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Procrustean solution of the 9-parameter transformation problem
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The Procrustean “matching bed” is employed here to provide direct solution to the 9-parameter transformation
problem inherent in geodesy, navigation, computer vision and medicine. By computing the centre of mass
coordinates of two given systems; scale, translation and rotation parameters are optimised using the Frobenius
norm. To demonstrate the Procrustean approach, three simulated and one real geodetic network are tested. In the
first case, a minimum three point network is simulated. The second and third cases consider the over-determined
eight- and 1 million-point networks, respectively. The 1 million point simulated network mimics the case of an
air-borne laser scanner, which does not require an isotropic scale since scale varies in the X , Y , Z directions. A
real network is then finally considered by computing both the 7 and 9 transformation parameters, which transform
the Australian Geodetic Datum (AGD 84) to Geocentric Datum Australia (GDA 94). The results indicate the
effectiveness of the Procrustean method in solving the 9-parameter transformation problem; with case 1 giving
the square root of the trace of the error matrix and the mean square root of the trace of the error matrix as 0.039 m
and 0.013 m, respectively. Case 2 gives 1.13×10−12 m and 2.31×10−13 m, while case 3 gives 2.00×10−4 m and
1.20 × 10−5 m, which is acceptable from a laser scanning point of view since the acceptable error limit is below
1 m. For the real network, the values 6.789 m and 0.432 m were obtained for the 9-parameter transformation
problem and 6.867 m and 0.438 m for the 7-parameter transformation problem, a marginal improvement by
1.14%.
Key words: Procrustes, 9-parameter transformation, least squares solution, Frobenius, singular value decompo-
sition (SVD).

1. Introduction
The 9-parameter affine transformation is defined as the

problem of determining three scale parameters in the X , Y ,
Z directions (diag{S} ∈ R

3×3), three rotation parameters
(R ∈ R

3×3) and three translation parameters (T ∈ R
3×1).

It is an extension of the 7-parameter transformation prob-
lem (Bursa, 1962; Wolf, 1963), with the scales determined
along the three axes X , Y , Z instead of the usual scalar
value.
Suppose that the scale is not uniform within two or more

conurations of points such that they vary within given di-
mensions. This is typical in the 9-parameter transformation
problem. In this case, transforming the coordinates of one
configuration to those of another will require, in addition
to rotation and translation elements, the solution of scale
parameters s1, s2, s3 corresponding to the 3 (X, Y, Z ) di-
mensions. The 9-parameter transformation is used in the
fields of geodesy (Antonopoulos, 2003; Watson, 2006),
navigation (Forsberg, 1991), medicine (Piperakis and Ku-
mazawa, 2001; Pfefferbaum et al., 2006; Sun et al., 2007),
computer image analysis (Ashburner and Friston, 1997)
and surface modelling (Niederoest, 2003; Gruen and Akca,
2005). Furthermore, the 9-parameter transformation is in-
cluded in several geodetic coordinate transformation pack-
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ages, which use iterative approaches requiring initial start-
ing values (e.g., Mathes, 2002; Fröhlich and Bröker, 2003).
They can also find use in correcting for distortion where the
rotation and translation elements have been determined ex-
clusive of scales, e.g., in Featherstone and Vanı́ček (1999).
The solution of the transformation parameters has at-

tracted a wide range of research, e.g., Späth (2004), who ap-
plies a numerical minimization technique, Papp and Szucs
(2005), who apply a linearized least-squares method and
Watson (2006), who applies the Gauss-Newton method.
The Multidimensional Scaling (MDS) approach of Pro-
crustes has also been widely used in recent studies.
Borg and Groenen (1997) define Multidimensional Scal-

ing as a method that represents measurements of similarity
(dissimilarity) of data as distances among points in a geo-
metric space of low dimensionality. Let us consider a data
set to consist of tests and that a correlation of tests is re-
quired. MDS can be used to represent these data in a plane
such that their correlation can be studied. The closer to-
gether the points are (i.e., the shorter the distance between
the points) the more correlated they are. MDS thus gives
the advantage of graphical visualization of hidden adherent
properties between objects. Procrustes is a procedure used
in MDS to realise its goals. It is a tool of MDS concerned
with fitting one configuration to another as close as possible.
Put in matrix form, the Procrustes problem asks how closely
a matrix A can be approximated by a second, given, matrix
B which is multiplied by an orthogonal matrix T. The ad-

