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Abstract

We discuss different ways to characterize a moment tensor associated with an actual volume change of �VC , which
has been represented in terms of either the stress glut or the corresponding stress-free volume change �VT. Eshelby’s
virtual operation provides a conceptual model relating �VC to �VT and the stress glut, where non-elastic processes
such as phase transitions allow �VT to be introduced and subsequent elastic deformation of −�VT is assumed to
produce the stress glut. While it is true that �VT correctly represents the moment tensor of an actual volume source
with volume change �VC , an explanation as to why such an operation relating �VC to �VT exists has not previously
been given.
This study presents a comprehensive explanation of the relationship between �VC and �VT based on the
representation theorem. The displacement field is represented using Green’s function, which consists of two integrals
over the source surface: one for displacement and the other for traction. Both integrals are necessary for representing
volumetric sources, whereas the representation of seismic faults includes only the first term, as the second integral
over the two adjacent fault surfaces, across which the traction balances, always vanishes. Therefore, in a seismological
framework, the contribution from the second term should be included as an additional surface displacement.
We show that the seismic moment tensor of a volume source is directly obtained from the actual state of the
displacement and stress at the source without considering any virtual non-elastic operations. A purely mathematical
procedure based on the representation theorem enables us to specify the additional imaginary displacement
necessary for representing a volume source only by the displacement term, which links �VC to �VT. It also specifies
the additional imaginary stress necessary for representing a moment tensor solely by the traction term, which gives
the “stress glut.” The imaginary displacement-stress approach clarifies the mathematical background to the classical
theory.
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Background
A moment tensor inversion is a powerful tool for
extracting source information from seismic and geode-
tic observations. Volumetric changes are often related to
the movement and expansion of fluid (i.e., magma and
gas) at active volcanoes (Chouet 1996; Nishimura et al.
2000; Kazahaya et al. 2011; Maeda and Takeo 2011) or to
underground explosions (Richards and Kim 2005). Esti-
mating the amount of fluidmass involved in a deformation
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event is a key for understanding volcanic processes. How-
ever, the interpretation of a moment tensor in terms of
the actual deformation of the source region is non-unique
(Backus and Mulcahy 1976; Wielandt 2003; Ampuero and
Dahlen 2005). This uncertainty is more significant in the
case of a source involving volumetric change and is there-
fore a critical issue in studies of volcanoes (Amoruso and
Crescentini 2009; Kumagai et al. 2014;Mizuno et al. 2015).
Because of the uncertainty, the source process cannot
be directly determined by the seismic source inversion.
Alternatively, fluid mechanical models for the source pro-
cess can be compared with the seismic observation, if the
geometry, volume change, and stress change in the source
are linked to a seismic moment.
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The current way of connecting a source volume change
to a seismic moment tensor is not straightforward. The
seismic moment of a spherical source has been defined in
two different ways (Müller 2001; Richards and Kim 2005):

M0 = (λ + 2μ)�VC , (1)

M0 = (λ + 2μ/3)�VT , (2)

where λ and μ are Lamé’s constants and �VC and
�VT are two different definitions of a source volume
change. �VT is directly obtained under the assumption
of a moment tensor for an internal surface character-
ized by a displacement gap, and �VC is the actual vol-
ume change at the source. The difference between �VT

and �VC has been discussed by various authors; for
a review, see Kumagai et al. (2014). The two volumes
are connected with each other through Eshelby’s virtual
operation approach (Eshelby 1957) by Aki and Richards
(1980, 2002). Figure 1 summarizes this operation. First,
the source material is separated by cutting along a closed
surface that surrounds the source (Fig. 1a). Then, it is
removed from the matrix and undergoes an inelastic
(stress-free) deformation by �VT (Fig. 1b). The inelasti-
cally deformed source volume is elastically strained and
pushed back to its original place: this will generate an
additional stress field �σT in the source volume and
an additional traction is applied on its surface to hold
its shape (Fig. 1c). Finally, the source material is welded
across the cut surface, and the applied traction is released.
Both the source and matrix deform elastically, which
results in the source volume change of �VC with the
elastic stress change from �σT to �σC (Fig. 1d).
Eshelby’s approach was originally introduced to obtain

the equivalent body force, or the “stress glut,” in the
moment tensor representation of a volume source. The
stress glut is defined as the difference between the true
physical stress and the model stress (Backus and Mulcahy
1976) and has been shown to be equivalent to the
moment-density tensor (Backus and Mulcahy 1976; Aki
and Richards 1980). In Eshelby’s model, the stress glut
is given by the stress �σT in the source material after
pushed back into its original space under elastic strain
(Fig. 1c). Consequently, writing the true stress as �σC

