
Gillet et al. Earth, Planets and Space  (2015) 67:71 
DOI 10.1186/s40623-015-0225-z

FULL PAPER Open Access

Stochastic forecasting of the geomagnetic
field from the COV-OBS.x1 geomagnetic field
model, and candidate models for IGRF-12
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Abstract

We present the geomagnetic field model COV-OBS.x1, covering 1840 to 2020, from which have been derived
candidate models for the IGRF-12. Towards the most recent epochs, it is primarily constrained by first differences of
observatory annual means and measurements from the Oersted, Champ, and Swarm satellite missions. Stochastic
information derived from the temporal spectra of geomagnetic series is used to construct the a priorimodel
covariance matrix that complements the constraint brought by the data. This approach makes it possible the use of a
posteriorimodel errors, for instance, to measure the ‘observations’ uncertainties in data assimilation schemes for the
study of the outer core dynamics.
We also present and illustrate a stochastic algorithm designed to forecast the geomagnetic field. The radial field at the
outer core surface is advected by core motions governed by an auto-regressive process of order 1. This particular
choice is motivated by the slope observed for the power spectral density of geomagnetic series. Accounting for
time-correlated model errors (subgrid processes associated with the unresolved magnetic field) is made possible
thanks to the use of an augmented state ensemble Kalman filter algorithm. We show that the envelope of forecasts
includes the observed secular variation of the geomagnetic field over 5-year intervals, even in the case of rapid
changes. In a purpose of testing hypotheses about the core dynamics, this prototype method could be implemented
to build the ‘state zero’ of the ability to forecast the geomagnetic field, by measuring what can be predicted when no
deterministic physics is incorporated into the dynamical model.
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Background
The 12th generation of the IGRF has been computed from
several candidates by different institutes, all submitted
in September 2014 for evaluation by the IGRF working
group (Thébault et al. 2015). We present here our pro-
posed candidates for the main field (MF) DGRF model
in 2010, IGRF in 2015, and the time average secular vari-
ation (SV) prediction over 2015 to 2020, together with
their associated uncertainties. These are derived from
the COV-OBS.x1 field model and its posterior model
error covariance matrix. This model, that covers the
observatory era since 1840, is primarily constrained at
recent epochs by first differences of observatory annual
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means (OAM) and by satellite observations, including
data from the Swarm constellation (Olsen et al. 2013).
It differs from regularized field models in the sense that
the information contained into observations is comple-
mented with a stochastic a priori information derived
from temporal spectra of geomagnetic series, follow-
ing Gillet et al. (2013). The a priori information inte-
grated in the construction of COV-OBS-type models
makes it possible to use the model errors, as estimated
from the posterior covariance matrix, in data assimila-
tion algorithms designed to re-analyze or forecast the
outer core dynamics (Fournier et al. 2010). However,
being derived over a long time-span, it cannot contain
a detailed description of external magnetic signals (as in
the comprehensive approach, see Sabaka et al. 2015). This
leads to a compromise where external sources are han-
dled in a simple way in comparison with models built
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exclusively from the most recent observations (e.g., Lesur
et al. 2010; Olsen et al. 2014).
We also present a test SV prediction (time average over

2015 to 2020) based on a stochastic model of the flow
at the core-mantle boundary, using an augmented state
ensemble Kalman filter (EnKF, see Evensen 2003). This
prototypemethod is presented as a proof of concept study.
It should be considered as an attempt to produce a ‘state
zero’ of the ability to forecast the geomagnetic field, i.e.,
a measure of our ignorance when we have no determinis-
tic knowledge about the core physics and only have access
to statistical information. It may be used in the future for
the purpose of validating geomagnetic data assimilation
algorithms (Fournier et al. 2010) . Possibilities for future
improvements are listed in the ‘Conclusions’ section.

Methods
Derivation of the COV-OBS.x1 field model
Data selection
Our data selection process follows closely that used to
construct the original COV-OBS field model. Full details
can be found in Gillet et al. (2013) ; here, we only briefly
describe the new or updated aspects of the datasets.
Again, the most important data sources are satellite data,
as measured by high-precision magnetometers on low
Earth-orbiting missions (in particular, CHAMP, Oersted,
and Swarm) and observatory annual means.
Regarding satellite data, we used data from ESA’s Swarm