529



530 J. L. AWANGE et al.: PROCRUSTEAN 9-PARAMETER TRANSFORMATION

vantage it enjoys over the conventional methods is that it
does not rely on approximate starting values, and that it is
not iterative in nature. It offers a direct solution to nonlinear
transformation equations (see, e.g., Awange and Grafarend,
2005).
In the Procrustean method, the rotation matrix is first es-

timated using singular value decomposition (SVD) of the
two sets of coordinates, and then the translation and scale
factors are estimated using these estimated rotation param-
eters. Therefore, the rotation parameters are independent of
the number of scale factors in the transformation.
Whereas the Procrustean approach has successfully been

applied to solve the 7-parameter datum transformation (also
known as the Helmert transformation) problem (e.g., Gra-
farend and Awange, 2000, 2003; Awange and Grafarend,
2005; Umeyama, 1991; Beinat and Crosilla, 2001, 2002),
its application to solve the 9-parameter transformation
problem has not been attempted. This has been due to the
very nature of the Procrustean approach, which is designed
to give isotropic dilation, three rotation and three translation
parameters (Cox and Cox, 1994), whereas the 9-parameter
transformation requires the solution of three scale parame-
ters. In solving the 9-parameter transformation problem for
example, Watson (2006) circumvents the limitation of the
Procrustean solution by solving rotational elements using
Gauss-Newton iteration.
Lingoes and Borg (1978) proposed the PINDIS (Pro-

crustean Individual Differences Scaling) approach to scale
individual similarities according to the dimensional salience
model. The PINDIS approach obtains the estimates by min-
imizing the trace of the sum of squares of residuals, where
such residuals are obtained by subtracting parameters in a
given configurations from the centroid values. Due to fail-
ure of achieving an analytical solution, the PINDIS algo-
rithm reverts to iterative procedures (see, e.g., Comman-
deur, 1991, p. 8). The shortcomings of PINDIS have been
pointed out in Commandeur (1991) who goes a step fur-
ther to provide a general solution for scaling factors. Com-
mandeur (ibid, p. 34) achieves the general solution of scale
factors through the use of a constraint such that the sum
of squares about the origin of the scaled configurations re-
mains equal to the sum of squares of the original configura-
tions centered on the origin.
The common feature between the Lingoes and Borg

(1978) and Commandeur (1991) approaches is that the
scales are assumed to be uniform in a given configuration
and solved throughout for the total number of configura-
tions. Assuming x j to be a column vector containing the
coordinates of points j = 1, . . . , n in m-dimensional space,
the scale is defined as s j . For two configurations j = 1, 2
in m = 3 dimensions, these procedures will be solving for
s1 and s2 scales, i.e., one scale parameter for each configu-
ration. This is distinctly different from 9-parameter trans-
formation studied here, which seeks to solve one scale pa-
rameter for each dimension, thus three in total, while the
number of configurations is restricted to two.
This study attempts to provide a complete Procrustean

solution of the 9-parameter transformation problem by solv-
ing the 3 scale parameters (s1, s2, s3), 3 rotation and 3
translation parameters. The physical meaning of these

scale parameters can be interpreted as follows: given three-
dimensional coordinates in two systems, the rigid transfor-
mation from one system to another will involve rotating
about and translating along the X -, Y -, and Z -axis. In some
systems such as in photogrammetry and laser scanning,
some discrepancies exists along these axes which can be
overcome by applying different scales to each of the axes,
hence the need for scale parameters. In addition, applying
different scale parameters in geodetic coordinate transfor-
mations can better account for systematic observation errors
or processes such as solid Earth deformation.
The advantages of using Procrustean transformation in