(Fig. 1d), the model stress (Backus and Mulcahy 1976)
is −(�σT −�σC), which is tensional in the case shown in
Fig. 1.
The actual changes (i.e., �VC and the actual pressure

change) are relevant in the fluid mechanical modeling for
the source, while the moment tensor representation is
directly linked to the effective values (i.e., �VT and the
stress glut). Defining the relationship between the actual
changes and the moment tensor representation is known
to be a potentially confusing problem (Aki and Richards
1980; Aki and Richards 2002). The moment tensor rep-
resentation of a spherical volume source in terms of the
stress glut, which in this isotropic case is the pressure
glut �p, was originally given by equation 3.34 of Aki and
Richards (1980) as

M = 4π
3
a3

⎛
⎝ �p 0 0

0 �p 0
0 0 �p

⎞
⎠ , (3)

along with the remark “in the above equation, �p should
not be confused with the pressure jump at the spher-
ical surface at radius a.” The expression given in (3)
was replaced in the second edition of their textbook
(equation. 3.35 in Aki and Richards, 2002) by

M=
⎛
⎝

(
λ + 2

3μ
)
�VT 0 0

0
(
λ + 2

3μ
)
�VT 0

0 0
(
λ + 2

3μ
)
�VT

⎞
⎠ ,

(4)

with the comment that “in the above equation, �VT is
the stress-free volume change and should not be confused
with the volume change�VC of a confined source region.”
It is commonly accepted that the volume change directly

related to the isotropic part (i.e., the trace) of the moment
tensor is �VT , given by the equation

tr(M) = 3
(

λ + 2
3
μ

)
�VT , (5)

and that �VC can be obtained from �VT by Eshelby’s
operation. However, it can be difficult to understand
the mathematical reasoning underpinning this calcula-
tion, because Eshelby’s operation is entirely conceptual

Fig. 1 Schematic illustration of Eshelby’s operation, which consists of cutting (a→b), a stress-free transformation by �VT (b), elastic straining (c),
and welding (d). The width of the mesh in the inner body indicates the extent of elastic compression or expansion, i.e., a finer or coarser mesh is
associated with a higher or lower pressure, respectively
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and assumes specific processes for the stress-free volume
change, such as phase transition.
Richards and Kim (2005) noted this problem for the case

of the moment tensor representation of an underground
explosion. The use of the definition of �VT may appeal,
since it is associated with a stress-free strain that phe-
nomenologically appears to describe the consequences of
the explosion in an unconfined volume, which is deter-
mined by the explosion yield. In reality, seismic moments
differ for explosions having the same charge size placed at
different depths. Therefore, �VT is not literally a stress-
free volume change of the charge excited by the explosion
(Richards and Kim 2005). Kumagai et al. (2014) made
comprehensive case studies of isotropic volume sources,
finding different forms of the relation between �VT and
the source volume change �VC depending on the source
material and geometry.
Here, we present a straightforward explanation of the

relationships among �VT , �VC , the stress glut, and the
actual stress for a general volume source based solely on
the representation theorem, which in turn yields the dis-
placement field using Green’s function. In the absence of
body forces, the displacement field consists of two inte-
grals over the source surface: one for surface displacement
and the other for surface traction. First, we demonstrate
that in contrast to the representation of earthquake shear
faulting, the implicit assumption of omitting the surface
traction integral, made while deriving the moment tensor,
does not hold for a volume source. Second, we introduce
a mathematical procedure developed in the boundary-
integral equation methods (Altiero and Gavazza 1980)
for representing a volume source, which adequately con-
siders the traction contribution. The traction correction
turns out to be an additional surface displacement in the
other surface integral term, causing an “imaginary volume
change.” We therefore propose an alternative definition
of �VT as the sum of �VC and this imaginary volume
change.