satellite trio (Friis-Christensen et al. 2006) and also re-
selected data from CHAMP, Oersted, and SAC-C, taking
as a basis the dataset employed for a recent update of
the CHAOS-4 field model (CHAOS-4plus_V4, Olsen et
al. 2014). Most importantly for our IGRF-12 candidate
models, the Swarm data used were ESA Level 1B oper-
ational data from 26th November 2013 to 17th August
2014 (baseline 0302 until 4th July 2014, baseline 0301
thereafter). Only quiet-time, night-side data were selected
according to the CHAOS-4 criteria, and vector data were
used only up to 55° degrees quasi-dipole latitude; at
high latitudes, scalar intensity data were used. Following
the procedure previously introduced for the COV-OBS
model, the CHAOS-4plus_V4 dataset was then sub-
sampled onto a grid of 72 cells in longitude by 36 cells in
cosine latitude, with each cell refilled each year using ran-
dom sampling from the data falling within that cell during
the year. This provided a geographical and temporal cov-
erage sufficient for studying the main field up to degree
14 and its secular variation up to degree 8, as required
for IGRF, while avoiding problems due to along-track cor-
related errors. Vector data were selected where possible
(preferentially CHAMP data when two star cameras were
available) or later from Swarm-B (which is slightly fur-
ther from the disturbing ionosphere than Swarm-A or
Swarm-C); otherwise, scalar data was used. In particular,

during the gap from the end of the CHAMP mission in
September 2010 and the start of the Swarm mission in
November 2013, only Oersted scalar data were available.
All satellite vector data were rotated from the instru-

ment frame to the North-East-Center frame using Euler
angles determined during the derivation of the CHAOS-
4plus_V4model (see also Finlay et al. 2015). The CHAOS-
4 estimate of the crustal field (for degrees 15 to 85) was
removed from all data, but no correction was applied
for the external field since, in COV-OBS type models, a
simple external field model is co-estimated. In addition,
following Finlay et al. (2015), all Swarm vector (VFM)
data are scaled so that the magnetic field norm obtained
from the vector data matches the intensity recorded by
the absolute (ASM) scalar field instrument. Note that it
is not the true vector field correction of the ASM-VFM
difference, which was not available at the time of model
construction. Data uncertainty estimates σ were allocated
as described in Gillet et al. (2013): for the scalar and
isotropic component of vector data, σ varies with geo-
magnetic latitude, taking its maximum value within 25°
of the geomagnetic pole and its minimum value within
45° of the geomagnetic equator, with a cosine taper for
the intervening 20°. The range for each dataset is given
in Table 1. Swarm data uncertainties are allocated in the
same manner as for the CHAMP data.
An update of the OAMdataset previously used to derive

the COV-OBS model was also carried out. This was based
on the worldwide OAM database from the World Data
Centre for Geomagnetism, BGS Edinburgh (pers. comm.
S. Macmillan, September 2014). It involved 13 new obser-
vatories compared to the previous dataset used by Gillet
et al. (2013) and comprises annual means up to 2013.5
where available. First differences of OAM thus provide
constraints on the secular variation up until 2013.0 that
are not sensitive to the crustal field. Uncertainty esti-
mates were re-calculated for each updated observatory
time series using a generalized cross validation approach
as in Bloxham and Jackson (1992), Gillet et al. (2013),
and Jackson et al. (2000). No corrections for external field
variations, beyond the averaging inherent in the annual
means, were applied.

Parameterization and prior information for the
COV-OBS.x1model
We refer to Gillet et al. (2013) for the details concerning
the construction of the COV-OBS field model. Here, we
recall only the main points. We use a spherical harmonic
expansion of the internal field up to degree N = 14. A
single coefficient, the axial dipole in geomagnetic dipole
coordinates, is used for the spherical harmonic expansion
of the external field (with a 20-nT background value). All
coefficients are projected onto order 4 cubic B-splines,
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Table 1 Errors statistics on F data for various satellites

Satellite Period No σ M∗ μ∗ M μ

Oersted 1999.2 to 2013.5 5580 5.5 to 8.5 0.95 0.03 5.58 0.10

CHAMP 2000.6 to 2010.7 4489 4 to 10 0.95 −0.05 8.39 −0.55

Sac-C 2001.1 to 2001.2 32 5.5 to 8.5 0.98 0.19 5.51 0.93

Swarm 2013.9 to 2014.6 574 4 to 10 0.65 −0.08 5.39 −0.88

Total 1999.2 to 2014.6 10675 0.93 −0.01 6.90 −0.23

Data numberNo, range for the prior error σ (nT), weighted L2 data misfitM∗ and bias μ∗ , unweighted L2 data misfitM and bias μ (in nT).

