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Abstract 

Ionosphere products that are relatively precise are available thanks to the efforts of the International GNSS Service 
(IGS), and it might be possible to obtain a high success rate for the fixed integer ambiguities for medium- or longer-
baseline ambiguity resolution (AR) using the ionosphere products as a priori information constraints. In this study, we 
used the IGS precise ionosphere products as a priori information before forming double-difference (DD) measure-
ment equations using only original observables in a mid-range relative positioning and estimated the ionosphere 
residuals explicitly after DD. Furthermore, we proposed a sequential and partial ambiguity resolution (SPAR) strategy 
under the integer least square condition to realize fast and reliable AR. To demonstrate our proposed strategy, we 
randomly selected seven baselines ranging from 30 to 111 km and undertook positioning in a post-processing mode 
using real GPS dual-frequency data. According to the results, the SPAR strategy has a faster convergence process com-
pared with batch AR. For instance, the convergence time with >90 % cumulative frequency percentage (probability) 
for 30, 40, 56, 66, 80, 95, and 111 km baselines was advanced by 55, 50, >75, 85, >110, 65, and >35 epochs, respec-
tively, with a 30-s sample interval. By considering ionospheric correction before DD, we found further improvement in 
the initialization performance with the use of the SPAR strategy.
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Background
Real-time kinematic (RTK) positioning, which is known for 
its precision, has been used widely as positioning technol-
ogy in many fields of engineering and science. The situation 
is relatively simple for short-baseline (<10 km) RTK under 
10 km. The double difference (DD) of satellite observables 
between rover and base stations mostly eliminates atmos-
pheric delay errors, and the ambiguity resolution process 
usually employs the least squares ambiguity decorrelation 
adjustment (LAMBDA) method (Teunissen 1995) that is 
efficient in delivering reliable fixed integer ambiguities. After 
comparison of four ambiguity resolution (AR) methods: 

LAMBDA, geometry-free models for three-carrier ambi-
guity resolution (TCAR) (Forssell et al. 1997; Vollath et al. 
1998), geometry-based TCAR (Teunissen et al. 2002; Feng 
and Li 2008, 2009), and GIF-TCAR (TCAR based on a 
geometry-free and ionosphere-free combination) (Wang 
and Rothacher 2013), Zhang and He (2015) highlighted 
that the LAMBDA method is optimal in both short- and 
medium-baseline (10–100 km) cases. Li et al. (2015) devel-
oped a reliable AR strategy that efficiently resolves ambi-
guities sequentially under the integer least square (ILS) 
condition (Teunissen 1995) for the case of short-range 
RTK. However, for medium or long baselines (>100  km), 
large ionospheric delay residuals remain after DD. The con-
ventional method for overcoming this problem is to use 
ionosphere-free linear combinations (LCs) of the original 
observables and to accommodate AR using a sequential 
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rounding process of wide-lane (WL) and narrow-lane (NL) 
ambiguities (Takasu and Yasuda 2010). Unfortunately, 
the LCs of the original measurements amplify the observ-
able noise and lead to the inevitable addition of positioning 
error. Therefore, for longer-baseline RTK, it is better to use 
original observables to limit the propagation of measure-
ment noise. Li et al. (2014) developed efficient procedures 
for improved float solutions and ambiguity fixing over long-
baseline RTK without using ionosphere-free measurements, 
although the WL AR process remained a rounding process. 
In fact, simple rounding schemes for WL and NL ambigui-
ties cannot ensure high reliability of fixed integer ambigui-
ties. Teunissen (1999) provided proof that an ILS estimator 
of the carrier-phase ambiguities is best for maximizing the 
probability of correct integer estimation. Hence, the AR 
process should be performed under an ILS condition to 
ensure the reliability of the fixed integer ambiguities. Nev-
ertheless, validation of the batch AR mode by the LAMBDA 
method might still fail because of biases in some estimated 
float ambiguities (Takasu and Yasuda 2010), especially in the 
case of long baselines. Therefore, the partial AR technique 
was developed, which resolves a subset of the ambiguities to 
overcome this condition (Teunissen et al. 1999).