Method
A conventional moment tensor representation in
seismology
We consider an elastic body with volume Vex and external
surface S and with internal surface � of a volume source.
The elastic deformation field inVex is produced by the dis-
placement and traction exerted on the surfaces � and S in
the case of a no-body force. The representation theorem
gives an expression for the displacement uk in Vex (Aki
and Richards, 1980, equation 2.41):

uk(x, t) = −
∫

�+S
cijpquinj ∗Gkp,qd� +

∫
�+S

Ti ∗ Gkid�,

(6)

where Gkp is the elastic Green’s function in the medium
without the internal surface �, Gkp,q is its spatial deriva-
tive in the qth direction, cijpq is the elastic constant tensor,
Ti is the traction, and nj is a unit vector normal to the
surface and directed outwards from Vex. It is noted that
nj on the internal surface � is customarily taken out-
wards from Vex. The surface integral on S in (6) can be
eliminated if we assume that both ui and Gki satisfy the
same homogeneous boundary conditions on S; otherwise,
we have to exactly evaluate the integral on S (Kame and
Kusakabe 2012). We note that f ∗ g = ∫ t

0 f (τ )g(t− τ)dτ =∫ t
0 f (t−τ)g(τ )dτ = ∫ ∞

−∞ f (τ )g(t−τ)dτ if f (t) and g(t) are
zero for t < 0 (Aki and Richards 1980). Under the assump-
tion of homogeneous boundary conditions on S, the first
and second terms of (6) represent contributions due to the
displacement and traction on �, respectively.
In the case of a seismic source due to faulting, � con-

sists of two adjacent surfaces, labeled �+ and �−, which
are the opposing faces of the fault, in which case (6) is
rewritten as

uk(x, t) =
∫

�

cijpq[ui] nj ∗ Gkp,qd� −
∫

�

[Ti] ∗Gkid�,

(7)

where square brackets are used to denote the difference
between the enclosed values on �+ and �− and the
surface-normal vector on � is taken in the direction from
�− to �+ following the convention adopted by Aki and
Richards (1980). It is the same direction as the normal vec-
tor on �−, that is, opposite to the original surface-normal
vector on �. That is why Eq. (7) has an opposite sign from
(6). The continuity of traction across the fault surfaces
means that [Ti] is always zero; consequently, (7) reduces to

uk(x, t) =
∫

�

cijpq[ui] nj ∗ Gkp,qd�, (8)

and the moment-density tensormpq is defined in terms of
the displacement discontinuity as

mpq = cijpq[ui] nj. (9)

When a fault plane � is effectively regarded as a point
source, (8) is approximated by

uk(x, t) = Mpq ∗ Gkp,q, (10)

Mpq =
∫

�

mpqd�, (11)

whereMpq is the moment tensor.
The elastic tensor for an isotropic body is

cijpq = λδijδpq + μ(δipδjq + δiqδjp), (12)

where λ and μ are Lamé parameters and δij is the Kro-
necker symbol. Equation (12) reduces (9) to

mpq = λ[ui] niδpq + μ([uq] np + [up]nq). (13)
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Volumetric source representations in seismology
The preceding discussion is not limited to a shear fault
but includes opening on the fault, i.e., a displacement dis-
continuity oriented perpendicular to the fault surface. Let
us now consider the case where a surface � = �+ + �−
lies on the x3 = 0 plane and the displacement discon-
tinuity has a uniform non-zero component solely in the
x3-direction perpendicular to �. This source corresponds
to an opening crack, and it represents a typical example of
a volume source. For (11), the moment tensor represen-
tation of a thin crack with an opening dislocation in an
isotropic medium is

M =
⎛
⎝ λ 0 0

0 λ 0
0 0 λ + 2μ

⎞
⎠ [u3]�. (14)

An isotropic volume source may be represented by
three perpendicular planar cracks with equal area � and
opening [u], given

M =
⎛
⎝ λ + 2

3μ 0 0
0 λ + 2

3μ 0
0 0 λ + 2

3μ

⎞
⎠ (3[u]�). (15)

Note that (15) corresponds to (4), if the total opening
volume 3[u]� is the stress-free volume change �VT .
For the isotropic moment tensor in (15), the 3D static

Green’s function directly gives the radial displacement
field ur(x) = uisor (r) as a function of distance r from the
center of the cracks as follows (Kumagai et al. 2014):

uisor (r) = λ + 2
3μ

λ + 2μ
�VT

4πr2
, (16)

noting that only a radial displacement exists. On the other
hand, the analytic displacement field, as obtained for a
spherically expanding volume source by Kumagai et al.
(2014), is

usolr = �VC

4πr2
, (17)

where �VC is the actual volume change in the source
region.
If �VT in (16) is equal to the spherical volume change

