc.) are coded in the form of bit strings, repre-
senting in a simple way the structure of chromosomes in a
genome. The optimization process itself attempts to mimic
natural selection within biological populations.

The details of the conventional GA are found in Everett
and Schultz (1993). As noted in the introduction, in the al-
gorithm used here (the RGA), the single bit string “strand”
used to represent the parameters within a single model has
been replaced by two parallel strands. Each model param-
eter is encoded as two parallel bit strings (“genes”) of a
finite, user-selectable length. These are appended end-to-
end to form a complete “chromosome”, or representation of
all of the parameters comprising a given model. The num-
ber of bits in each parallel strand determines the fineness of
resolution of the given parameter (e.g. an 8-bit long string
can represent only 256 states, a 20-bit long string more than
1 million states). Excessively short strings may make it im-
possible to represent the parameters adequately, inhibiting
convergence of the GA to a globally optimal model. Ex-
cessively long bit string representations may slow down the
convergence of the algorithm unnecessarily. The mapping
between the bits in the two parallel strands and the value
of any given parameter (e.g. the resistivity of a particular
prism) follows a user-definable function, e.g.

10g10(,0j)=Sj1 & Sj2, 1

where p; is the resistivity of prism j, s;; is the bit string
of the first parallel strand, s, is the bit string of the second
parallel strand, and & is the bit-wise Boolean operator. This
mapping is an extremely crude attempt to mimic in biologi-
cal terms the “expression” of genes, where genes are deter-
mined by characteristics inherited from two parent models.

During each iteration, the link between the parallel
strands is broken, and one half of each strand is exchanged,
or “crossed-over” with a corresponding strand of another,
randomly selected model, or “partner” from the population
of models. During cross-over, sections of each strand can
randomly, and according to a controllable probability func-
tion, be excised and transposed within the original strand. At
the same time, random parity reversals can occur within any
bit within each strand, according to a controllable probabil-
ity function. This “mutation” process increases the genetic
diversity of the population and is seen to counteract a pro-
cess of premature “quenching”, or convergence of the pop-
ulation to an excessively heterogeneous set of sub-optimal
models.
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Table 1. Similarities between natural and geophysical optimization.

Biological adaptation

Geophysical inversion

An Individual

A model

A Chromosome represents a DNA chain.

A parameter is the resistivity of one prism.

A Gene is a piece of a DNA chain.

A chain of binary numbers represents every

parameter value.

As the generations pass, the individuals are

getting better adapted.

As the iteration advances, the model responses fit

better the data.

A population of “n” females and “n” males is

selected.

Two random groups of models are defined. Same

size in both (n).

Random weddings are done. Every pair has a
child, but the number of males is equal to

number of females.

2 x n pairs of models are selected randomly and
mixed to get just one from every pair. 2 % n models

are obtained and divided in two groups.

2*n random pairs of individuals are selected
and the best adapted from every pair is selected
to continue living. From these survivors, the
global best and the global worst are found. A
duplicate of the global best is placed where the

worst is.

2 * n random pairs of models are chosen and those
with the least misfit are kept. From the remaining
models the ones with the lowest and largest misfit
are found. A duplicate of the lowest misfit model

is placed where the largest is.

From the 2 % n survivors, two groups are organized.

The group of males and the group of females.

The resulting 2 * » models are grouped randomly

in two sets.

2 % n random weddings are organized between
the two groups. More than one marriage is

allowed in order to assure 2 * n descendants.

Random pairs between the two groups are obtained

(2 * n). From every pair, a single model is derived.

After some generations the population becomes
homogeneous and no new characteristics appear.

Genetic mutation is allowed to avoid that.

After some iterations, rapid convergence can
reach a local minimum. A mutation parameter is
allowed in order to continue searching for other

minimums.

By this process we expect that successful
descendants will survive and the genetic
information of these will assure an optimum

adaptation to the medium.

We expect that in every iteration, the remaining
models will fit the data better, until no more
convergence is obtained and the searching process

stops.