the case of the 7-parameter transformation are its direct ap-
proach, which alleviates the need for linearization, initial
starting values, and iterations inherent in least-squares so-
lution (LSS), and also its simplicity compared to other ap-
proaches (e.g., Awange and Grafarend, 2005). Its success
is mainly due to the fact that it is designed to give isotropic
dilation, rotation and translation of rigid bodies. For a uni-
form scale therefore, as is the case in the 7-parameter trans-
formation, the application is straightforward.
For the 9-parameter affine transformation, there is, how-

ever, the requirement to determine three scale parameters
instead of one, thereby presenting a challenge to the Pro-
crustean method designed for one scale factor. The present
study presents the first attempt to apply Procrustes to solve
the 9-parameter transformation problem. The approach re-
duces the coordinates of the two systems into their centre of
mass, optimizes the scale in the sense of LSS with the rota-
tion matrix determined by means of singular value decom-
position (SVD) also known as Eckert-Young decomposition
(Eckert and Young, 1936).
The study is organized as follows: In Section 2, the

9-parameter transformation problem is introduced and its
Procrustean solution is presented in Section 3. Section 4
considers test examples, while Section 5 summarizes the
results.

2. Definition of the Problem
Let us consider two coordinate configurations A ∈ R

n×m

and B ∈ R
n×m consisting of n points in an m-dimensional

Euclidean space. The dataset in A and B spaces are ex-
pressed by

A =

⎡

⎢⎢
⎣

x1 y1 z1
x2 y2 z2

· · ·
xn yn zn

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

X1 Y1 Z1

X2 Y2 Z2

· · ·
Xn Yn Zn

⎤

⎥⎥
⎦ . (1)

The 7-parameter similarity or Helmert transformation prob-
lem is defined by

A = BRs + vTT , (2)

where R ∈ R
3×3 is an orthonormal rotation matrix satis-

fying the orthogonality condition RT R = I3. The rotation
matrix is parameterized by either Cardan or Euler rotation
angles (Awange and Grafarend, 2005, pp. 262–263) and the
rotation convention of Soler (1998) is commonly used to de-
fine the direction of the rotations. s ∈ R is the scale factor
also known as dilation, T ∈ R

3×1 is the translation vector
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and v is a vector of ones with length n. The 7-parameter
transformation problem is now solved by determining the 7
transformation parameters, i.e., scale s ∈ R, 3 rotation ele-
ments of R ∈ R

3×3, and 3 translation parameters T ∈ R
3×1.

Various approaches for solving the 7-parameter transforma-
tion problem have been discussed, e.g., in Awange and Gra-
farend (2005).
The 9-parameter transformation problem, on the other

hand, concerns itself with the solution of

A = BRS + vTT , (3)

where the scalar parameter s ∈ R in Eq. (2) has been
substituted with a diagonal matrix S ∈ R

3×3 given by

S =
⎡

⎣
sx

sy
sz

⎤

⎦ , (4)

with sx , sy , sz being the X , Y , Z scales in the directions, re-
spectively. As opposed to the solution of Eq. (2), Eq. (3) en-
tails the determination of nine parameters, i.e., three scales
S ∈ R

3×3, three rotations elements of R ∈ R
3×3 and three

translation parameters T ∈ R
3×1.