�VC in (17), the radial displacement uisor in (16) is smaller
than usolr in (17) and the difference is

usolr − uisor =
4
3μ

λ + 2μ
�VC

4πr2
. (18)

Both displacements are identical if we assume

�VT = λ + 2μ
λ + 2

3μ
�VC , (19)

and this adjustment factor is the same as that convention-
ally adopted. In the literature, the adjustment has been
explained with reference to Eshelby’s operation (Eshelby
1957) assuming �VT is the stress-free volume change

(Aki and Richards 2002). Müller (2001) considered (15)
to be true when the isotropic source consists of opening
cracks that are homogeneously distributed over the sur-
face of a sphere, in which case �VT is the total opening
while �VC is the fraction that opens outward. Although
it has been acknowledged that the adjustment for a spher-
ical volumetric source is correct, a method for obtaining
the representation from the seismological moment tensor
has not been clearly explained for the general case.
Here, we note that the difference in (19) originates from

the second term of (6) that is not included for seismic fault
sources. The first and second surface integral terms of (6)
respectively give

udisr = λ + 2
3μ

λ + 2μ
�VC

4πr2
, (20)

utrar =
4
3μ

λ + 2μ
�VC

4πr2
. (21)

By summing ur = udisr +utrar , we directly obtain the ana-
lytical solution (17) without adjusting the volume change;
the mathematical procedure required to obtain this result
is given in the Appendix.
Although both terms of (6) are necessary to fully repre-

sent the displacement field with the true boundary condi-
tions, it is commonly inconvenient to include two terms in
wave analyses. In the following section, we show that using
the stress-free volume change, or the stress glut, provides
a way of combining the two terms into a single term.

Volume-source representations based on the
representation theorem
We consider the displacement field due to the expansion
of a source cavity bounded by � within a surrounding
elastic body (see Fig. 3a, b). The displacement field in the
elastic body is then represented only by integration on �

as per (6) with the specified Green’s function, regardless
of the material inside the source body. Here, it is assumed
that the displacement and the traction on � are specified.
Note that these quantities are not independent but should
obey the elastic equations.
First, we replace the material inside the cavity with

an elastic body Vin with surface �in that has the same
mechanical properties as the surrounding elastic body and
the same shape as the cavity. It is assumed that this pro-
cedure does not change the boundary conditions on � so
that the deformation field un is unchanged. The normal
vector for�in is directed outwards with respect to Vin, the
opposite direction to that for �. The representation (6)
may include the surface integral on �in:

uk(x, t) = −
∫

�+�in
cijpquinj ∗ Gkp,qd� +

∫
�+�in

Ti ∗ Gkid�.

(22)
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Because Vin is composed of the same elastic mate-
rial as the external body, the elastic deformation field in
Vin, including the traction and displacement relation on
�in, satisfies the same elastic equations so that the same
Green’s function is applicable on �in. Moreover, Betti’s
theorem guarantees that

−
∫

�in
cijpquinj ∗ Gkp,qd� +

∫
�in

Ti ∗ Gkid� = 0, (23)

outside Vin. Because � and �in are the same, but oppos-
ing, faces of the cavity surface, the integrals on the two
surfaces are combined in the same way as (7), giving

uk(x, t) =
∫

�

cijpq[ui] nj ∗ Gkp,qd� −
∫

�

[Ti] ∗Gkid�,

(24)

where the direction of the surface-normal vector on � is
replaced by n−

j that is directed from �in to � (Fig. 2) fol-
lowing Aki and Richards (1980) as in Eq. (7). Adequately
taking [ui] and [Ti] allows the displacement field to be
represented either by the first or the second integral term
on the right-hand side of Eq. (24), which is the so-called
indirect boundary-integral equation method (Altiero and
Gavazza 1980).
When the body Vin is subject to the same surface trac-

tion TC
i on its surface �in as that on �, the term with [Ti]

vanishes in (24) and we obtain the same representation as
(8). The elastic displacement on�in is not the same as that
on� but is the value bringingVin from zero traction to the
given traction by elastic deformation (Fig. 3c). Therefore,
the displacement discontinuity [ui] in (8) is interpreted
as the difference between the actual displacement uCi on
the cavity wall and the imaginary displacement uIi on �in
required to replace the traction term. It is also noted that
[ui] corresponds to the difference between the surface of
Vin in the stress-free condition and the original size of
the cavity and is therefore equivalent to the displacement
in the stress-free transformation of Eshelby’s operation
(Fig. 1c).