While apparently ad hoc in detail, the GA and its suc-
cessor the RGA are designed to mimic on the chromosomal
scale the essential features of sexual reproduction (“cross-
over” and “mutation”), and on the population scale the pro-
cess of natural selection. There has been considerable in-
terest in the area of evolutionary algorithms, such as the
Neighbourhood Algorithm (NA) (Sambridge, 2001). There
is some evidence that biological mimics such as GAs and
RGAs may have slower convergence properties overall than
some alternatives, such as NAs. While this has not been
established formally, it may transpire that biological algo-
rithms impart an additional feature to the model search pro-
cess that other approaches do not. Biological systems must
optimize their organization on two separate scales, that of
the individual and that of the population at large. For the
case of the individual, the tendency to survive selection so
as to reproduce into succeeding generations is a purely local
calculation that depends on immediate factors (or in math-

ematical terms, on optimizing an objective function, e.g.
minimum misfit, etc.). In terms of the overall population,
however, biological systems must also select for adaptabil-
ity. Excessively specialized populations with insufficient ge-
netic diversity will tend to be vulnerable to extinction in
the presence of environmental change. If truly successful
in mimicking the process of biological selection, it may be
that GAs will tend to select for populations of models ca-
pable of future adaptation (genetic diversity) as well as ca-
pable of minimizing undesirable features. This may well
tend to moderate the evolutionary process, so that in terms
of geophysical inversion, the GA and RGA may tend to con-
verge more slowly, but be more resistant to descending into
local minima than alternative algorithms. Unfortunately, no
schema has yet been devised to put this tendency into a more
quantitative basis. In Table 1, we summarize the similarities
between adaptation and geophysical inversion.

In the present work we need to solve the nonlinear inverse
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Fig. 2. Convergence plot. There is rapid convergence at the beginning and
then the improvements asymptote as the population matures.

problem for magnetotelluric imaging. We assume a Carte-
sian Earth consisting of a set of 2-D prisms, each with vari-
able resistivity. It is possible to encode the geometry of the
prisms as part of the “genome,” and to invert simultaneously
for both prism resistivity and geometry. For the present work
we have used fixed model geometry and have permitted only
the resistivity of the prisms to be free parameters in the in-
version. We have chosen to do this to reduce the number of
free parameters, and to accelerate the convergence process.

The RGA seeks to best fit the observed apparent resistiv-
ity and phase data, according to rules described below, for
both modes (TE and TM)), at several frequencies and obser-
vation sites. The forward modeling algorithm computes the
E and B fields for each frequency. The computational time
scales linearly with the number of frequencies. The relation-
ship between the number of surface observation sites, the
number of free parameters and the convergence rate is more
complicated, and depends strongly on the heterogeneity of
the target from which the data were collected.

3.1 The objective function

The RGA seeks to minimize an objective function (F) in
order to select for models with desirable features. The objec-
tive function can be arbitrarily complicated. In the simplest
case, it could comprise the norm of the misfit. Many side
conditions can be introduced however. One could minimize
the norm of the misfit while also minimizing the roughness
of the model, and the “whiteness” of the misfit (that is, find-
ing models that have these features while simultaneously
neither overfitting nor underfitting either high or low fre-
quency data). We have had considerable success in applying
these concepts to the 1-D inverse problem, and thereby find-
ing models with maximally smooth conductivity-depth pro-
files that fit the data in both the simplest, or RMS sense, and
also in the sense of higher order moments such as slope of
misfit vs. frequency. Prior to recent and dramatic increases
in computing power, the relative computational expense of
the 2-D problem made it undesirable to slow the conver-
gence of the 2-D inversion by adding such side conditions.
As a result, in the work reported here, the objective func-
tion consists simply of the quadratic norm of the difference
between the observed (obs) and calculated (cal) apparent re-
sistivity (p,) and phase (¢) for both modes (TE and TM), as
shown in (2)

F(p) = 1o — — =% 2)

The algorithm we have used has been designed flexibly so
that more elaborate objective functions, as described above,
can be implemented trivially. The amplitude and phase dif-
ferences are normalized by the standard error in the data.
Only the N/2 models within the population of size N,
whose objective function value is within the lowest 50%
are permitted to pass their characteristics on into succeeding
generations. As the algorithm iterates, there is a tendency
for the values of F' of the surviving models to decline. The

P + o™
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Fig. 3. Location of the Ahuachapan geothermal area, the MT soundings and the N2 line.

process continues until the following criterion is fulfilled.

