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Abstract

Planets are formed from collisional growth of small bodies in a protoplanetary disk. Bodies much larger than
approximately 1m are mainly controlled by the gravity of the host star and experience weak gas drag; their orbits are
mainly expressed by orbital elements: semimajor axes a, eccentricities e, and inclinations i, which are modulated by
gas drag. In a previous study, ȧ, ė, and i̇ were analytically derived for e � 1 and i � H/a, where H is the scale height of
the disk. Their formulae are valid in the early stage of planet formation. However, once massive planets are formed, e
and i increase greatly. Indeed, some small bodies in the solar system have very large e and i. Therefore, in this paper, I
analytically derive formulae for ȧ, ė, and i̇ for 1 − e2 � 1 and i � H/a and for i � H/a. The formulae combined from
these limited equations will represent the results of orbital integration unless e ≥ 1 or i > π − H/a. Since the derived
formulae are applicable for bodies not only in a protoplanetary disk but also in a circumplanetary disk, I discuss the
possibility of the capture of satellites in a circumplanetary disk using the formulae.
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Correspondence/Findings
Introduction
Planets are formed in a circumstellar disk composed of gas
and solid materials (solids are of the order of 1% in mass).
The solid material is initially sub-micron grains, which
are controlled by an aerodynamical frictional force that is
much stronger than the gravity of the central star (Adachi
et al. 1976, hereafter AHN). As solid bodies grow, gas
drag becomes relatively less important. Once bodies get
much larger than 1m, they have Keplerian orbits around
the central star that are slightly altered by gas drag; then,
their orbits are characterized by orbital elements: semi-
major axes a, eccentricities e, and inclinations i. These
bodies grow via collisions, and the collisional rates are
given by relative velocities determined by e and i (e.g.,
Inaba et al. 2001). Damping due to gas drag and stirring
by the largest body in each annulus of the disk mainly
control e and i, which evolve in the protoplanetary disk
during planet formation. In addition, radial drift due to
gas drag, which is expressed by ȧ, reduces small bodies,
which stalls the growth of bodies (e.g., Kobayashi et al.
2010, 2011). Therefore, the time derivative of a, e, and i (ȧ,
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ė, and i̇) caused by gas drag are very important for planet
formation.
Protoplanets are formed out of collisions with

kilometer-sized or larger bodies called planetesimals.
While protoplanets grow, e and i of planetesimals are
determined by the Hill radius of the protoplanets, and
their e and i are smaller than 0.3 unless the protoplanets
are greater than ten Earth masses (see equation 15 of
Kobayashi et al. 2010). Therefore, AHN derived formulae
of ȧ, ė, and i̇ due to gas drag for a body with low e � 0.3
and i � 0.1. However, e and imay possibly increase when
more massive planets are formed. Indeed, in the solar sys-
tem, some comets, asteroids, and Kuiper belt objects have
very high e and i (e.g., Kobayashi et al. 2005). In addition, if
inclined and eccentric orbits of irregular satellites around
Jovian planets are originated from captures due to inter-
action with circumplanetary disks (e.g., Fujita et al. 2013),
these captured bodies with high e and i evolve their orbits
in the disks. Therefore, analytic formulae for ȧ, ė, and i̇
for bodies with high e and i are helpful for the analysis of
small bodies in the late stage of planet formation.
In this paper, I first introduce a model for gaseous disks

such as protoplanetary and circumplanetary disks, and
then, I revisit the derivation of Adachi et al. (1976) for the
analytic formulae of ȧ, ė, and i̇. Next, I derive ȧ, ė, and i̇
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for bodies with high e and/or high i. By combining these
limited solutions, I construct approximate formulae for ȧ,
ė, and i̇, which are applicable for all e and i unless e ≥ 1 or
i > π −H/a. Lastly, I discuss the orbital evolution of satel-
lites captured by circumplanetary disks using the derived
analytic formulae for ȧ, ė, and i̇.