3. Solution of the 9 Transformation Parameters
From Eqs. (1) and (3), let bi = [Xi Yi Zi ] and ai =

[xi yi zi ]. In order to obtain optimum 9-transformation
parameters, scale diag(S) ∈ R

3×3, rotation R ∈ R
3×3

and translation T ∈ R
3×1 are determined, such that the

Frobenius norm is minimum, i.e., the sum of square of
distances between points in A ∈ R

n×m and B ∈ R
n×m

coordinate systems

D2 =
n∑

i=1

(ai − biRS − T)T (ai − biRS − T). (5)

Optimal translation vector estimation:
Considering a0 and b0 to be the center of mass (centroid)

of the two coordinate configurations A and B derived from

a0 = 1

n

n∑

i=1

ai , b0 = 1

n

n∑

i=1

bi . (6)

The error metric (Eq. (5)), in the centralised coordinate is
given by

D2 =
n∑

i=1

[(ai − a0) − (bi − b0)RS + a0 − b0RS − T]T

[(ai − a0) − (bi − b0)RS + a0 − b0RS − T], (7)

which on expanding leads to (Cox and Cox, 1994)

D2 =
n∑

i=1

[(ai − a0) − (bi − b0)RS]T

[(ai − a0) − (bi − b0)RS]

+n(a0 − b0RS − T)T (a0 − b0RS − T). (8)

A close examination of Eq. (8) reveals that the last term
is non-negative and contains the translational element T ∈

R
3×1. D2 can attain a minimum if the last term in Eq. (8)

equals zero, i.e., if

T = a0 − b0RS. (9)

Alternatively, from Eq. (3), T ∈ R
3×1 can also be obtained

by taking the mean of the translations, i.e.,

Ti = 1

n

n∑

i=1

(ai − biRS) = 1

n

n∑

i=1

ai − 1

n

n∑

i=1

biRS, (10)

which together with Eq. (6) leads to the translation elements
in Eq. (9).
Optimal scale parameter estimation:

Assuming the centroids a0 = b0 = 0, then from Eq. (3),

A = BRS. (11)

Let f be the error function incurred in rotating the system B
and scaling it to match A. Thus

f = (A − BRS)T (A − BRS), (12)

where f is a 3 × 3 matrix. As in the translation estimation,
the Frobenius norm is applied to the error function by min-
imizing the distances between two corresponding points,
and this norm is minimized (cf. Fitzpatrick and West, 2001)

‖f‖2F = tr{(A − BRS)T (A − BRS)} := min (13)

The optimal least squares solution of S ∈ R
3×3 can be found

by minimising the ‖f‖2F such that

∂‖f‖2F
∂s j

= 0, necessary condition

∂2‖f‖2F
∂s2j

≥ 0, sufficient condition

⎤

⎥⎥⎥
⎦

j ∈ {1, 2, 3},

(14)
where s1, s2, and s3 are the scale parameters in the direction
of X , Y and Z , respectively. Since S is a diagonal matrix,
and thereby symmetric, the following relations hold (Gra-
farend and Schaffrin, 1993, p. 443)

∂ tr(SRT BT A)

∂S
= ∂ tr(AT BRS)

∂S
= RT BT A

∂ tr(SRT BT BRS)

∂S
= 2RT BT BRS

(15)

Then, the first and second derivatives of ‖f‖2F with respect
to S ∈ R

3×3 in Eq. (12) are

∂‖f‖2F
∂S

= −2RT BT A + 2RT BT BRS

∂2‖f‖2F
∂S2

= 2RT BT BR

⎤

⎥
⎥
⎦ (16)

Note that the sufficient condition in Eq. (14) is observed,
since the second derivative in Eq. (16) is a quadratic form.

By setting ∂‖f‖2F
∂S = 0, the optimal least-squares solution for

S can be found

S = (RT BT BR)−1RT BT A. (17)
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However, the solution of Eq. (17) will generally result in
a full S matrix instead of the desired diagonal matrix. To
avoid this situation, such that the off-diagonal elements of
S in Eq. (14) are zero, Eq. (16) needs to be evaluated term
by term. Introducing the following term-wise notation of A,
B and R

A =

⎡

⎢
⎢
⎣

a11 a12 a13
a21 a22 a23

· · ·
an1 an2 an3

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

b11 b12 b13
b21 b22 b23

· · ·
bn1 bn2 bn3

⎤

⎥⎥
⎦ ,

R =
⎡

⎣
r11 r12 r13
r21 r22 r23
rn1 rn2 rn3

⎤

⎦ , (18)

it is deduced (see Appendix) that the elements of ∂‖f‖2F
∂S are

given by

{
∂‖f‖2F

∂S

}

i j

= −2
n∑

l=1

(
3∑

k=1

blkrki

)

al j

+ 2s j
n∑

l=1

(
3∑

k=1

blkrki

) (
3∑

k=1

blkrk j

)