1 - (Yobs - Ycal)
0=y {ZT

2
} <12, 3)
1 Y

where Y, represents the observed data, Y., the response of
the model and Cy the standard error. We require the RMS
misfit of the converged model to fall within 1.0 and 1.2.
With this criterion we avoid overfitting the data. A priori
constraints are imposed on each of the model parameters,
thus

P < pj <P, (4)

where u means upper bound and / lower bound. Any pa-
rameter may be made fixed by setting the upper and lower
bounds to be the same, while any parameter can be made
free by expanding the upper and lower bounds so they lie
outside the range of physically realistic values. These con-
straints are very useful to introduce information from bore-
holes, to propose a model or to introduce the sea as in the
Minamikayabe data.

4. Synthetic Data Test

The algorithm was checked against synthetic data from a
chessboard model (Fig. 1(a)). This model has only 16 pa-
rameters, but it is very heterogeneous in terms of modeling,
with high conductivity contrast between adjacent cells, and
difficult to recover in terms of inversion. We computed the
amplitudes and phases (TE and TM modes) of such a model
at 8 sites located at y = —3.5, —2.5, —1.5, —0.5, 0.5, 1.5,
2.5 and 3.5 km, at five frequencies (10, 3, 1, 0.3 and 0.1
Hz). This resulted in a set of 160 data. Five percent Gaus-
sian noise was added to the data. For the inversion process, a
population of 20 random models (10 pairs) was used. After
an initial, stochastic set of model parameters was generated,
the responses of the models were computed and compared
with the noisy data by means of Eq. (2). After several hun-
dred generations, the population of models had converged
to a similar, low misfit form. The convergence criterion (3)
can be used to halt the algorithm once acceptable misfit has
been obtained.

The best model was obtained after 330 generations
(Fig. 1(b)). Most of the prisms close to surface are very
similar to the true model. Differences appear only in the
deeper prisms. These differences arise because of conduc-
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Fig. 4. (a) Model A obtained by the RGA. (b) Model B obtained by forward modeling. (c) Model C obtained by approximate imaging (Romo et al.,

1997).

tance equivalence or conductivity screening in the deeper
parts of the model, and by the noise added to the synthetic
data.

Figure 2 shows the convergence properties of the best
model. During the early generations, the model population
is strongly heterogeneous and large changes and improve-
ments in the model parameters occur over short periods of
time. As the population matures, models are less hetero-
geneous and the improvement in the objective function for

the best fitting models is more gradual. Toward the end of
the iteration process, the population is very homogeneous
because the best parameters are predominant in most of the
new models generated. As the very mature population grows
ever more homogeneous, additional genetic diversity is in-
troduced through mutation. This will tend to assist in avoid-
ing convergence to local minima. At the final stage, multi-
ple mutations per model slow the convergence, so we stop
crossover and allow only one mutation per model.
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Fig. 5. Comparison between Ahuachapan data and the response of the best RGA model. (a) and (b) Data; apparent resistivity for TE and TM modes
respectively. (¢) and (d) Response; apparent resistivity for the TE and TM respectively.

4.1 Ahuachapan, El Salvador

Ahuachapan is an El Salvadorian geothermal area associ-
ated with volcanic activity related to the subduction of the
Cocos Plate under the Caribbean Plate. A number of vol-
canic cones and hydrothermal surface manifestations exist
in this area.

Geothermal reservoir exploitation began in the 1960s.
More recently, an assortment of geophysical techniques
were applied in order to improve the knowledge of the reser-
voir. In 1990 more than 120 MT soundings were collected
and arranged in lines (Fig. 3). In this paper we interpreted
only line N2, in order to demonstrate the usefulness of
RGAs as a MT inversion technique in a real-world geother-
mal context.