Nebula disk model and gas drag law
In order to evaluate the drag force due to nebula gas, the
disk model is set as follows. A gaseous disk rotates around
a central object with massM∗, which is axisymmetric and
in a steady state. In a cylindrical coordinate system (r, θ , z),
the gas density ρ is defined from the force equilibrium in
the z direction in a vertical isothermal disk as

ρ = σ√
πH(r)

exp
(

− z2

H(r)2

)
, (1)

where σ(r)(= ∫ ∞
−∞ ρdz) is the surface density of the neb-

ula disk, H(r) = √
2c/�K is the disk scale height, �K =

(GM∗/r3)1/2 is the Keplerian angular velocity, andG is the
gravitational constant. For simplicity, the r-dependences
of σ and c are assumed as σ ∝ r−α , c ∝ r−β , respectively.
This relations give ρ ∝ r−α′ , where α′ = α − β + 3/2.
In the minimum-mass solar nebula model (Hayashi et al.
1985), for example, α = 3/2 and β = 1/4. The angular gas
velocity �gas is obtained from the force equilibrium in the
r direction as (Tanaka et al. 2002)

�gas = �K

[
1 − 1

4

(
α + β + 3

2

)
H(r)2

r2
− β

2
z2

r2

]
. (2)

In Equation (2), the terms of O
(
z4/r4

)
and higher are

ignored. This treatment is valid even for investigation of
the gas drag effect on highly inclined orbits because the
gas drag (and the nebula gas) is negligible at a high altitude
(z � H).
At the midplane of the disk, the relative velocity differ-

ence between the gas motion and the Keplerian rotation
is given by

η(r) = �K − �gas

�K

∣∣∣∣
z = 0

= 1
4

(
α + β + 3

2

)
H(r)2

r2
.

(3)

For a body with massm and radius d, gas drag force per
unit mass can be written as AHN

Fd = CDπd2ρuu/2m = Aρuu, (4)

where CD is the dimensionless gas drag coefficient, u is
the relative velocity vector between the body and the gas,
u =| u |, and A = CDπd2/2m. Although CD depends on
Mach number M and Reynolds number Re, CD is a con-
stant for high Re (d � 1 km in the minimum-mass solar
nebula) or for M � 1 (e or i is much larger than H/a)
(AHN).

General expressions for the change in a, e, and i
In this paper, I investigate the time variations of semimajor
axis a, eccentricity e, and inclination i of a body due to
gas drag for constant CD (and then constant A). The time
derivatives of a, e, and i are given by AHN as
da
dt

=−Aρu
2a

1 − e2
[
1+2e cos f +e2−(1+e cos f )3/2κ cos i

]
, (5)

de
dt

= −Aρu
[
2 cos f + 2e − 2 cos f+e+e cos2 f

(1+e cos f )1/2 κ cos i
]
, (6)

di
dt

= −Aρu
cos2(f + ω)

(1 + e cos f )1/2
κ sin i, (7)

where f and ω are the true anomaly and the argument
of pericenter, respectively, κ = �gas/�Kw3/2, w =[ 1 −
sin2(f + ω) sin2 i]1/2,

ρ = ρ0

((
1 − e2

)
w

1 + e cos f

)−α+β−3/2

exp
(

−a2
(
1 − e2

)2 w2 sin2(ω + f ) sin2 i
H(r)2(1 + e cos f )2

)
,

(8)

u = vK(a)√
1 − e2

[
1 + 2e cos f + e2 − 2(1 + e cos f )3/2κ cos i

+(1 + e cos f )κ2w2]1/2 ,
(9)

ρ0 is the midplane density at r = a, and vk = (GM∗/a)1/2
is the Keplerian velocity. If the variation timescales of a,
e, and i are much longer than the orbital time, the evo-
lution of a, e, and i follows the averaged rate. The orbital
averaging is taken as

〈
da
dt

〉
= 1

TK

∫ TK

0

da
dt

dt = 1
2π

∫ 2π

0

da
dt

(
1 − e2

)3/2
(1 + e cos f )2

df ,

(10)

where TK = 2π(a3/GM∗)1/2 is the Keplerian period. The
same averaging is taken for e and i.