Ionosphere products that are relatively precise are 
available owing to the efforts of the International GNSS 
Service (IGS), and it might be possible to obtain a high 
success rate for the fixed integer ambiguities for medium- 
or longer-baseline AR using the ionosphere products as a 
priori information constraints. Considering the problems 
mentioned above, we used the IGS precise ionosphere 
products as a priori information before forming the DD 
measurement equations using only original observa-
bles in a mid-range RTK and estimated the ionosphere 
residuals explicitly after DD. Furthermore, we propose a 
sequential and partial ambiguity resolution (SPAR) strat-
egy under the ILS condition to realize fast and reliable 
AR. In the following, we offer a detailed description of 
the proposed SPAR strategy. We compare the initializa-
tion performances of the SPAR and batch AR strategies 
and investigate the influence of a priori ionosphere infor-
mation on the efficiency of the SPAR strategy.

Sequential and partial ambiguity resolution (SPAR) 
strategy
For clarity, a flowchart of this strategy is presented in 
Fig. 1.

After the ordinary least square adjustment stage in rel-
ative positioning, we can obtain the real-value estimates 
and their variance–covariance matrix (dual-frequency 
case):
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where B̂1 and B̂2 are the DD carrier-phase ambiguity esti-
mates on carrier waves L1 and L2, respectively, which 
should be integers, and X̂ represents the estimates of the 
remaining unknowns, including the baseline components 
(coordinates), tropospheric parameters, and ionospheric 
parameters.

For medium- or longer-baseline RTK, because of 
the biases in some float ambiguities, batch AR by the 
LAMBDA method might still not pass the valida-
tion step. Therefore, the partial AR technique, which 
resolves a subset of the ambiguities, is implemented to 
obtain a high success rate (Teunissen et al. 1999; Zinas 
et al. 2013; Wang and Feng 2013). The success rate and 
ratio test are different indicators with which to assess 
the reliability of the fixed ambiguities (Euler and Schaf-
frin 1990; Teunissen 1998; Hassibi and Boyd 1998; 
Teunissen and Verhagen 2008; Wang and Feng 2013). 
The selection of the ambiguity subset, however, is not 
unique, and it could be based on the float ambiguity 
variance, elevation angle, and LCs (Mowlam and Collier 
2004). Parkins (2011) described an algorithm for resolv-
ing a subset of ambiguities with validation from previ-
ous epochs in single-epoch RTK positioning (Wang and 
Feng 2013). Takasu and Yasuda (2010) employed a very 

Fig. 1 Flowchart of the sequential and partial ambiguity resolution 
strategy (amb ambiguity)
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simple criterion involving the satellite elevation angle 
for long-baseline RTK. Li et  al. (2015) chose a subset 
that comprised all the extra-WL or WL ambiguities in 
a multi-frequency case, because the extra-WL or WL 
ambiguities suffer relatively low effects from noise and 
they can be easily resolved reliably. They also indicated 
the possibility of resolving the ambiguities sequentially 
when the corresponding success rate is very close to the 
batch AR mode and they proposed a multi-carrier fast 
partial ambiguity resolution strategy that they tested 
with short baselines.

For longer baselines, WL ambiguity resolution will be 
affected inevitably by the biases in the measurements. 
Thus, a subset that contains all the WL float ambigui-
ties without distinction might not be the best choice, 
and consequently, there is a need to optimize the subset. 
Here, we propose an optimization method that works in 
an iterative scheme to fix the float ambiguities with low 
variance. The ratio test (Euler and Schaffrin 1990) is used 
here for ambiguity validation. The ratio test in fact calcu-
lates the closeness of the float ambiguity B̂ to its nearest 
integer B̄ compared to the second nearest integer B̄′, and 
it reads as:

Accept B̄ if:

where q(B) =
(

B̂− B
)T

Q−1

B̂

(

B̂− B
)

, and c is a tolerance 

value, to be determined by user. In general, c can be cho-
sen 1.5, 2, 3 (Leick 2004; Wang and Feng 2013). In our 
validation step, we chose the critical value 3.

Different from the direct batch AR mode, we first con-
duct a transformation:

After transformation, the ambiguity types are B̂WL and 
B̂1 instead of the previous B̂1 and B̂2. This transformation 
is fundamental in our proposed strategy for introducing 
the WL ambiguity type.