Line N2 consists of 13 soundings located at y = {0, 0.4,
23,209, 3.6, 4.1, 4.6, 5.0, 6.3, 6.6, 7.1, 7.4 and 8.0 km}.
Every sounding consists of 11 frequencies, f = {100, 39.8,
15.84, 6.31, 2.51, 1.0, 0.398, 0.158, 0.063, 0.025 and 0.01
Hz}. For the inversion we assumed a 2-D model domain
of 48 prisms arranged in 6 rows and 8 columns. Every
prism is of 1 km of horizontal length, with a logarithmically
increasing vertical length with depth. The model is bounded
on the sides by a 1-D earth, and below by a homogeneous
half-space. For the inversion we used a pool of 30 randomly-
generated models. Unfortunately, only apparent resistivities
were available for both modes (TE and TM). Therefore, the
phases were excluded from Eq. (3). After 570 generations
we arrived at model A shown in Fig. 4(a). The conductor
C; corresponds to the reservoir currently being exploited

GENYA

® MT site

© MK well

/\_/
. SARO QIVER
0 ikm £/

Fig. 6. Location of the MT soundings, line-G and line-06 in the Mi-
namikayabe geothermal area, Japan.

for geothermal power. The surface conductor C; matches

the geothermal manifestation Cerro Blanco. The conductor

C; may be associated with the Hoyo de Coajuste volcano.
Our best-fitting model was compared with previously
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Fig. 7. (a) Model obtained for the MT line-G. In this line the presence of the sea was taken in consideration. There is a central conductor that correlates
with the conductors detected along wells MK-6 and MK-2. (b) Model obtained for line-06. There is a conductor that thickens to the SE. The bar

indicates the conductor detected along the wells.

published models. Figure 4(b) shows model B obtained by
Romo et al. (1997), and in Fig. 4(c) model C is shown, as ob-
tained by an approximate imaging technique valid only for
low resistivity contrasts (Romo et al., 1997). Every tech-
nique has its own limitations, but GAs/RGAs have the ad-
vantage that they do not involve approximations that are as-
sociated commonly with other methods. Despite the very
different approaches taken, the three independent interpreta-
tions of this data set reveal nearly the same view of the con-
ductive features, as well as the resistive feature R;. The re-
sistive feature R; appears to correspond to the granitic base-
ment, but in model B was aligned horizontally. There is a
similar view of this feature in models C and A. The resistive
feature R, is not present in models B and C, rather they ex-
tend the conductor Cj; to the surface. Between y = 0.3 and
y = 2 km there are no soundings, therefore, the RGA is not
able to constrain model A in that area. In Model B the inter-
preter extends conductor Cs3 on the basis of prior geological
knowledge.

A comparison between the data and the responses from
the best model obtained by the RGA is shown in Fig. 5. The
lowest RMS misfit was 4, assuming a constant standard error
of 3% in the data. As shown, the responses are similar to
the data, although in strict statistic terms the model misfit

remains high.
4.2 Minamikayabe, Japan

This interpretation was done as a contribution to the MT-
DIW3 project. The Minamikayabe geothermal area is lo-
cated in southern Hokkaido Island. Under the program of
“Geothermal Development Promotion Survey” several ex-
ploration wells were drilled and at the time this interpreta-
tion was done two wells were productive (MK-6 and MK-
2). In order to have a better understanding of the reservoir, a
dense mesh of 209 MT soundings were established around
the wells, with 161 located within a square mesh (Takasugi
et at., 1992). We interpret here data from the two central
lines; line-G and line-06 (Fig. 6). Each line has a length of
1200 m with 13 soundings every 100 m. Soundings were
recorded in the period range of 0.00005-1000 sec. Because
of the very short length of the lines, we decided to interpo-
late the soundings to 13 periods; log7 = {-2.5, —2.25,
-2.0, —1.75, —1.50, —1.25, —1.0, —0.75, —0.5, —0.25,
0.0, 0.25 and 0.5}, where the skin depths range from 100
to 2800 m in a homogeneous half-space of 24 ohm-m re-
sistivity. Considering apparent resistivity and phase of both
modes, there are 676 observations in every line.