Case of low e, i, and η

For e, i � 1, Adachi et al. 1976 derived the averaged
changes in a, e, and i for three cases, (i) η � e, i, (ii)
i � e, η, and (iii) e � i, η, and summed up the leading
terms for these cases.
This method was used to treat u in Equations (5) to

(7) analytically: The assumptions simplify as u ≈ η +
(e/2) cos f in case (i), u ≈ i | cos(f + ω) | in case (ii), and
u ≈ e

√
1 − (3/4) cos2 f + (η/2) cos f

√
1 − (3/4) cos2 f in

case (iii). Other terms are also simplified, such as ρ =
ρ0(1+ α′e cos f ). Then, the terms are easily averaged over
the orbital period by Equation (10).
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The derived formulae are in good agreement with the
results of orbital integrations for e � 1 and i � H(a)2/a2.
While Adachi et al. (1976) provided the term of i3 in ȧ,
they did not take into account the vertical dependence of
ρ, which includes other i3 terms. Since the sum of these
i3 terms is negligible, I thus exclude the i3 term derived by
AHN. Inaba et al. (2001) found that the mean root squares
of these limited solutions are in better agreement with the
results of orbital evolution than the simple summation by
Adachi et al. (1976). The averaged variation rates of a, e,
and i are therefore given by

− τ0
a

〈
da
dt

〉
1

= 2
{

η4 +
(
2iη
π

)2
+

[
2(2E + K)

3π
eη

+
(
2E + K
9π

α′ + 68E − 11K
54π

)
e3

]2}1/2

,

(11)

− τ0
e

〈
de
dt

〉
1

=
[(

3
2
η

)2
+

(
2
π
i
)2

+
(
2E
π

e
)2

]1/2

, (12)

− τ0
i

〈
di
dt

〉
1

= 1
2

{
η2 +

(
8
3π

i
)2

+
[
2E
π

e
(
1 + 2K − 5E

9E
cos 2ω

)]2}1/2

,

(13)

where K = 2.157 and E = 1.211 are the first and second
complete elliptic integrals of argument

√
3/4, respectively,

and τ0 = (Aρ0vK)−1 is the stopping time due to gas drag
for u = vK. Note that I corrected an error in the factor of
the η2 term for ė in Adachi et al. (1976), which was pointed
out by Kary et al. (1993).
For i = 0.01, Equations (11) to (13) are compared with

the results of orbital integrations in Figure 1. These formu-
lae are valid unless e > 0.2. Moreover, the i dependence in
these formulae are valid for i < H(a)/a (see Figure 2).

Case of high eccentricity and low inclination
Here, let us consider the case where e is almost equal
to unity and i is much smaller than H(a)/a. Expanding
Equations (5) to (7) with respect to (1 − e2) under the
assumption of i � H(a)/a, keeping only the lowest-order
terms of (1 − e2), and applying the orbital averaging such
as Equation (10) to these equations,〈

da
dt

〉
= −2a

τ0
(1 − e2)−α+β−3/2 , (14)

〈
de
dt

〉
= − 1

τ0
(1 − e2)−α+β−1/2 , (15)

〈
di
dt

〉
= − i

2τ0
(1 − e2)−α+β−1/2�1

(
1 + �2

�1
cos 2ω

)
, (16)
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Figure 1 The variation rates of a, e, and i as a function of e for
i = 0.01 and ω = π/2 in the disk with H(a)/a = 0.1, α = 1.5, and
β = 0.25. Analytic formulae for low e (gray dotted curves), given by
Equations (11) to (13), and ones for high e (gray dashed curves), given
by Equations (14) to (16), are in good agreement with the results of
orbital integration (open circles) for low e or high e, respectively. The
combined formulae (solid curves), given by Equations (30) to (38), are
valid for the whole region.

where

 = 1
2π

∫ 2π

0
(1 + cos f )α−β+1

(
2 − √

1 + cos f
)

×
√
3 − 2

√
1 + cos f df ,

(17)

�1 = 1
2π

∫ 2π

0
(1 + cos f )α−β−1/2

√
3 − 2

√
1 + cos f df ,

(18)

�2 = 1
2π

∫ 2π

0
(1 + cos f )α−β−1/2

×
√
3 − 2

√
1 + cos f cos 2fdf .