According to the law of error propagation, the vari-
ance–covariance matrix of Ŷ  is:

(2)
q
(

B̄
′
)

q
(

B̄
) > c

(3)Ŷ =





X̂

B̂WL

B̂1



 =





I 0 0

0 I −I
0 I 0









X̂

B̂1

B̂2



 = K





X̂

B̂1

B̂2



.

(4)

Q
Ŷ Ŷ
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Based on this, we propose the SPAR strategy, outlined 
below.

Step 1 Resolve the WL ambiguities first using the 
LAMBDA method; the validation technique used here 
is the popular ratio test with a critical threshold value 
of 3. Actually, this is the partial AR idea that resolves a 
subset of the entire float ambiguities. As the biases in the 
measurements have the least effect on the resolution of 
WL ambiguities, a subset that comprises all the WL float 
ambiguities is reasonable (Li et al. 2015). However, for a 
longer baseline, WL AR could be disturbed by measure-
ment noise, meaning that it is not possible to select all 
the float WL ambiguities without distinction. When the 
validation test fails, our optimizing method deletes the 
float WL ambiguity with the maximum variance (which 
is considered the one disturbing the WL AR process) 
from B̂WL, and then repeats the resolution and test until 
the validation test is passed, which provides the integer 
solution B̄WL.

Step 2 Update X̂, B̂1, and their variance–covariance 
matrix together with the fixed solution B̄WL. In this step, 
the remaining float ambiguities on the L1 frequency and 
other parameters are not distinguished. The formula for 
the update is as below (Teunissen 1995):

Step 3 Resolve the remaining ambiguities on the L1 fre-
quency using the LAMBDA method and repeat the 
entire process from Step 1 to obtain the remaining inte-
ger ambiguities B̄1.

Step 4 Obtain the fixed solution of the remaining 
unknowns using the formulas below:

Step 5 Change back. Conduct the inverse transformation 
of (3).

The fundamental concepts of this strategy involve 
resolving the WL ambiguities and the ambiguities on the 
L1 frequency sequentially, and optimizing the selected 
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ambiguity subset circularly based on the estimated 
ambiguity variance, as long as the validation test fails.

Experiment demonstration
Figure  2 displays the distribution of our experimental 
stations. We randomly selected seven baselines of the 
EUREF Permanent Network (EPN) and used their 3-day 
GPS dual-frequency observational data with a 30-s sam-
pling interval, starting from day-of-year (DOY) 152 to 
DOY 154 in 2015. The detailed information of the data is 
presented in Table 1.

In the positioning process, we tested our strategy in a 
post-processing mode. We estimated the residual iono-
spheric and tropospheric delay errors explicitly after 
determining the DD of the satellite observables between 
the rover and base stations. The relative positioning sys-
tem was reset every 2 h to obtain a sufficient number of 
initialization samples; thus, there were almost 36 ini-
tializations for each baseline during the study period. 
For each initialization, we were interested in the corre-
sponding convergence time. A simple representation of 
the convergence time adopted here is the time (measured 
in epochs) at which no less than 90 % of the ambiguities 
are resolved, with the restriction that the components of 
the positioning errors are <10  cm. Because of noise in 
the observations, these 36 initializations do not perform 
consistently. Therefore, for both the batch AR and SPAR 

strategies, we drew pictures of the cumulative distribu-
tion histograms of the convergence time corresponding 
to the 36 initializations of one baseline (Figs. 3, 4, 5, 6, 7, 
8, 9).

