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Statistical model selection 
between elastic and Newtonian viscous matrix 
models for the microboudin palaeopiezometer
Tarojiro Matsumura1,2*  , Tatsu Kuwatani3,4 and Toshiaki Masuda5

Abstract 

We carried out statistical evaluations of two probability density functions for the microboudin palaeopiezometer 
using the Akaike information criterion (AIC) and the cross-validation (CV) technique. In terms of the relevant stress-
transfer model, these functions are defined as the elastic matrix model and the Newtonian viscous matrix model, 
respectively. The AIC and CV techniques enable us to evaluate the relative quality of both models when applied to 
nine data sets collected from metachert samples containing tourmaline grains in a quartz matrix, collected from the 
East Pilbara Terrane, Western Australia. The results show that the elastic matrix model is the more appropriate proba-
bility density function for analysis of fracturing of tourmaline grains in a quartz matrix. This statistical evaluation shows 
the validity of the elastic matrix model for the microboudin palaeopiezometer when analysing such data sets.
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Introduction
Boudinage structure is a key to the stress and strain anal-
ysis of deformed rocks. Pioneering deformation analysis 
using this structure has been performed when measuring 
the strain of layered boudins (Ferguson 1981, 1985, 1987; 
Ferguson and Lloyd 1984; Lloyd and Condliffe 2003). 
These studies demonstrated a significant difference in 
magnitude between the stress generated within boudins 
and that experienced by the surrounding matrix (Lloyd 
et al. 1982). Ferguson and Lloyd (1982) challenged exist-
ing methods of estimating palaeostress and strain. These 
early studies inspired Masuda and co-workers to estab-
lish a palaeopiezometer using the microboudin struc-
ture of columnar grains (e.g. tourmaline, piemontite, and 
glaucophane) within quartzose or calcareous metamor-
phic tectonites (Masuda et al. 1989, 2003, 2008; Kimura 
et al. 2006, 2010).

The basis of the microboudin palaeopiezometer is the 
theoretical probability density function for the fractur-
ing of columnar grains (Masuda et  al. 1989, 2003). The 
function represents the relationship between the propor-
tion of microboudinaged grains and the aspect ratio of 
analysed columnar grains. The proportion of microbou-
dinaged grains is defined as the ratio of the number of 
boudinaged grains to the total number of grains (micro-
boudinaged + intact) for each aspect ratio. The probabil-
ity function representation is the most important aspect 
of the microboudin palaeopiezometer (e.g. Masuda et al. 
2011). The validity of the analysis requires the identi-
fication of an appropriate probability density function 
for natural microboudin data (Masuda et al. 2008, 2011; 
Omori et al. 2016).

Masuda and Kimura (2004) assessed the applicability 
of two probability density functions, assuming a colum-
nar mineral grain surrounded by an elastic matrix and a 
Newtonian viscous matrix, respectively. They suggested 
that this comparison favoured the assumption of an elas-
tic matrix for the microboudin palaeopiezometer. How-
ever, Maeder et al. (2009) used finite element modelling 
of the development of segment structures, including 
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boudins, to show that variation in boudinaged segment 
shape is dependent on the viscosity contrast between 
competent and incompetent layers, and the kinematic 
vorticity number. Komoróczi et al. (2013) also performed 
boudinage modelling that involved coupled deforma-
tion of brittle and viscous layers. Thus, a viscous matrix 
remains a general assumption when considering the 
development of boudinaged structures.

As the evaluation by Masuda and Kimura (2004) relied 
on a qualitative best fit for the data, their assessment is 
not definitive. This approach is neither satisfactory nor 
quantifiable. The assessment is unable to establish a dis-
tinct difference between the functions in the qualitative 
best fit for newly obtained data, and Masuda and Kimu-
ra’s (2004) approach fails to support the validity of using 
an elastic matrix for theoretical modelling of fracturing. 
To better establish the basis for the microboudin palae-
opiezometer, quantitative evaluation is required to assess 
whether the assumption of an elastic matrix is valid and 
reliable for microboudinage structures.

In this study, therefore, we re-examined the applica-
bility of the two probability density functions to natural 
microboudin data. A quantitative comparison of the two 
functions was achieved through statistical evaluation 
using the Akaike information criterion (AIC) and a cross-
validation (CV) technique. These statistical evaluations 
measure the relative quality of the models for a given 
data set, providing independent criteria to evaluate the 
fit of each probability density function (e.g. Burnham and 
Anderson 2002). Test data were obtained from columnar 
tourmaline grains containing microboudinaged struc-
tures, within metacherts collected from the Warrawoona 
greenstone belt in the East Pilbara Terrane, Western 
Australia.