with knots every 2 years, spanning the period 1838 to
2022.
Themain difference with themore commonly employed

regularization procedures (penalizing second or third
time derivatives plus a spatial norm involving damping
parameters, see Finlay et al. 2012) is that we try to define
an a priori covariance matrix on the model coefficients
that is as realistic as possible, in order to be able to use
the information contained in the a posteriorimodel errors’
covariancematrix. For eachGauss coefficient gmn of degree
n and order m (and similarly for hmn ), we choose a time
covariance function:

Cmn (τ ) = E
(
gmn (t)gmn (t + τ)

)

= σg(n)2
(
1 + |τ |

τc(n)

)
exp

(
− |τ |

τc(n)

)
. (1)

τ is the time lag between two epochs, E(. . . ) means the
statistical expectation. For each coefficient, the a pri-
ori distribution is centered on zero. We consider that
coefficients of different orders or degrees are a priori
independent (hmn and gmn are also independent). For the
sake of simplicity, the Cmn do not vary with the spheri-
cal harmonic order m. The main field variances σg(n)2

are estimated from the variances of satellite MF model
coefficients in 2005, averaged over all orders. Given
Equation (1), the relevant time-scales are by definition
τc(n) = √

3σg(n)/σġ(n), with σġ(n) the secular varia-
tion variances, estimated from the variances of satellite SV
model coefficients in 2005, averaged over all orders (see
Gillet et al. 2013).
Equation (1) corresponds to stationary, auto-regressive

processes ϕ of order 2 governed by a stochastic differential
equation of the form (e.g. Yaglom 1962)

d2ϕ
dt2

+ 2
τc

dϕ

dt
+ ϕ

τ 2c
= ε(t) , (2)

with ε a white noise processa. This description is chosen
since it is consistent with the slope close to −4 found for
the power spectrum density (PSD) of observatory series at
periods from 5 to 70 years (De Santis et al. 2003). The con-
tinuation of such a slope for the PSD of the internal field at
periods shorter than a few years is unsure given the domi-
nation of the external signal towards high frequencies (see

Figure two in Ou et al. 2015), but there is no need either
for a steeper slope given the current estimate of themantle
conductivity (Velímský and Finlay 2011).
Since D, I, and F data are involved, model estimation

is a nonlinear optimization problem. We solve it with a
Newton algorithm, using a L2 measure of the data misfit
together with a rejection criterion. We first build, starting
from COV-OBS, an intermediate model rejecting data for
which the residual magnitude is above 10σe (σe is the a pri-
ori data error). Next, from this model we obtain within six
iterations (typically a few iterations are enough for con-
vergence) the COV-OBS.x1 field model together with its
a posteriori model errors’ covariance matrix using a 3σe
rejection criterion.

Stochastic forecast of the geomagnetic field
We present below how we derive our test SV model for
IGRF-12. It results from the integration of a stochas-
tic core flow model into an augmented state ensemble
Kalman filter (Evensen 2003).

Stochastic core flowmodeling
In the frozen-flux approximation, core surface motions
u are related to changes in the radial geomagnetic main
field Br through the diffusive-less induction equation at
the core-mantle boundary (e.g., Holme 2007):

∂Br
∂t

= −∇H · (uBr) . (3)

We consider the simplest stationary, stochastic model
compatible with the −4 slope obtained for the temporal
PSD of geomagnetic field series at ground-based observa-
tories for periods 5 ≤ T ≤ 70 years (De Santis et al. 2003).
It consists of an order 1 stochastic differential equation, of
the formb

∂u
∂t

+ u
τu

= z(t) , (4)

with z a white noise process (see Gillet et al. 2015).
Equation (4) defines the time correlation function for u:

ρu(τ ) = exp (−|τ |/τu) . (5)

For the sake of simplicity, a single value of τu = 100 years
is assumed for all the flow coefficients (see Gillet et al.
2015).
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We consider here flow models calculated under the
compressible quasi-geostrophic (QG) constraint, i.e., (Pais
and Jault 2008):

uφ(π − θ ,φ) = uφ(θ ,φ) , uθ (π − θ ,φ) = −uθ (θ ,φ) ,
∇H · (u cos θ) = 0 .