. (19)

Setting the diagonal elements (i = j) to zero in Eq. (19)
gives the solution for the scale parameters s j

{
∂‖f‖2F

∂S

}

j j

= 0 ⇔ s j =

n∑

l=1

(
3∑

k=1

blkrk j

)

al j

n∑

l=1

(
3∑

k=1

blkrk j

)2 ,

j ∈ {1, 2, 3}. (20)

Note that this solution can also be found by expressing
tr{(A − BRS)T (A − BRS)} in term-wise notation, and then
differentiating the result with respect to s j .
In deriving Eq. (20), we made use of the assumption

a0 = b0 = 0 which may not always hold due to poor net-
work geometry. In order to take into consideration residual
errors arising due to the assumption a0 = b0 = 0, the scale
is rigorously solved as follows: Let the error in scale asso-
ciated with the assumption a0 = b0 = 0 be dS. A linear
expression in S is then written as

S = S0 + dS, (21)

where S0 is given by Eq. (20). This is then solved via least
squares as

dS = diag((RT BT BR)−1RT BT w), (22)

and
w = A − BRS0 − v(a0 − b0RS0), (23)

where the diagonal operator, diag, means that a matrix is
‘diagonalized’ by setting the non-diagonal elements to zero
and dS is still a 3 × 3 matrix after this operation. Note that
Eq. (20) is influenced by the assumption a0 = b0 = 0 and
thus few iterations based on Eqs. (21)–(23) are generally
required as shown in Section 4.

Fig. 1. Procrustean 9-parameter transformation algorithm.

Optimal rotation matrix estimation:
In Eqs. (9) and (17), the rotation matrix is required for

solving the scale and translation elements. Here, we illus-
trate how it can be obtained from the partial orthogonal Pro-
crustes method which makes use of only the coordinates
in two systems and does not require linearization, iteration
or the knowledge of approximate starting values. Consider
the transformation problem about the origin a0 = b0 = 0.
Since the solution of R ∈ R

3×3 can be obtained from coor-
dinates independent of the scale and translation parameters
(Grafarend and Awange, 2003; Watson, 2006), Eq. (3) is
expressed as

A = BR, (24)

subject to the quadratic constraint and the orthogonality
condition of the rotation matrix R (Grafarend and Awange,
2003)

RT R = I3 (25)

The 3 × 3 orthonormal matrix R ∈ R
3×3 is a least-squares

solution of Eq. (24) with the condition in Eq. (25), if and
only if, it fulfils the system of nonlinear normal equation

BT BR + R
 = BT A, (26)

where
 is a symmetric 3×3 matrix of Lagrange multipliers
(Grafarend and Awange, 2000).
If the singular value decomposition of BT A is expressed

as
U�VT = BT A, (27)

then a solution of the system of nonlinear normal equations
is

R = UVT (28)

which is unique if the rank of BT A ∈ R
m×m is equal

or greater than 3 (Grafarend and Awange, 2000). Other
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Table 1. True and estimated transformation parameters for simulated 3 points network. Rota, Rotb and Rotc are the rotation angles around the x , y and
z axes.

True value Estimated value Difference

sx 0.99998 0.99998 4.608314 × 10−11

sy 0.99994 0.99994 4.608192 × 10−11

sz 0.99995 0.99995 1.221245 × 10−15

Tx (m) 100.0 100.019010 −0.019010

Ty (m) 20.0 19.975360 0.024640

Tz (m) 0.0 1.136868 × 10−13 −1.136868 × 10−13

Rota (‘’) 1.0 0.999971 2.880136 × 10−5

Rotb (‘’) 3.0 3.000010 −9.600299 × 10−6

Rotc (‘’) 0.5 2.480232 −1.980232

Fig. 2. Two simulated three dimensional 3-points networks.

methods of obtaining Eq. (28) have been presented, e.g.,
in Awange and Grafarend (2005). The Procrustean 9-
parameter transformation algorithm is presented in Fig. 1.