Derivation of the probability density functions
Elastic matrix model
The fibre-loading theory and the shear-lag model, as 
applied to a columnar grain completely embedded within 
a continuous elastic matrix, assume that the matrix elas-
tically transmits the far-field stress as a tensile stress 
along the grain (Fig.  1a). Using the shear-lag model, 
Masuda et al. (2003) proposed that the probability den-
sity function could be expressed as an elastic matrix 
model GE(r; �) representing the relationship between the 
proportion of microboudinaged grains and the aspect 
ratio of columnar minerals. The function GE(r; �) was 
referred to as G(r; �) in previous theoretical works on 
the microboudin palaeopiezometer (Masuda et al. 2003, 
2011; Kimura et  al. 2006, 2010). In this paper, however, 
we represent the function as GE(r; �) to allow compari-
son with the Newtonian viscous matrix model. GE(r; �) 
is a function of the aspect ratio of columnar grains r and 

a non-dimensional stress parameter λ as follows (Masuda 
et al. 2003; Kimura et al. 2010):

where m is the Weibull parameter; Ef and Eq are the 
elastic constants of the columnar grains and the matrix, 
respectively; and A0 is a constant (Masuda et  al. 2003). 
In the present study of tourmaline grains within a quartz 
matrix, the constants Ef

/

Eq and A0 have values of 2 and 
0.4, respectively (Kimura et  al. 2010). The relationship 
between λ and far-field differential stress σ0 was defined 
by Kimura et al. (2010) as follows:

where S∗∗0  is the instantaneous modal fracture strength 
of a 1-mm cube of a columnar mineral grain, Kc is the 
fracture toughness, K0 is the subcritical crack growth 
limit, and w is the geometric mean width of the grains. 
This equation considers the influence of time (Masuda 
et al. 2008) and the effect of size on fracture strength for 
columnar grains (Kimura et al. 2010). Among the param-
eters in Eq.  (2), Kimura et  al. (2006, 2010) determined 
that S∗∗0  =  39, 64, and 80  MPa for tourmaline, epidote, 
and amphibole, respectively. Moreover, Masuda et  al. 
(2008) tentatively proposed that K0

/

Kc = 0.1. The micro-
boudin palaeopiezometer combines the above equations 
to estimate σ0 (e.g. Masuda et al. 2008, 2011).

Newtonian viscous matrix model
Ramberg (1955) solved the stress and strain parameters 
in a competent layer subjected to one-dimensional elon-
gation as a function of the strain rate of the surrounding 
Newtonian viscous matrix (Fig.  1b). Drag forces act-
ing on the Newtonian viscous matrix in the competent 
layer cause fracturing when the matrix flows along the 
layer. Based on the Ramberg (1955) solution, Masuda and 
Kimura (2004) proposed that the fracturing of columnar 
grains is equivalent to the competent layer described by 
the Newtonian viscous model GV (r;ψ). GV (r;ψ) is a 
function of the aspect ratio r and a dimensionless param-
eter ψ as follows:

and ψ is defined as
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As the Weibull parameter depends on the fracture 
strength of columnar grains, we use m = 2 in the case for 
the elastic model. The terms zC and zi in Eq.  (4) are the 
thicknesses of the competent layer and matrix, respec-
tively; σ0 is the far-field differential stress; and S* is the 
fracture strength of competent material at r = 1, which is 
regarded as a material-dependent constant (Masuda and 
Kimura 2004). In the Newtonian viscous model, far-field 
differential stress (σ0) is defined as:

where μ is the matrix viscosity and −∂
(

z
/

zi
)/

∂t is the 
compressional strain rate along the z axis.

Basic data sets for model evaluation
Our statistical approach requires data to evaluate the elastic 
matrix and Newtonian viscous matrix models. The data we 
apply here are the proportion of microboudinaged colum-
nar grains with respect to their aspect ratio (pr), defined 
as the ratio of the number of microboudinaged grains to 
the total number of grains (microboudinaged + intact) for 
each aspect ratio. Such data can be obtained by measur-
ing columnar mineral grains in samples of metamorphic 
tectonites. In this study, we obtained nine data sets from 
tourmaline grains embedded within the quartz matrix of 
metacherts collected from the Warrawoona Greenstone 
Belt around the Mount Edgar and Corunna Downs grani-
toid complexes in the East Pilbara Terrane (Fig. 2). It has 
been reported that greenstones in this area underwent 
greenschist-facies metamorphism, except near the mar-
gins of the associated granitoid domes, where conditions 
locally reach amphibolite facies as a probable result of 
contact metamorphism (e.g. Delor et al. 1991; Collins and 
Van Kranendonk 1999). The geological setting and detailed 
observations of this region have been provided by Collins 
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µ
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)

,

et al. (1998, 1999) and Van Kranendonk et al. (2002, 2004, 
2007). The nature of the metachert samples and the corre-
sponding data sets are briefly described below. 