(6)

The flow model, decomposed into toroidal (tmn ) and
poloidal (smn ) components, is described up to spherical
harmonic degree Nu = 20. Relatively large flow variances
are assumed:

σu(n)2 = E(tmn
2
) = 102

(n + 1)(2n + 1)
T (n) , (7)

which is equivalent to assuming a flat CMB flow power
spectrum with a tapper T (n) = min

{
1, 1014−n} imposed

to ensure the convergence of the scheme. Under the con-
straint (6), variances for the poloidal coefficients derive
from those of the toroidal ones through the geostrophic
chains (Le Mouël et al. 1985). Variances for z are directly
deduced from those for u (e.g., Papoulis and Pillai 2002):

σz(n)2 = 2σu(n)2

τu
. (8)

From (8), we construct the covariance matrix Cz for z.
The linear set of constraints (6) is transformed into matrix
form, Lz = 0 (if z satisfies the constraints, then it is also
the case for u). We generate the random vectors z by mul-
tiplying the Choleski decomposition of μLTL + Cz (with
μ a very large scalar, we use μ = 109) to a random unit
vector normally distributed. Then, flow models u derived
from z satisfy the constraints (6) and present the variances
of Equation (7).

Augmented state ensemble Kalman filter
The main source of errors, when imaging the flow from
models of the secular variation ∂tBr using Equation (3),
comes from nonlinear interactions involving the unre-
solved parts of the flow and of the magnetic field
(Baerenzung et al. 2014; Eymin and Hulot 2005; Pais and
Jault 2008). The projection of Equation (3) onto large
length-scales (denoted by overlines) gives

∂Br
∂t

= −∇H · (
uBr

) + E , (9)

with E = −∇H · (
uB̃r

)
referred to as the SV model errors.

The unresolved field B̃r at small length-scales being cor-
related over decades, E is also correlated in time (Gillet et
al. 2015). We model it through the stochastic equation

∂E
∂t

+ E
τE

= Z(t) , (10)

with Z a white noise process. This defines the correlation
function for E , ρE (τ ) = exp (−|τ |/τE). This choice, with

τE = 10 years, builds on the investigations of Gillet et al.
(2015) who constructed flowmodels from COV-OBS over
1940 to 2010 (see their Figure one). Variances for the SV
model error coefficients, which depend only on the degree
n, are also estimated from their results.
Equations (4), (9), and (10) are time-stepped to forecast

the (augmented) model state:

xf =
[
Bf
r ,uf , E f

]T
. (11)

We use an Euler-Maruyama scheme (e.g., Kloeden
and Platen 1992) to time-step the stochastic equations.
We consider here as observations snapshots of the MF
and SV coefficients of the COV-OBS.x1 field model,
obtained from the continuous parameterization (through
B-splines) of the field model. Observations fall on a subset
of the discrete time-steps involved when integrating the
forward problem, so there is no need for interpolating in
time the stochastic model.
For the sake of simplicity, the MF and SV data error

covariance matrices RMF(t) and RSV (t) are here assumed
to be diagonal. Variances are obtained from the disper-
sion within 50 realizations of the COV-OBS.x1 model (an
ensemble large enough to give a converged estimate of
the diagonal elements), derived from the COV-OBS.x1
posterior model error covariance matrix (see Gillet et al.
2013). By ignoring cross-covariances, we avoid the issues
related to rank-deficient matrices. Predictions for geo-
magnetic field observations yo are related to the model
state x through the forward equation:

yo = H(x) + eo (12)

(eo the observation errors, H the forward operator, see
below). The state x(t) is obtained using an ensemble
Kalman filter (Evensen 2003), composed of a succession of
forecast and analysis steps:

xa = xf + Pf ∇HT
[
∇HPf ∇HT + R

]−1 (
yo − H(xf )

)
,

(13)

with ∇H the linear tangent of the forward operator and
R the observation error covariance matrix. The model
covariance matrix Pf is obtained from an ensemble of
K = 50 realizations of the model as:

Pf = 1
K − 1

K∑
k=1

(
xfk −

〈
xf

〉) (
xfk −

〈
xf

〉)T
, (14)

with
〈
xf

〉
the ensemble average of the models. Given the

small ensemble size compared to the model dimension,
cross-covariances in Pf are ignored to ensure a positive-
definite matrix (one may consider reduced rank filters or
localization techniques to address this issue, while con-
serving the information carried by off-diagonal elements).
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All quantities are represented in the spherical harmonic
domain.
We proceed to the analysis step every 5 years. Because

the forecast field Bf
r can deviate significantly from the

exact large-length-scale field Br after 5 years, each analysis
is proceeded in two steps (following Aubert 2014):

• we first perform an analysis of x1 = Br from K noisy
realizations of the COV-OBS.x1 field model, which
involves yo1 = Bo

r , R = RMF , and H1(x) = Br (i.e.,
∇H1 = IP the identity matrix of size P = N(N + 2));

• next, we compute an analysis of x2 = [u, E], with
yo2 = ∂tB

o
r , R = RSV and:

∇H2 =
[
A(Ba

r ) 0
0 IP

]
,

where A(Ba
r )u = −∇H · (

uBa
r
)
.