(19)

The dependences of ȧ and ė on f are seen in the integral
 , while a term proportional to sin 2f sin 2ω in i̇ vanishes
by the orbital averaging because of an odd function of f .
The integrals of  , �1, and �2 are functions of α−β . In

the minimum-mass solar nebular model, α − β is 5/4, and
then,  = 0.79, �1 = 0.71, and �2 = −0.16.
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Figure 2 The change rates in a, e, and i as a function of i for e = 0.1,
and ω = π/2 in the same disk as Figure 1. Analytic formulae for low i
(gray dotted curves), given by Equations (11) to (13), and those for
high i (gray dashed curves), given by Equations (30) to (32), are in
good agreement with the results of orbital integration (open circles)
for i � H/a and i � H/a, respectively. The combined formulae (solid
curves), given by Equations (30) to (38), represent within a factor of 1.5.

The e dependences in these formulae are applicable for
e > 0.9 as shown in Figure 1. Although the effective range
of these formulae is limited, the e dependences improve
the high e parts in Equations (11) to (13) as shown below.

Case of high inclination
Next, let us consider highly inclined orbits where ai/H(a)
is much larger than unity. Bodies with such a high inclina-
tion penetrate the nebula disk twice around the ascending
and descending nodes through an orbital period. Gas drag
is effective only around the nodes. Since the body expe-
riences significant gas drag around the ascending node
(| f + ω |� 1), the leading terms of | f + ω | for
Equations (5) to (7) are

da
dt

= − 2a
τ0(1 − e2)3/2r̃−β+5/2 I(ω)

× exp
(

−a2r̃2(f + ω)2 sin2 i
H(r)2

)
,

(20)

de
dt

= − 1
τ0

√
1 − e2r̃−β+5/2

J(ω)

× exp
(

−a2r̃2(f + ω)2 sin2 i
H(r)2

)
,

(21)

di
dt

= − sin i
τ0(1 − e2)3/2r̃−β+5/2K(ω)

× exp
(

−a2r̃2
(
f + ω

)2 sin2 i
H(r)2

)
,

(22)

where

I(ω)= r̃−α+1ũ
[
1 + 2e cosω + e2−(1 + e cosω)3/2 cos i

]
,

(23)

J(ω) = r̃−α+1ũ
[
2(e + cosω) −

(
cosω + cosω + e

1 + e cosω

)

× cos i
√
1 + e cosω

]
,

(24)

K(ω) = r̃−α+2ũ
√
1 + e cosω, (25)

and

r̃ = 1 − e2

1 + e cosω
, (26)

ũ =
√
2 + 3e cosω + e2 − 2(1 + e cosω)3/2 cos i.

(27)

For this derivation, �gas = �K, since the relative veloc-
ity is mainly determined by inclination.
In order to apply averaging over half an orbit around

the ascending node, ȧ, ė, and i̇ are integrated from f =
−ω − π/2 to f = −ω + π/2. Since ȧ, ė, and i̇ are Gaus-
sian functions as shown in Equations (20) to (22), they
are negligible for large (f + ω)2 and the integral is thus
approximated to be that over interval [−∞,∞] as follows:∫ −ω+π/2

−ω−π/2
exp

(
−a2r̃2(f + ω)2 sin2 i

H(r)2

)
df

�
∫ ∞

−∞
exp

(
−a2r̃2(f + ω)2 sin2 i

H(ar̃)2

)
d(f + ω),

(28)

= Hr̃−β+1/2√π

a sin i
, (29)

where H = H(a). Using this, Equations (20) to (22)
are integrated around the ascending node, which results
in the averaged variation rates of a, e, and i in half an
orbit.
The variation rates due to the penetration near the

descending node (f ≈ −ω − π ) are obtained in the
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same way as above. Summing up the changes at two
penetrations, the averaged changes are given by〈
da
dt

〉
high

=− a
τ0

H√
πa(1 − e2)2 sin i

[ I(ω)+I(ω+π)] , (30)

〈
de
dt

〉
high

= − 1
τ0

H
2
√

πa(1 − e2) sin i
[ J(ω) + J(ω + π)] ,

(31)

〈
di
dt

〉
high

= − 1
τ0

H
2
√

πa(1 − e2)2
[K(ω) + K(ω + π)] .