Alternatively, we may eliminate the displacement term
and keep the traction term in (24). In this case, we replace
the material inside the cavity with an elastic body Vin with
surface�in that has the samemechanical properties as the
surrounding elastic body and the same shape as the cav-
ity. The surface displacement on �in is assumed to be uCi
as that on � (Fig. 3d). The deformation of Vin under this
boundary condition should satisfy the elastic equations
as in the previous case. The surface traction on �in is
then different from TC

i . Rather than (8), we may instead
represent the solution by

uk(x, t) = −
∫

�

[Ti] ∗Gkid�. (25)

The stress discontinuity [Ti] is the difference between
the actual traction on the cavity wallTC

i and the imaginary
traction TI

i that is required to replace the displacement
term in (24). Because TC

i − TI
i = TC

i + (−TI
i ), [Ti] has

an additional traction −TI
i that is equivalent to the defor-

mation of Vin by −uCi . Therefore, [Ti] corresponds to the
traction of the state shown in Fig. 1c in Eshelby’s opera-
tion. Putting [Ti]= −(�τijnj), Eq. (25) is equivalent with
equation (3.26) of Aki and Richards (1980) with�τij being
the stress glut of Backus and Mulcahy (1976).
Our interpretation can be illustrated well using a sim-

ple analytic problem. Consider the case where the cavity
is a sphere with radius R and volume V = 4

3πR
3, filled by

fluid with an overpressure �PC . The corresponding sur-
face displacement of the cavity is directed radially outward
with uCr = R�PC/(4μ), and the volume change is �VC =
V�PC/( 43μ) (Kumagai et al. 2014). On the other hand, the
displacement on �in for the same overpressure is directed
radially inward with 4πR2uIr = −V�PC/(λ + 2

3μ), giving
uIr = −4μuCr /(3λ+2μ). The displacement gap used in the
moment tensor is then

[ur]= uCr − uIr = λ + 2μ
λ + 2

3μ
uCr . (26)

Fig. 2 A schematic illustration of the normal vectors. n+
j and n−

j on the internal surfaces � and �in , respectively. Vex is the elastic medium of
interest, and Vin is the source volume
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Fig. 3 Schematic illustration of our new interpretation: expansion from a to b by �VC due to the overpressure �PC in the fluid cavity bounded by
� drives the process. c The internal fluid is replaced by an elastic body Vin consisting of the same elastic material as the external medium. Vin has the
same traction on �in as the actual overpressure. The corresponding displacement on �in is uIi , which is different from the actual displacement on �.
d The internal fluid is replaced by an elastic body Vin consisting of the same elastic material as the external medium. A displacement identical to the
actual displacement on � (b) is applied to Vin. The pressure change in V ′

in is then �PI , which differs from �PC

If we assume [ur] as the surface displacement, the cor-
responding volume change is

4πR2[ur]= λ + 2μ
λ + 2

3μ
�VC , (27)

which is equal to Eshelby’s stress-free volume change
�VT in (19). Alternatively, if the same outward displace-
ment uCr is applied to the inner sphere surface �in, the
corresponding stress field in Vin is a negative pressure
defined as

�PI = −
(

λ + 2
3
μ

)
3uCr
R

= −
(

λ + 2
3
μ

)
�VC

V
,

(28)

and therefore,

[Ti] =
(
�PC − �PI

)
ni = (λ + 2μ)

�VC

V
ni =

(
λ + 2

3
μ

)
�VT

V
ni.

(29)

Results and discussion
A unified explanation
Here, we have shown the difference of the effective
changes (i.e., �VT and the stress glut) from the actual
changes (i.e., �VC and the actual pressure change) as a
consequence of reducing the two surface integral terms
in the representation (6) to one term as either (8) or
(25). This reduction is done by replacing the surface dis-
placement with uCi − uIi or replacing the surface traction
with TC

i −TI
i , respectively, which has already been shown

by Altiero and Gavazza (1980) as the indirect boundary-
integral methods. Here, we make a link between their
formulation and the moment tensor representation of a
volume source. Given that the stress giving the traction
TC
i − TI