4. Test Results
In this section, the proposed Procrustean 9-parameter

transformation is tested using simulated datasets and a real
network. Regarding the number of points in a test network,
we utilize the minimum required number, i.e., 3, to a large
number of points, 1 million as can be the case of the point
cloud registration of air-borne laser scanner datasets.
The simulation adopts a “forward-backward” strategy,

where we start with some arbitrary coordinates of A and
values of the 9 transformation parameters. These are then
used in the “forward step” to simulate the coordinates of
configuration B. In the “backward step”, we use the sim-
ulated coordinates of B and those of A to derive the trans-
formation parameters using the Procrustean 9-parameter al-
gorithm. A comparison is then made between the ‘forward’
and ‘backward’ transformation parameters. The computed
transformation parameters from the “backward step” are
used to transform the coordinates of B into A and the er-
rors are analysed using two error measures errE and MerrE,
which are defined as (e.g., Grafarend and Awange, 2003)

errE =
√
tr(ET E) (29)

and

MerrE =
√
tr(ET E)

3n
, (30)

where E is the error matrix

E = A − BRS − v(a0 − b0RS). (31)

The error matrix norm errE is thus the square root of the
sum of the squared coordinate differences before and after
transformation. This error measure is generally larger for
cases with a larger number of points. The mean error ma-
trix norm MerrE divides the sum of the squares by the to-
tal number of coordinates to obtain the root-mean-squares
(RMS) of the coordinate differences, and is more suitable
to compare cases with different numbers of points.
Case 1 (simulated 3 points network)
In this case, two networks consisting of 3 common

points, which is the minimum required numbers of points
for Procrustean 9-parameter transformation, are utilized as
shown in Fig. 2. This example is important for a case where
only the bare minimum number of points are available in
both systems as is often the case in Photogrammetry. The
transformation parameters between A and B, i.e., 3-scale
factors, 3-translational and 3-rotational parameters are com-
puted using the Procrustean 9-parameter algorithm and are
presented in Table 1. The error measures errE and MerrE
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Table 2. True and estimated transformation parameters for simulated 8 point network.

True value Estimated value Difference

sx 0.99998 0.99998 1.928983 × 10−8

sy 0.99994 0.99994 4.178106 × 10−9

sz 0.99995 0.99995 −6.129651 × 10−8

Tx (m) 100.0 100.000000 −1.421086 × 10−14

Ty (m) 20.0 20.000000 8.526513 × 10−14

Tz (m) 0.0 −8.526513 × 10−14 8.526513 × 10−14

Rota (‘’) 1.0 0.993931 0.006069

Rotb (‘’) 3.0 3.013453 −0.013453

Rotc (‘’) 0.5 0.487267 0.012733

Fig. 3. Two simulated three dimensional 8-points networks.

computed using (Eq. (29)) and (Eq. (30)) are 0.0392 m and
0.0131 m, respectively. The difference between the true
transformation parameters and those computed using Pro-
crustean algorithm are presented in Table 1. The differences
are close to zero for scale and rotation elements, except
for the Z -axis rotation. The Z -axis rotation error is much
larger than the other direction errors since the range of the
Z -direction data is much smaller than that of either X - or Y -
axis dataset in Case 1, which causes the difference in Rot(c)
to be slightly larger. The differences found in Tx and Ty are
indeed related to this. This is also attributed to the fact that
we are dealing with the minimum case. As the number of
stations increase, e.g., in Cases 2 and 3, the effect becomes
much less. No iteration for scale was required for this case
in order to obtain the final MerrE value of 0.013064 m since
the network geometry is good.
Case 2 (8-points network)
Next, two networks with 8 points shown in Fig. 3 are