It is obvious that the SPAR strategy demonstrates 
amazing efficiency. Taking the 31-km baseline as an 
example, it can be seen that the cumulative frequency 
percentage (probability) of the convergence time under 
55 epochs is >90 % when using the SPAR strategy. Con-
versely, under the batch AR strategy, the probability of 
the convergence time under 55 epochs is only 50 % and 
actually 110 epochs are needed to achieve the probabil-
ity of the convergence time of >90 %. For each baseline, 
we recorded the corresponding convergence time when 
the probability in the cumulative distribution histogram 
was >90 % for both strategies and the results are listed in 
Table 2. It can be seen that the SPAR strategy is always 
faster than the batch AR strategy. Interestingly, for the 
baselines GOPE–CTAB, BRUX–DOUR, and CPAR–
KUNZ, the probabilities of the convergence time are all 
<90 % during the 2-h interval purposely designed in our 
program when using the batch AR strategy, whereas the 
probabilities of the convergence time are all >90 % when 
using the SPAR strategy, corresponding to 165, 130, 
and 205 epochs, respectively. We speculate that this is 
mainly due to the large ionosphere delay residuals after 
DD in the case of these baselines. Since SPAR strategy 
inherently suffers relatively low effect in the biases of 
observables, it will perform still faster even toward large 
ionosphere residuals.

Currently, relatively precise ionosphere products are 
available owing to the efforts of the IGS, and it is possible 
to obtain a high success rate for the fixed integer ambi-
guities for medium- or longer-baseline AR using the 
ionosphere products as a priori information constraints 
in a post-processing mode. Therefore, we considered 
performing the ionosphere correction first to further 
reduce the ionospheric delay errors and then to esti-
mate the ionosphere residuals explicitly in the DD equa-
tions. We applied two ionosphere models: the broadcast 
ionosphere model and the precise IGS ionosphere ver-
tical total electron content (TEC) products which is in 
ionosphere exchange (IONEX) format to former seven 
baselines and performed the experiment again using the 
proposed SPAR strategy. The cumulative distribution 
histograms of the convergence time for both models are 
presented in Figs.  10, 11, 12, 13, 14, 15, and 16. Again, 
we recorded the convergence time when the probabil-
ity in the cumulative distribution histogram was >90 % 
and the results are listed in Table 2. For the baseline of 
31 km, there appears to be no improvement in the con-
vergence time after considering the ionosphere correc-
tion. This is because the DD operation eliminates most 

Fig. 2 Station distribution

Table 1 Information of selected baselines in EUREF

Approximate length (km) Base station ID Rover station ID

31 EIJS WARE

40 DOUR REDU

56 GOPE CTAB

66 CRAK MARJ

80 BRUX DOUR

95 CLIB CPAR

111 CPAR KUNZ
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Fig. 3 Cumulative distribution histograms of the convergence time for EIJS–WARE (30 km) baseline: (left) batch ambiguity resolution strategy and 
(right) sequential and partial ambiguity resolution strategy
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Fig. 4 Cumulative distribution histograms of the convergence time for DOUR–REDU (40 km) baseline: (left) batch ambiguity resolution strategy and 
(right) sequential and partial ambiguity resolution strategy
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Fig. 5 Cumulative distribution histograms of the convergence time for GOPE–CTAB (56 km) baseline: (left) batch ambiguity resolution strategy and 
(right) sequential and partial ambiguity resolution strategy
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Fig. 6 Cumulative distribution histograms of the convergence time for CRAK–MARJ (66 km) baseline: (left) batch ambiguity resolution strategy and 
(right) sequential and partial ambiguity resolution strategy
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Fig. 7 Cumulative distribution histograms of the convergence time for BRUX–DOUR (80 km) baseline: (left) batch ambiguity resolution strategy and 
(right) sequential and partial ambiguity resolution strategy
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Fig. 8 Cumulative distribution histograms of the convergence time for CLIB–CPAR (95 km) baseline: (left) batch ambiguity resolution strategy and 
(right) sequential and partial ambiguity resolution strategy
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of the ionospheric delay errors, which makes the correc-
tion redundant at this relatively short range. However, 
for longer baselines, dramatic improvements in the con-
vergence time can be seen. For instance, the convergence 
time with >90 % cumulative frequency percentage is only 
75 epochs for the baseline BRUX–DOUR (80 km), after 
applying the ionosphere correction models in the SPAR 
strategy, which is a considerable improvement on the 
original 130 epochs. But for the baseline GOPE–CTAB 
(56  km), broadcast ionosphere model correction seems 
not to bring improvement on the convergence time. 
We think this probably results from the low precision 
in the broadcast model. Interestingly, there appears to 
be no obvious difference between the two ionosphere 
models applied in the SPAR strategy for these baselines, 
except the 56  km and the 111  km baselines. From the 
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Fig. 9 Cumulative distribution histograms of the convergence time for CPAR–KUZE (111 km) baseline: (left) batch ambiguity resolution strategy and 
(right) sequential and partial ambiguity resolution strategy