We perform an analysis of the observations every 5
years, starting from 1985 (except the last analysis, per-
formed in 2014.5 instead of 2015). Several (at least two)
analysis steps are required in order to eliminate the ini-
tial condition memory on the covariances that enter the
EnKF.

Results and discussion
The COV-OBS.x1 field model
Statistics on theCOV-OBS.x1 prediction errors
We now provide some statistics concerning the COV-
OBS.x1 misfit to observatory and satellite observations,
focusing on the period spanning 1990 to 2015.We present
in Figure 1 the time evolution of the OAM normal-
ized (i.e., weighted by the a priori data errors) data
misfit and bias, together with the number of available
(X,Y ,Z) observations (standing for the northward, east-
ward, and downward components). We observe no partic-
ular change in the statistics with the advent of continuous
satellite records in 1999, indicating a global compatibility
between ground-based and satellite data.
The unweighted and weighted misfit and bias for vari-

ous satellites are summarized in Table 1 for intensity data
and in Table 2 for vector data. (Bb,B⊥,B3) stand for the
magnetic field components rotated in the frame appropri-
ate for describing anisotropic attitude errors (see Holme
and Bloxham 1996; Olsen 2002),. For each of the satel-
lites, the weighted bias is reasonably close to zero when
a large enough number of data is available. Normalized
misfits are close to unity for all subsets of data, except
for Swarm F data for which a priori error estimates seem
to be over-estimated. We do not use any iterative scheme
to re-weight the observation errors (e.g., Olsen 2002).
Unweighted residuals to CHAMP F data are relatively
large because with our selection process (see the ‘Data

Figure 1 Time evolution of number of OAM data per year (bottom),
with associated weighted misfit (top) and bias (middle).

selection’ section), all these data are located at high geo-
magnetic latitudes (see also Figure 2). Large misfit values
obtained for Oersted B⊥ data are to be associated with
the availability of a single star camera to determine Euler
angles (seeOlsen et al. 2014).We show in Figure 3 the time
evolution of the satellite data weighted misfit and bias for
all three components of the field in the frame aligned with
the magnetic field vector. We see slightly larger residuals
during the most active solar periods (2002 to 2005) and
note some relatively large biases, for instance, on F data in
2002 and 2004.
The dependence of the unweighted residuals on the geo-

magnetic latitude is shown in Figure 2 for various satel-
lites. As expected, larger prediction errors on F data are
observed above 60° latitude. The envelope of the residuals
shows a minimum around 35° latitude and a local maxi-
mum at the equator for both F and Bb data for all three
satellites. This indicates some unmodelled contributions
from the ring current (see the discussion of Figure two in
Olsen 2002). It may at least partly be due to the inability
of our model to fit high-frequency external sources due to
the choice of a 2-year knot spacing also for the external
field. As in Olsen (2002), Bp Oersted data and B3 Oer-
sted and CHAMP data are associated with lower residuals
towards the geomagnetic equator. This trend is less obvi-
ous with Swarm data, which present on average lower
residuals for both scalar and vector data.
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Table 2 Errors statistics on vector data for various satellites

Satellite No M∗ μ∗ M μ

Bb B⊥ B3 Bb B⊥ B3 Bb B⊥ B3 Bb B⊥ B3

Oersted 3971 1.01 1.12 0.86 0.02 −0.08 0.01 5.54 8.38 4.92 0.11 −0.61 0.08

CHAMP 18507 1.13 0.94 1.24 0.00 0.05 −0.04 4.51 4.07 5.43 0.00 0.21 −0.18

Swarm 3935 1.04 0.88 1.19 −0.01 0.01 −0.06 4.16 3.82 5.15 −0.03 0.05 −0.26

Total 26413 1.10 0.96 1.18 0.00 0.02 −0.04 4.63 4.94 5.31 0.01 0.07 −0.15

Data numberNo, weighted L2 data misfitM∗ and bias μ∗ , unweighted L2 data misfitM and bias μ (in nT).