i corresponds to the so-called stress glut, we pro-
pose calling uCi − uIi the “displacement glut,” which is
equivalent to Eshelby’s stress-free transformation of Aki
and Richards (2002) and to the spherical-crack opening
of Müller (2001). We consider the term “displacement
glut” to be more appropriate because it is not linked to
specific processes such as the stress-free transformation
or spherical-crack models and because it makes a logical
counterpart to the stress glut. Moreover, the representa-
tion in terms of the displacement glut, rather than stress
glut, is more useful because the seismic moment ten-
sor inversion framework has been developed in the form
of (8).
The present work generalizes the conclusion of Kumagai

et al. (2014) for a bimaterial spherical source. In calcu-
lating the displacement glut or stress glut, it should be
assumed that the internal body has the same elastic prop-
erties as the external body, regardless of the actual internal
material. This understanding does not necessarily help in
the interpretation of a moment tensor in terms of the
physical source process, but it is useful for forward mod-
eling from the source process to the equivalent moment
tensor. When a source geometry is defined and TC

i or uCi
is specified on the source surface, uIi or TI

i is obtained
by solving the elastic equations for a body having the
same geometry, the same traction, or displacement on
its surface, and the same mechanical properties as those
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of the external elastic body. This calculation can be per-
formed for arbitrary geometries. The distribution of [ui]
on the surface can then be obtained, and the moment-
density tensor calculated by (9). Finally, the moment
tensor of the equivalent point source is obtained by inte-
grating themoment-density tensor over the source surface
as in (11). This calculation can be performed using either
numerical or analytical methods.

Conclusion
This work presents a comprehensive explanation as to
why �VT , rather than �VC , appears in the moment
tensor representation of a volumetric source. We math-
ematically redefine �VT as the result of a displacement
glut, instead of Eshelby’s stress-free volume change con-
cept. The difference between the displacement glut and
the actual displacement of the source surface replaces the
contribution of the traction surface integral term in the
representation theorem, which has not previously been
used in seismology.With this understanding, we canmore
confidently link the moment tensor representation with
fluid mechanical modeling.

Appendix
Representation theorem for a spherical displacement field
We consider the static displacement field due to the
expansion of a spherical cavity in an unbounded, isotropic,
and homogeneous medium. The initial radius of the
sphere is R. The origin of the spatial coordinate system is
defined as the center of the sphere.
Green’s function depends on the distance L between the

source at ξ and the observation point at x:

Gkp(L) = 1
8πμ

(
δkp

∂2

∂xj∂xj
− �

∂2

∂xk∂xp

)
L = 1

8πμ
Dx
kpL,

(30)

Dx
kp = δkp

∂2

∂xi∂xi
− �

∂2

∂xk∂xp
, (31)

� = λ + μ

λ + 2μ
, (32)

L = |x − ξ |. (33)

In the static case, the representation given by (6) can be
rewritten:

uk(x) = −
∫

�

cijpqui(ξ)nj(ξ)
∂Gkp(L)

∂ξq
d�(ξ)

+
∫

�

Ti(ξ)Gki(L)d�(ξ).
(34)

For clarity, in the following, we omit the dependence on
the spatial variables where they are obvious from the
context.

The first term is rewritten using (12) and separated into
an isotropic part uKuk and a non-isotropic part uμu

k :

uKuk = −K
∫

�

uini
∂Gkp
∂ξp

d�,K = λ + 2
3
μ, (35)

uμu
k = −μ

∫
�

[
uinj

{
∂Gki
∂ξj

+ ∂Gkj

∂ξi

}
− 2

3
uini

∂Gkp
∂ξp

]
d�.

(36)

The second term is represented by uTk :

uTk =
∫

�

TiGkid�(ξ). (37)

Let both the displacement and traction on the sphere
surface � be directed radially outwards with magnitude
�R and �P, respectively:

ui(ξ) = −�Rni, (38)

Ti(ξ) = −�Pni, (39)

where ni is the unit vector normal to the surface, pointing
outwards from the elastic medium, i.e., into the sphere.
We note that

�VC = 4πR2�R (40)

and, according to the relation of linear elasticity,

�P = 4μ
�R
R

. (41)

Using the boundary conditions (38) and (39), Eqs. (35)–
(37) are rewritten as

uKuk = K�R
∫

�

∂Gkp
∂ξp

d�, (42)

uμu
k = 2μ�R

∫
�

[
ninj

∂Gki
∂ξj

− 1
3

∂Gkp
∂ξp

]
d�, (43)

uTk = −�P
∫

�

niGkid�. (44)