utilized. This example depicts a localized surveying sit-
uation where a couple of points common in both systems
are available. The error measures errE and MerrE are com-
puted as 1.132 × 10−12 m and 2.311 × 10−13 m. The dif-
ferences between the true and estimated values of the 9-
transformation parameters are presented in Table 2 are close
to zero. Compared to case 1, the differences in the sim-
ulated 8-points networks are much smaller due to a large
number of redundant points and a better network configura-
tion compared to the minimal case of 3 points highlighting
the well known fact of utilizing as many points as possible.

For this simulated network, no iteration was required simi-
lar to the simulated 3-point network to obtain a MerrE value
of 2.311370 × 10−13 m.
Case 3 (1 million points network)
For this case, two networks of one million common

points are simulated. This case can be regarded as an ex-
ample of an air-borne laser scanner point clouds situation
in which the proposed Procrustean algorithm for solving 9-
parameter transformation parameters can be useful since it
is likely to have anisotropic scale factors. The error mea-
sures errE and MerrE are computed as 3.83 × 10−4 m and
2.208× 10−7 m. The true and estimated transformation pa-
rameters are given in Table 3. From the plot of errE and
MerrE vs iteration presented in Fig. 4, four iterations are
sufficient for this case.
Case 4 (82-common known stations in both AGD 84 and
GDA 94)
Finally, a real network dataset based on 82 stations com-

mon in both AGD 84 and GDA 94 (Fig. 5) are used to
compute the transformation parameters for Western Aus-
tralia. The AGD is defined by the ellipsoid with a semi-
major axis of 6378160 m and a flattening of 0.00335289
while the GDA is defined by an ellipsoid of semi-major
axis 6378137 m and a flattening of 0.00335281 (Kinneen
and Featherstone, 2004). Both 7- and 9-transformation
parameters are computed using the general 7-parameter
Procrustean algorithm and the proposed 9-parameter Pro-
crustean algorithms respectively. The resultant error mea-
sures errE and MerrE are then compared. For the 7-
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Table 3. True and estimated transformation parameters for the simulated network with 1 million points.

True values Estimated values Difference

sx 0.99998 0.99998 7.193998 × 10−10

sy 0.99994 0.99994 −7.097811 × 10−11

sz 0.99995 0.99995 −1.064053 × 10−9

Tx (m) 400.0 399.999999 5.075449 × 10−7

Ty (m) 300.0 300.000000 −1.495559 × 10−7

Tz (m) 5.0 5.000000 4.753149 × 10−7

Rota (‘’) 1.0 1.000072 −7.164506 × 10−5

Rotb (‘’) 3.0 3.000320 −3.19516 × 10−4

Rotc (‘’) 0.5 0.500084 −8.387693 × 10−5

Error X (m) Error Y (m) Error Z (m)

Min. −6.5690 × 10−7 −5.9980 × 10−7 −3.6550 × 10−7

Max. 6.5630 × 10−7 6.0090 × 10−7 3.6430 × 10−7

Average −7.1977 × 10−12 4.6118 × 10−12 −1.1743 × 10−11

Fig. 4. Error versus iteration for the simulated network with 1 million
points.

Fig. 5. Locations of the 82 stations in WA, Australia (AGD84 and
GDA94).

Table 4. Error metrics from 9 and 7 parameters transformation with 82
stations in WA, Australia (AGD84 and GDA94).

9-parameters 7-parameters Improvement (%)

errE 6.788556 6.866908 1.14

MerrE 0.432822 0.437818 1.14

Table 5. Estimated transformation parameters between 82 stations in WA,
Australia (AGD84 and GDA94) using 9- and 7-parameter transforma-
tion methods.