Description ofCOV-OBS.x1 and its uncertainties
We now provide details concerning the characteristics
of the COV-OBS.x1 field model. We present in Figure 4
MF and SV spectra at the Earth’s surface for epochs
2010, 2015, and 2020, for both the average model and

the estimated model errors (derived from the posterior
covariance matrix). Uncertainties are relatively larger at
higher degrees. Starting from epoch 2010 to 2015 then
2020, uncertainties gradually increase, illustrating the
weakening of the constraint from the data (and thus the

Figure 2 Prediction errors (nT) as function of geomagnetic latitude for intensity (F) and vector (Bb , B⊥ , B3) data. Oersted (black), CHAMP (red), Sac-C
(yellow), and Swarm (cyan) observations.
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Figure 3 Satellite data weighted misfit (top) and bias (bottom) as a function of time.

increasing importance of the a priori covariances) towards
the future. We also notice a significant decrease of the SV
power in 2020 compared to 2010 (see below).
We show in Figure 5 examples of the MF and SV COV-

OBS.x1 model coefficients, in comparison with those
from the CHAOS-4plus_v4 model (Olsen et al. 2014). A
reasonable agreement is found between the two models,
COV-OBS.x1 presenting sharper SV variations at high
degrees, due to the strong damping used when building
the CHAOS model. Indeed, regularized field models tend
to provide a smoothed estimate (i.e., weighted time aver-
age) of the SV coefficient series towards high degrees. An
almost constant bias of 4 nT between the two models is

found for coefficient g01 , COV-OBS.x1 showing more neg-
ative values. This may be associated with several factors,
among which (see Gillet et al. 2013) a possible aliasing in
time due to the projection of q01 onto splines with a 2-year
knot spacing, the use of a 20-nT background value for the
parameterization of q01, or the simple description of the
induced response to external fields (COV-OBS.x1 being
designed to model field changes on interannual periods
and longer, we simply assume an infinitely conducting
outer core, with no consideration of induced currents
in the mantle). Some rapid SV fluctuations observed on
several low-degree CHAOS-4plus_v4 coefficients are also
absent in COV-OBS.x1 (see, for instance, ġ12 ). These are
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Figure 4 MF and SV spectra for the COV-OBS.x1 model at Earth’s
surface. MF (top) and SV (bottom) spectra are shown for epochs 2010
(black), 2015 (green), and 2020 (red). Encircled lines represent the
spectra for the model errors.

possibly due to the filtering of rapid SV changes by the
projection onto splines with 2-year knot spacing and/or to
some leakage of high-frequency external sources into the
CHAOS internal model.
We obtain relatively larger error bars at higher degrees.

In comparison with the period prior to 1999, where
the SV is mainly constrained by OAM, we find smaller
uncertainties during the satellite era. These increase after
2014.6, when the control imposed by a priori covariances

gradually takes over from that of the observations. The
ensemble average SV prediction after 2014.6 becomes
almost flat. This behavior is in agreement with our
assumed prior information. Indeed, the correlation func-
tion in Equation (1) is that of an auto-regressive process of
order 2 for the MF, i.e., approximately a random walk for
the SV on short periods, characterized by an envelope of
possible solutions ∝ √

t.
We present in Figure 6 the prediction of an ensemble

of 20 realizations of the COV-OBS.x1 (internal plus exter-
nal) field model at several ground-based observatories.
These reflect the behavior described above on the field
coefficients. Note that because both internal and exter-
nal coefficients are projected onto splines, fluctuations at
periods much shorter than the (2-year) knot spacing are
not modeled, also after 2014.6. This is particularly obvious
on the X series, because (i) Y data are less affected by
auroral electrojets and the equatorial ring current and (ii)
the magnitude of decadal (mainly from internal origin)
SV changes is larger on Z than on X for the two sites
presented here.

Results of the MF and SV stochastic forecast
We now present predictions of the geomagnetic field
obtained with the stochastic core flow modeling and the
augmented state EnKF method. We show in Figure 7 SV
and MF spectra for the forecast and analysis errors in
2014.5. These provide ameasure of the forecast uncertain-
ties for the upcoming 5-year intervals. The analysis errors
being below the observation error, our algorithm produces
solutions able to fit the MF and SV data within the error
bars provided by COV-OBS.x1.
We present in Figure 8 some examples of MF and SV