The traction term
We first evaluate (44) using Green’s function (30):

uTk = − �P
8πμ

∫
�

ni
(

δki
∂2

∂ξj∂ξj
− �

∂2

∂ξk∂ξi

)
Ld�

= − �P
8πμ

Dx
ki

∫
�

niLd�,
(45)

where we have used the relation ∂L/∂ξk = −∂L/∂xk
according to (33). Replacing the surface-normal vector ni
by the opposite vector νi = −ni directed outwards from
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the sphere, the surface integral in (45) is converted into a
volume integral over the sphere Vs, becoming

uTk = �P
8πμ

Dx
ki

∫
�

νiLd� = �P
8πμ

Dx
ki

∫
Vs

∂

∂ξi
LdVs

= − �P
8πμ

Dx
ki

∂

∂xi

∫
Vs

LdVs.

(46)

Because the displacement field is spherically symmetric
and non-directional, we may assume x = (0, 0, x) (x > 0).
Representing ξ in a polar coordinate system, we have L =√
x2 + ξ2 − 2xξ cos θ and dV = ξ2dξ sin θdθdφ and

uTk = − �P
8πμ

Dx
ki

∂

∂xi

∫ R

0
dξ

∫ 2π

0
dφ

∫ π

o

× dθ sin θ
√
x2 + ξ2 − 2xξ cos θ .

(47)

Evaluating this integral, we obtain

uTk = −�P
2μ

Dx
ki

∂

∂xi

(
R3

3
x + 2R5

15
1
x

)
. (48)

Recalling that x represents |x| = r and the definition of
Dx from (31), we have

Dx
ki

∂

∂xi
= (1 − �)

∂

∂xk
∂2

∂xi∂xi
, (49)

∂2

∂xi∂xi
1
r

= ∂

∂xi

(
− xi
r3

)
= − 3

r3
+ 3

xixi
r5

= 0, (50)

∂

∂xk
∂2

∂xi∂xi
r = ∂

∂xk
∂

∂xi

(xi
r

)
= ∂

∂xk

(
2
r

)
= − 2

r2
xk
r
.

(51)

Using (32) and (39), finally, we obtain the radial displace-
ment in the same form as (21)

uTk =
4
3μ

λ + 2μ
�VC

4πr2
xk
r
. (52)

where xk/r is a unit vector in the radial direction.

The isotropic part of the displacement term
Equation (42) is calculated in a similar way as in the
previous section:

uKuk = K�R
∫

�

∂Gkp
∂ξp

d� = −K�R
8πμ

Dx
kp

∂

∂xp

∫
�

Ld�

= −λ�R
8πμ

(1 − �)
∂

∂xk
∂2

∂xp∂xp

∫
�

Ld�. (53)

Using a polar coordinate system and assuming x =
(0, 0, x) (x > 0), we have

∫
�

Ld� = R2
∫ 2π

0
dφ

∫ π

0
dθ sin θ

√
x2 + R2 − 2xR cos θ

= −2πR2
(
2x + 2R2

3x

)
.

(54)

The partial differentiation of (54) in (53) is conducted in
the same way as in the previous subsection. Converting
�R to �VC using (40) and using the definition of K (35),
we obtain

uKuk = λ + 2
3μ

λ + 2μ
�VC

4πr2
xk
r
. (55)

The above expression for uKuk gives the radial dis-
placement in the same form as (20). In the following
section, the remaining term uμu

k from (43) is shown to
vanish.

The non-isotropic part of the displacement term
The values obtained for the first and second terms of
the integrand in (43) are denoted as uμu1

k and uμu2
k ,

respectively. The calculation of the latter follows the
method outlined in the previous section, and it is obvious
that

uμu2
k = −

2
3μ

λ + 2μ
�VC

4πr2
xk
r
; (56)

the calculation of the first term is more complicated and
is presented below.

uμu1
k = 2μ�R

∫
�

ninj
∂Gki
∂ξj

d� = �R
4π

Dx
ki

∫
�

ninj
∂L
∂ξj

d�.