Estimated values Estimated values

(9-parameters) (7-parameters)

s 1.00000368981

sx 1.00000396085

sy 1.00000355062

sz 1.00000345982

Tx (m) −115.061896 −115.837707

Ty (m) −47.697857 −48.373207

Tz (m) 144.095506 144.759551

Rota (‘’) 0.119711 0.119712

Rotb (‘’) 0.383988 0.383988

Rotc (‘’) 0.370396 0.370396

parameter solution, the error measures errE and MerrE are
6.867 m and 0.438 m, while the 9-parameter solution gives
6.789 m and 0.433 m which is a marginal 1.4% improve-
ment on the results obtained with the 7-parameter transfor-
mation (see Table 4). The estimated transformation param-
eters are given in Table 5. The Error plots of each station
for 82 stations in WA are presented in Fig. 6 while the plot
of errE and MerrE versus iteration is presented in Fig. 7,
which demonstrates that 4 iterations are required to obtain
a precise scale matrix.

5. Conclusions
The test results of the Procrustean solution of the 9-

parameter transformation demonstrate the effectiveness of
the algorithm. In particular, its non requirement of approx-
imate starting values or linearization inherent in the tradi-
tional least squares make it attractive. Even with many
points, e.g., 1 million (case 3); all that is required of the user
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Fig. 6. Error plots of each station for 82 stations in WA, Australia (AGD84 and GDA94) with 9- and 7-parameters.

Fig. 7. Error versus iteration for 82 stations in WA, Australia (AGD84 and
GDA94).

are the coordinates in both configurations to be set in ma-
trix format. Compared to the general Procrustean algorithm
used to solve the 7-parameter similarity transformation, this
study has shown that a marginal improvement (i.e., 1.14%
for the real network considered in this study) in the com-
puted transformation parameters is gained when the scale
parameters in the entire three axis are considered. This may

be of use in larger geodetic network with many points, and
where scale parameter cannot be assumed to be isotropic.
The 9-parameter Procrustean algorithm considered in this
study can thus be used for

(i) quicker and effective generation of 9 transformation
parameters given coordinates in two systems as matrix
configuration,

(ii) quick checking of the transformation parameters ob-
tained from other methods

(iii) generating three scale parameters which could be
useful in correcting distortions following procedures
which first determine the rotation and translation pa-
rameters independent of scale e.g., (Featherstone and
Vanı́ček, 1999).
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Appendix A. Proof of Eq. (19)
Given the matrices in Eq. (18)

A =

⎡

⎢
⎢
⎣

a11 a12 a13
a21 a22 a23

· · ·
an1 an2 an3

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

b11 b12 b13
b21 b22 b23

· · ·
bn1 bn2 bn3

⎤

⎥
⎥
⎦ ,

R =
⎡

⎣
r11 r12 r13
r21 r22 r23
rn1 rn2 rn3

⎤

⎦ , (A.1)

it can easily be found that the elements of the matrix product
of B and R are given by

{BR}i j =
3∑

k=1

bi jrk j . (A.2)

The elements of the transpose of BR simply follow by in-
terchanging the indices i and j . Subsequently multiplying
the transpose of BR by A gives

{RT BT A}i j =
n∑

l=1

(
3∑

k=1

blk rki

)

al j (A.3)

and pre-multiplying BR by its transpose gives

{RT BT BR}i j =
n∑

l=1

(
3∑

k=1

blk rki

) (
3∑

k=1

blk rk j

)

. (A.4)

Multiplication of RT BT BR by a diagonal matrix S =
diag(s1, s2, s3) yields

{RT BT BRS}i j = s j
n∑

l=1

(
3∑

k=1

blk rki

) (
3∑

k=1

blk rk j

)

.

(A.5)
Finally, inserting Eqs. (A.3) and (A.5) into Eq. (16) gives
Eq. (19)

{
∂‖f‖2F

∂S

}

i j

= −2{RT BT A}i j + 2{RT BT BRS}i j

= −2
n∑

l=1

(
3∑

k=1

blk rki

)

al j

+ 2s j
n∑

l=1

(
3∑

k=1

blk rki

) (
3∑

k=1

blk rk j

)

.

(A.6)
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