coefficient predictions for several cycles of analysis and
forecast steps, spanning 1990 to 2020. Please note that the
stochastic forecast is discrete (contrary to the continuous
spline model COV-OBS.x1), with a time-step of 0.5 years
and that it has not been filtered in time. The dispersion
within the ensemble of stochastic SV forecasts is com-
parable to that obtained directly from the COV-OBS.x1
posterior covariance matrix (the latter being sometimes a
bit less, as for instance with ġ01 ).
For most coefficients, observations are accounted for

by one standard deviation σ f estimated from our ensem-
ble of forecasts. This indicates that the statistics of our
stochastic model are fairly realistic, although this diagnos-
tic is imperfect: COV-OBS.x1 coefficients at two different
epochs are not independent. Thus, the forecast at a given
epoch is not independent from the observation at this
epoch. To obtain an independent diagnostic, forecasts
produced from COV-OBS-type field models constructed
from datasets without data from the forecast era would
be required. For some coefficients, there exists a system-
atic bias (see, for instance, the positive trend taken by
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Figure 5 Example of COV-OBS.x1 MF (right) and SV (left) coefficient series (blue) and comparison with CHAOS4plus_v4 (red). From top to bottom:
g01, g

1
2, and g18. Error bars indicate ± one standard deviation of the COV-OBS.x1 model errors.

the average ḣ12 forecast) : even though the observed series
usually lies within the ensemble of forecast realizations,
it sometimes lies in an area of lower probability, as mea-
sured by the pdf of the forecast. Initial investigations of
this problem suggest it is not related to our choice of topo-
logical constraint (6) but probably to our use of stochastic

models for u and E that are centered around zero (we use
no background model).
We also make a comparison of the EnKF forecast with

the IGRF-11 predictions for 2010 to 2015 (Finlay et al.
2010). We find that the IGRF-11 SV predictions are
accounted for by one standard deviation σ f estimated
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Figure 6 SV predictions from 20 realizations of COV-OBS.x1 for the three geocentric components at selected observatories. These are for the
internal field only (red) and the internal plus external field (green). In black symbols are the first differences of observatory annual means. From top
to bottom: Kakioka, Hermanus, and Niemegk.

from our ensemble of forecasts. The results presented in
this section should be considered as a proof of concept
study; possible future applications or modifications are
presented in the ‘Conclusions’ section.

Our IGRF-12 candidate models
Candidate models for IGRF-12 have been derived from an
ensemble of K = 50 realizations of the COV-OBS.x1 MF

and SV field coefficients,
{
gk(t), ġk(t)

}
k∈[1,K ]. Our DGRF

MF candidate is the COV-OBS.x1 ensemble average MF
model evaluated in 2010:

gDGRF = 〈
g(2010)

〉
. (15)

The associated error bars are estimated as the dispersion
relative to the ensemble average within the K realizations
of the MF model:
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Figure 7 SV (bottom, units: log10, in nT/year) and MF (top, unit: log10,
in nT) spectra at Earth surface (2014.5). For the COV-OBS.x1
observations (green circled line) and observation errors (green line),
the ensemble average forecast (red stars dotted line, superimposed
to the spectrum of the observations), the ensemble average forecast
errors (dark red), the ensemble average analysis errors (cyan).
Superimposed (in dotted orange) to the SV spectra is that for the SV
model error E .

δgDGRF =
√√√√ 1

K

K∑
k=1

[
gk(2010) − 〈

g(2010)
〉]2 . (16)

Similarly, we estimate the IGRF MF candidate, and its
associated error bars, from the ensemble average of the
COV-OBS.x1 realizations, and the dispersion within the
ensemble, evaluated in 2015. Our IGRF SV candidate is
the COV-OBS.x1 ensemble average SVmodel, averaged in
time over 2015 to 2020:

ġIGRF = 1
2020 − 2015

∫ 2020

2015

〈
ġ
〉
(t)dt . (17)

The associated error bars are estimated as the dispersion
relative to the ensemble average within the K realizations
of the SV model:

δġIGRF =
√√√√ 1

K

K∑
k=1

[
1

2020 − 2015

∫ 2020

2015

(
ġk(t) − 〈

ġ
〉
(t)

)
dt

]2
.

(18)

Additionally, we presented a test IGRF SV candidate as
the ensemble average of SV forecast resulting from the
stochastic EnKF, averaged in time over 2015 to 2020 (its
associated error bars are estimated from the dispersion
relative to the ensemble average within the ensemble of
SV forecast realizations).