(57)

Recalling the definition of Dx
ki from (31), we further

separate (57) into Ak and Bk as

Ak = �R
4π

∂2

∂xp∂xp

∫
�

nknj
∂L
∂ξj

d�, (58)

Bk = −�R
4π

�
∂2

∂xk∂xi

∫
�

ninj
∂L
∂ξj

d�. (59)



Ichihara et al. Earth, Planets and Space  (2016) 68:14 Page 9 of 10

For mathematical convenience, the variable of partial
differentiation in (59) is changed from ∂/∂xi to −∂/∂ξi to
obtain

Bk = �R
4π

�
∂

∂xk

∫
�

ninj
∂2L

∂ξi∂ξj
d�

= �R
4π

�
∂

∂xk

∫
�

ninj
∂

∂ξi

ξj − xj
L

d�

= �R
4π

�
∂

∂xk

∫
�

ninj

[
δij

L
−

(
ξj − xj

)
(ξi − xi)

L3

]
d�

= �R
4π

�
∂

∂xk

∫
�

[
1
L

−
(
ξj − xj

)
ni (ξi − xi) nj
L3

]
d�.

(60)

Returning to polar coordinates, we have
∫
�
d� =

R2 ∫ 2π
0 dφ

∫ π

0 dθ sin θ . We let x = (0, 0, x) (x > 0), and

n =
⎛
⎝ − sin θ cosφ

− sin θ sinφ

− cos θ

⎞
⎠ . (61)

As in (54), we also represent L in polar coordinates, from
which we obtain

nj
∂L
∂xj

= (ξj − xj)nj
L

= −R + x cos θ

L
. (62)

Substituting (61) and (62) into (58) and (60), and conduct-
ing the integration with respect to φ, we obtain

A = R2�R
2

∂2

∂xp∂xp

∫ π

0
dθ sin θ

−R + x cos θ

L

⎛
⎝ 0

0
− cos θ

⎞
⎠ ,

(63)

Bk = R2�R
2

�
∂

∂xk

∫ π

0
dθ sin θ

1
L

[
1−v

(−R+x cos θ)2

L2

]
d�

= R2�R
2

�
∂

∂xk

∫ π

0
dθ sin θ

x2
(
1 − cos2 θ

)
L3

d�. (64)

From the definition of L, we have

cos θ = L2 − x2 − R2

−2xR
, sin θdθ = −d(cos θ) = L

xR
dL.

(65)

Therefore, (63) becomes

A = R2�R
2

∂2

∂xp∂xp

∫ |x+R|

|x−R|
dL

L
xR

R cos θ − x cos2 θ

L

⎛
⎝ 0

0
1

⎞
⎠

= R2�R
2

∂2

∂xp∂xp

∫ |x+R|

|x−R|
dL

R
(
L2−x2−R2

−2xR

)
−x

(
L2−x2−R2

−2xR

)2
xR

×
⎛
⎝ 0

0
1

⎞
⎠ , (66)

and (64) reduces to

Bk = R2�R
2

�
∂

∂xk

∫ |x+R|

|x−R|
dL

x
RL2

[
1−

(
L2 − x2 − R2

−2xR

)2]
.

(67)

We note that the solution outside the sphere is obtained
when |x−R| = x−R in (66) and (67), while that inside the
sphere is obtained when |x − R| = −x + R.
Evaluating the algebra and integration with respect to L

in (66) and (67), we obtain

A = R2�R
2

∂2

∂xp∂xp

(
−2
3

+ 2
5
R2

x2

) ⎛
⎝ 0

0
1

⎞
⎠

= R2�R
∂2

∂xp∂xp

(
−1
3

+ 1
5
R2

r2

)
x
r
, (68)

Bk = R2�R�
∂

∂xk

(
2
3
1
x

)
= R2�R�

∂

∂xk

(
2
3
1
r

)
. (69)

Referring back to (51), the partial differentiation is per-
formed as follows:

∂2

∂xp∂xp

(xk
r

)
= ∂2

∂xp∂xp
∂

∂xk
r = − 2

r2
xk
r
. (70)

The other partial derivative term vanishes, as

∂2

∂xp∂xp

(
1
r2

xk
r

)
= ∂2

∂xp∂xp
∂

∂xk

(
−1
r

)
,

∂2

∂xp∂xp

(
−1
r

)
= 0.

(71)

Therefore, we obtain

Ak = 2
3
�R

(
R
r

)2 xk
r
, (72)

Bk = −2
3
�R�

(
R
r

)2 xk
r
. (73)

Combining (72) and (73), we finally obtain

uμu1
k = 2

3
�R(1 − �)

(
R
r

)2 xk
r

=
2
3μ

λ + 2μ
�VC

4πr2
xk
r
,

(74)

which cancels with uμu2
k as given in (56).
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