(32)

The validity of Equations (30) to (32) is shown in
Figures 2 and 3. These formulae are applicable for i >

2H/a.

Combined equations
The variation rates of a, e, and i in two limited cases for
i � H/a are derived above. The formulae for low e do not
well reproduce the variation rate in e ∼ 1, while high-e
formulae overestimate the values for low e. Combination
of low-eccentricity formulae of Equations (11) to (13) with
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Figure 3 Same as Figure 2, but for e = 0.9 and dotted lines given by
Equations (14) to (16).

the 1 − e2 dependence derived in Equations (14) to (16)
gives 〈

da
dt

〉
low

=
〈
da
dt

〉
1
(1 − e2)−α+β−3/2, (33)〈

de
dt

〉
low

=
〈
de
dt

〉
1
(1 − e2)−α+β−1/2, (34)〈

di
dt

〉
low

=
〈
di
dt

〉
1
(1 − e2)−α+β−1/2. (35)

These formulae are given in a very simple way, but they are
in good agreement with the results of orbital integration if
i < H/2a (see Figures 1, 2 and 3).
If H/2a < i < H/a, the variation rates of a, e, and

i are obtained from combination of the low-i formu-
lae of Equations (33) to (35) and the high-i formulae of
Equations (30) to (32).〈

da
dt

〉
mid

= MIN
(〈

da
dt

〉
low

,
〈
da
dt

〉
high

)
, (36)

〈
de
dt

〉
mid

= MIN
(〈

de
dt

〉
low

,
〈
de
dt

〉
high

)
, (37)

〈
di
dt

〉
mid

= MIN
(〈

di
dt

〉
low

,
〈
di
dt

〉
high

)
, (38)

where MIN(D,E) is the smaller of D and E.
In conclusion, the variation rates for a, e, and i are

approximately given by

• Equations (33) to (35) for i ≤ H/2a,
• Equations (36) to (38) for the intermediate inclination

(H/2a < i ≤ 2H/a),
• Equations (30) to (32) for i > 2H/a.

In the intermediate i, the formulae tend to deviate from
the right values but the accuracies are within a factor of 1.5
(see Figures 1, 2 and 3). It should be noted that these for-
mulae are not applicable to the case of i > π −H/a where
a body experiences gas drag with relative velocity ∼ vK
not only around the nodes but also for a whole orbit.

Application to captured satellites
Jovian planets have many satellites, which may be formed
in circumplanetary disks. Satellites close to planets mainly
have circular and coplanar orbits and may be formed in
the disks. However, distant satellites tend to have inclined
orbits. Here, I discuss the possibility of the capture of
satellites in the disks because the formulae for ȧ, ė, and
i̇ that I derive in this paper are applicable to bodies with
high e and i.
Orbital evolution of bodies with high e is predicted from

these analytic formulae. When a body is captured by gas
drag in a circumplanetary disk, e of the captured body is
approximately 1. For e > 0.9, |ė|/e and |ȧ|/a are very large.
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Variation rate of the pericenter distance q is much smaller
than those of a and e. Indeed, q̇ = (1 − e)ȧ − aė is esti-
mated to be zero in Equations (14) and (15). The result
is caused by the neglect of the higher terms of (1 − e2),
and these higher (1 − e2) terms give q̇/q a positive value
but q̇/q is much smaller than |ȧ|/a and |ė|/e. Therefore,
the orbital evolution occurs along with almost constant
q. With decreasing e, the orbital evolution changes. Since
|ȧ|/a becomes smaller than |ė|/e for e < 0.5 to 0.6, e
decreases with almost constant a. Once e � η, ȧ becomes
dominant for the orbital evolution; the body drifts to the
host planet in the timescale of τ0/2η2.
The bodies that will be satellites are temporally captured