Conclusions
Beyond the ‘state zero’ forecast of the geomagnetic field
Forecasting the geomagnetic field requires, upon accurate
observations at or above the Earth’s surface, understand-
ing the physics occurring within the Earth’s outer core
over millennial to interannual time-scales. The knowledge
of the field behavior on long time-scales can be inferred
from field models derived from archeomagnetic and lake
sediment data bases (e.g., Korte et al. 2011; Licht et al.
2013; Nilsson et al. 2014; Pavón-Carrasco et al. 2014).
Since the turn-over time is of the order of a few hundreds
of years, the re-analysis of such models may help define a
background flow above which a flow perturbation could
be described (equivalent of a climatic mean in oceanic
studies). This may reduce systematic biases observed
in the SV predictions. One may think, for instance, of
the coupled-Earth dynamo scenario by Aubert et al.
(2013), where a slowly evolving westward drift naturally
arises from the coupling between the inner core and the
mantle.
In this study, the evolution of the geomagnetic field

is constrained by statistical properties inferred from the
temporal PSD recovered for magnetic series. There exists
dynamical interpretations associated with the observed
slopes of the spectra (Tanriverdi and Tilgner 2011) (see
also Buffett and Matsui 2015; Buffett et al. 2014; Olson
et al. 2012, for studies focused on the analysis of the
dipole moment in geodynamo simulations). Nevertheless,
the method derived in the ‘Stochastic forecast of the geo-
magnetic field’ section does not contain any deterministic
equation for advecting the magnetic field and the flow
inside the outer core. As a consequence, it provides an
envelope of possible states, and its average prediction
can only be marginally better than those obtained from
a stationary flow hypothesis (Beggan and Whaler 2009;
Waddington et al. 1995). To go further, still accounting for
unresolved processes, onemay introduce random forcings
such as those of Equations (4) and (10) into prognostic
models of the core dynamics used for the re-analysis of the
core state – for instance, into geodynamo (Fournier et al.
2011) or quasi-geostrophic (Canet et al. 2009) equations.
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Figure 8 Example of MF and SV Gauss coefficients forecast obtained with 50 realizations of the stochastic core flow model. From top to bottom: g01,
h12, and g34. In black are the ensemble of COV-OBS.x1 observations (one σ uncertainties are indicated by the grey shaded area), in red the stochastic
forecast realizations (one σ uncertainties are indicated by the red shaded area), in green the ensemble average COV-OBS.x1 model, and in blue the
ensemble average stochastic forecast. Superimposed on the MF series (cyan stars) are the IGRF-11 (Finlay et al. 2010) MF model in 2010 and its
prediction for 2015 (i.e., the MF2010 + 5×SV2010to2015). Superimposed on the SV series (cyan line) is the IGRF-11 average SV prediction for 2010 to
2015. These are taken from http://www.ngdc.noaa.gov/IAGA/vmod/igrf_old_models.html.
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With this in mind, the development of smoother algo-
rithms may also be envisioned (see Evensen and Van
Leeuwen 2000).
The model presented in this study aims to produce, as

far as possible, an unbiased estimate of the core state,
considering SV model error covariances via a stochastic
equation. To go further, we could reduce the importance
of SV model errors by co-estimating the unresolved field
at degrees n > 14 (and its associated uncertainties)
together with the field at large length-scales, follow-
ing Aubert (2014) who performed such a co-estimation
using the cross-covariances between Gauss coefficients
obtained from the forward integration of a geodynamo
simulation. Implementing more sophisticated stochas-
tic models for E can also be envisioned, given that the
Laplace correlation function associated with the AR-1
Equation (10) is only an approximation of that found by
Gillet et al. (2015). Finally, we used here the compress-
ible QG constraint on core surface flows. Any possible
topological constraint may be considered, and the algo-
rithm presented above could be used to test the ability
of each hypothesis to predict the observed SV within re-
analysis studies. With the prototype algorithm illustrated
above, one could, for instance, explore the hypothesis of
a stratified layer at the top of the outer core, through its
implications on the structure in space and time of core
surface flow (Buffett 2014).

Endnotes
a Note that Equation (2) differs from Equation (twelve)

in Gillet et al. (2013). Both define processes with the
same auto-covariance function (1), but their Equation
(twelve), contrary to our Equation (2), corresponds to a
non-stationary process. This does not affects their results
that have been computed from the covariance function
and not the stochastic equation.

b By replacing in Equation (4) the scalar quantity 1/τu
by a matrix homogeneous to a frequency, one could
derive more complex stochastic models still compatible
with the −4 slope for the PSD of observatory series.
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