In the first 150 generations of the RGA inversion, a mu-
tation parameter was used that permitted multiple parameter
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changes per model. After the 150th generation, mutations
were limited to only a single parameter change per model
(see “Synthetic Data Test” section).

Along line-06, the subsurface was discretized in a grid of
72 prisms arranged in 12 columns and 6 rows, surrounded
by a 1-D Earth at both sides and a homogeneous half-space
below. Only 72 prism resistivities were considered as free
parameters in the inversion, because the 1-D layers take the
resistivity and thickness of the adjoining 2-D prisms, and
the resistivity of the half-space is the average of the bottom
prism resistivities.

A pool of 30 models was used in the RGA. The best
model was obtained after 450 generations, achieving an
RMS misfit of 2.6 (assuming a uniform 5% standard error).
Figure 7(b) shows the best fitting model. A large conduc-
tor is evident that thickens toward the south east. This con-
ductor may correspond with the Siodomarigawa formation,
a fractured, intrusive rock (Takasugi et al., 1992). The re-
sistive zone below may correspond to non-fractured basaltic

rock. Figure 7(b) shows the location of conductors reported
by down-hole resistivity logs taken within the geothermal
wells. These conductors correspond to those in the RGA
inverse model.

For line-G the subsurface was discretized in 72 prisms,
a 1-D earth at both sides and a half-space below. The sea
and coastline to the south east of the line was introduced to
the inversion by means of equality constraints on the model
(Eq. (4)). Considering a pool of 30 models, the best model
was obtained after 520 generations, with an RMS misfit of
2. This model (Fig. 7(a)) shows a thick conductor in the
center of the resistivity section. The down-hole conductors
reported by Takasugi et al. (1992) are also shown in the
figure.

In Fig. 8 the data and responses from the best model for
line-G are seen. TM-mode was fit much better than TE-
mode, but in general phases and amplitudes were properly
reproduced.

Cerv and Pek (1997) reported other models for the same



616 M. A. PEREZ-FLORES AND A. SCHULTZ: APPLICATION OF GAs TO MT

lines by using a random searching technique.

5. Conclusions

The accuracy of the forward solution is sufficiently high
that the heterogeneous high-contrast models generated ran-
domly by the Recombinant Genetic Analogue proves no im-
pediment to the overall convergence of the inversion pro-
cess. This is attributed to the automatic grid generator,
which depends on both the frequency and conductivity dis-
tribution within the model.

The exercise with noisy synthetic data demonstrates that
it is possible to use the RGA as an inversion method for 2-D
magnetotellurics, even when the model is highly heteroge-
neous and the data are contaminated with noise. The syn-
thetic example revealed that, as with other inversion tech-
niques, the problems of resolution and conductance equiva-
lence are intrinsic to MT.

The results from El Salvador show that the nonlinear
RGA inversion has obtained almost the same model features
as other, earlier techniques. The model revealed conduc-
tors that appear to be associated directly with the geother-
mal field, with surface geysers, and with Hoyo de Coajuste
volcano. The way in which prior bounds may be put on
any given model parameter makes the RGA easily adapted
to 2-D MT hypothesis testing. For example, one could test
whether small conductive features that have been revealed in
an RGA or other inversion are strictly required by the data.
This is accomplished by imposing an a priori high resis-
tance bound on the resistivity of the prisms associated with
that feature, and then by inverting the same data set a second
time. If the data can still be fit with that feature suppressed,
then the feature is not strictly required by the data. Hypoth-
esis testing is one of the most compelling advantages of this
approach.

For the Kayabe data we show that, as for the case of hy-
pothesis testing, it is possible to introduce geological infor-
mation to the solution by means of a priori constraints. For
case of line-G the presence of the sea was taking into con-
sideration. For the models corresponding to the MT central
lines, a conductor located at the center matches information

reported by resistivity logs obtained inside the exploratory
wells.

RGAs can be added to the pantheon of practical (although
computationally demanding) 2-D MT inversion techniques,
particularly when prior bounds and hypothesis testing are
key elements of the question under investigation.
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