Table 2 Comparison of  initialization performance for  the 
two strategies and  comparison of  initialization performance 
for two ionosphere correction models applied in SPAR strategy

Baseline 
length 
(km)

Convergence time 
(epoch) with cumu-
lative frequency 
percentage ≥90 %

Convergence time (epoch) 
with cumulative frequency  
percentage ≥90 % for SPAR 
strategy

Batch AR SPAR Broadcast  
model

IONEX TEC 
model

31 110 55 55 55

40 130 80 60 60

56 >240 165 175 160

66 230 145 110 110

80 >240 130 75 75

95 130 65 60 60

111 >240 205 190 170
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Fig. 10 Cumulative distribution histograms of the convergence time for EIJS–WARE (30 km) baseline: (left) broadcast ionosphere model correction 
and (right) IONEX TEC model (right) correction in sequential and partial ambiguity resolution strategy
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Fig. 11 Cumulative distribution histograms of the convergence time for DOUR–REDU (40 km) baseline: (left) broadcast ionosphere model correc-
tion and (right) IONEX TEC model correction in sequential and partial ambiguity resolution strategy
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Fig. 12 Cumulative distribution histograms of the convergence time for GOPE–CTAB (56 km) baseline: (left) broadcast ionosphere model correction 
and (right) IONEX TEC model correction in sequential and partial ambiguity resolution strategy
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Fig. 13 Cumulative distribution histograms of the convergence time for CRAK–MARJ (66 km) baseline: (left) broadcast ionosphere model correction 
and (right) IONEX TEC model correction in sequential and partial ambiguity resolution strategy
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Fig. 14 Cumulative distribution histograms of the convergence time for BRUX–DOUR (80 km) baseline: (left) broadcast ionosphere model correc-
tion and (right) IONEX TEC model correction in sequential and partial ambiguity resolution strategy
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Fig. 15 Cumulative distribution histograms of the convergence time for CLIB–CPAR (95 km) baseline: (left) broadcast ionosphere model correction 
and (right) IONEX TEC model correction in sequential and partial ambiguity resolution strategy
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Fig. 16 Cumulative distribution histograms of the convergence time for CPAR–KUZE (111 km) baseline: (left) broadcast ionosphere model correc-
tion and (right) IONEX TEC model correction in sequential and partial ambiguity resolution strategy
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convergence time results of the GOPE–CTAB (56  km) 
and the CPAR–KUNZ (111 km) baselines, it seems that 
the more precise IONEX TEC model leads to faster AR 
in comparison with the broadcast model when using our 
SPAR strategy.

Conclusions
In this work, we proposed a SPAR strategy for a dual-fre-
quency case with estimation of atmosphere residuals for 
medium- and longer-baseline relative positioning. The 
fundamental concepts of this strategy involve resolving 
the WL ambiguities and the ambiguities on the L1 fre-
quency sequentially, and optimizing the selected ambi-
guity subset circularly based on the estimated ambiguity 
variance, as long as the validation test fails. Tested using 
real GPS dual-frequency data of seven mid-range base-
lines in a post-processing mode, our strategy was shown 
always to be faster than the batch AR mode. The conver-
gence time with >90 % cumulative frequency percentage 
in our samples for randomly chosen 30, 40, 56, 66, 80, 
95, and 111 km baselines was advanced by 55, 50, >75, 
85, >110, 65, and >35 epochs, respectively, with a 30-s 
sample interval. We undertook ionosphere corrections 
for each baseline before considering the DD of the satel-
lite observables with the intention of reducing the ion-
ospheric delay errors further. The results showed that 
after considering ionosphere correction, our proposed 
strategy worked faster; however, differences between the 
ionosphere models applied with our strategy were not 
obvious, which means it is acceptable to use the broad-
cast model with our SPAR strategy in such mid-range 
circumstances. Further investigation is necessary to do 
to test our proposed strategy in different positioning 
modes.
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