by a planet at first (Suetsugu et al. 2011; Suetsugu and
Ohtsuki 2013), and the apocenter distances of the bodies
decrease to less than the Hill radius of the host planet dur-
ing the temporal capture of bodies (e.g., Fujita et al. 2013).
The change of orbital eccentricity in an orbit around the
host planet is given by �e ≈ 〈ė〉TK. The body is fully
captured by gas drag if fcap�e ∼ 1 during the temporal
capture, where fcap is the number of close encounters with
the planet during the temporal capture. Using the com-
bined formulae (Equations 30 to 38) at e = 1, �e is given
by C1(i)TK(q)/τ0(q), where TK(q) and τ0(q) are TK and
τ0 at the pericenter distance q, respectively. Therefore, the
necessary condition for capture is given by

ρ � 4 × 10−9C1(i)−1
( fcap
100

)−1 (
d

100 km

)

×
(

q
5.4 × 107 km

)−1 (
ρd

1 g cm−3

)
g cm−3,

(39)

where the interior density of bodies, ρd, is assumed to be
1 g cm−3, the Hill radius of Jupiter is applied to q, and
fcap is possibly approximately 100 (Suetsugu et al. 2011;
Suetsugu and Ohtsuki 2013). As shown in Figure 4, C1(i)
is mainly 0.1 to 10. This density is comparable to or less
than the ‘minimum mass subnebula’ disk that contains a
mass in solids equal to the mass of current Jovian satellites
and gas according to the solar composition (Canup and
Ward 2002). It should be noted that the temporally cap-
tured bodies are significantly affected by the central star.
However, the temporally captured bodies rotate around
the host planet, which means that the perturbation by the
central star is roughly canceled out in a temporally cap-
tured orbit. Therefore, the energy loss due to gas drag
estimated above may lead to bound orbits.
Inclination decreases during the full capture by gas

drag, which is estimated as C2(i) =[(〈i̇〉/i)(e/〈ė〉)]e=1 in
Figure 4. The initial inclination is damped during cap-
ture for 20°< i < 30°, while inclinations remain high after
capture for other i.
However, inclinations keep decreasing due to gas drag

after capture. A dissipation time of the disk, Tdisk, that

0 45 90 135 180
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C1(i)

C2(i)

i [deg]
Figure 4 C1(i) ≡ (�e)e=1 τ0(q)/TK(q) and C2(i) ≡ (〈̇i〉/i〈ė〉)e=1

derived from the combined equations (Equations 14 to 16).

is shorter than the damping time of inclination is thus
necessary for the formation of high-inclination satellites:

Tdisk � i/|〈i̇〉| ∼ fcapTK(q)/C2(i)

∼ 7 × 103
( fcap
100

) (
C2(i)
0.1

)−1 (
q

5.4 × 107 km

)3/2

×
( Mp
2 × 1030g

)−1/2
yr,

(40)

where Mp is the host planet mass. Since the dissipa-
tion processes of circumplanetary disks are not clear yet
(Fujii et al. 2014), it is difficult to discuss the dissipation
timescale. However, the dissipation timescale needed to
form high-inclination satellites seems too short. There-
fore, the capture of high-inclination satellites might have
occurred in the timescale estimated in Equation (40)
before the disk dissipation and the resulting satellites tend
to have retrograde orbits (see Figure 4).

Summary
I have investigated the time derivatives of orbital semi-
major axis a, eccentricity e, and inclination i of a body
orbiting in a gaseous disk.

• I have derived ȧ, ė, and i̇ for e > 0.9 and i < H/2a
(Equations 14 to 16) and for i > 2H/a (Equations 30
to 32). In addition, I have modified the formulae
derived by AHN; Equations (11) to (13) are valid for
e < 0.2 and i < H/2a, where H is the disk scale
height.

• I have combined the formulae in the limited cases
and have constructed approximate formulae for ȧ, ė,
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and i̇ (Equations 30 to 38), which are applicable
unless e ≥ 1 or i > π − H/a.

• Using these formulae, I have discussed the orbital
evolution of satellites captured by a circumplanetary
disk. High-inclination satellites are formed if the
bodies are captured in approximately 104 years
before the disk dissipation.
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