Analysed samples
The samples are composed mainly of equigranular quartz 
(grain size = tens of µm to > 0.1 mm), together with tour-
maline, chlorite, and muscovite. A consistent foliation is 
present, defined by the alignment of muscovite- and quartz-
rich layers of contrasting colours. A prominent mineral 
lineation is also defined within these rocks by the alignment 
of the long axes of tourmaline on this foliation surface, as 
measured using the method of Masuda et al. (1999) (Fig. 3).

Microboudinage structure of tourmaline grains
Some tourmaline grains show a microboudinage struc-
ture within the quartz matrix (Fig.  4). The micro-
boudinaged tourmaline grains have the following 
characteristics: (1) they are fractured perpendicular to 
their long axes; (2) they are generally pulled apart with-
out any evidence of significant rotation during separa-
tion; and (3) the inter-boudin gaps are filled with quartz. 
These observations suggest that the morphological char-
acteristics of the microboudinaged tourmaline grains are 
of the unmodified symmetric type, torn boudins group, 
and block (object) boudins according to the classification 
scheme of Goscombe et al. (2004).

Proportion of microboudinage
We collected nine data sets from tourmaline grains on 
the foliation surface according to the procedure of Mas-
uda et al. (2011). We measured the widths and lengths of 
tourmaline grains and the distances of the inter-boudin 
gaps in microboudinaged tourmaline grains on foliation 
surfaces, for grains with long axes oriented within 15° 
of the mineral lineation (Fig.  5). The basic data for the 

Fig. 1  Schematic illustration of the stress-transfer models investigated in the present study. x, y, and z are the axes in a Cartesian coordinate system. 
a The elastic matrix model (Masuda et al. 2003) after Zhao and Ji (1997). 2 l = length of fibre; 2r0 = diameter of fibre; 2R0 = length of unit cell. b The 
Newtonian viscous matrix model (Masuda and Kimura 2004) modified after Ramberg (1955). zc = thickness of competent layer; zi = thickness of 
matrix; l = half-length of competent layer
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Fig. 2  Geological map of the Warrawoona greenstone belt (Collins et al. 1998; Kloppenburg et al. 2001; Van Kranendonk et al. 2004; Thébaud and 
Rey 2013; François et al. 2014). Sampling locations are marked by star symbols
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model evaluation consist of the proportion of microbou-
dinaged grains with respect to the aspect ratio (r). The 
frequency distributions of microboudinaged and intact 
columnar grains are shown in Fig. 6, and the proportions 
of microboudinaged grains are plotted in Fig. 7.

Model evaluation
The AIC and CV techniques were used to calculate the 
value of AIC and the generalization error for the elastic 
and Newtonian viscous matrix models for each data set. 
Given that both values reflect the relative predictive per-
formance of the models when using unknown data (e.g. 
Burnham and Anderson 2002; Bishop 2006), we use these 
values as an indicator of the relative quality of the two 
models. We briefly explain both approaches below.

AIC
AIC is a powerful model testing criterion proposed 
by Akaike (1974) that has been widely used for model 

selection in various scientific fields (e.g. Sclove 1987; 
Hansen 1999; Mazerolle 2006; Ahmed et al. 2007; Posada 
2008). AIC is mathematically based on the Kullback–Lei-
bler information of distance (e.g. Kullback and Leibler 
1951), which is a way of measuring differences among 
probability distributions. Akaike (1974) developed a rig-
orous method to estimate the Kullback–Leibler informa-
tion based on the empirical log-likelihood function at 
its maximum point as the AIC (Burnham and Anderson 
2002, 2004) as follows:

where Lmax is the maximum likelihood and M is the num-
ber of independently adjusted parameters. The preferred 
model is that with the minimum AIC value. The AIC 
value is used here to identify either the elastic or New-
tonian model as the more appropriate. The value of M 
in both models is 1, which is the stress parameter λ or 
ψ in the elastic and Newtonian models, respectively. Lmax 

(6)AIC = −2(lnLmax)+ 2M

Fig. 3  Frequency distributions of the long-axis orientations of tourmaline grains on the foliation surface in each sample (EP6fb, MB28, EP10oc, 
MB15, EP11fi, MB14, MB23, MB39, and MB23L). Best-fit curves, based on the von Mises distribution, are also shown (for details of the method, see 
Masuda et al. 1999). θ is the orientation of the tourmaline grains. N is the total number of measured tourmaline grains, κ is the concentration param-
eter, d0 is the confidence interval for the critical region of 0.05 (Masuda et al. 1999), and κu and κl are the 95% upper and lower confidence limits, 
respectively. The distribution is arranged to set the mean orientation = 90°, corresponding to the mean orientation of the lineation
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is the fundamental value used to evaluate the models by 
AIC, and this can be obtained from the maximum likeli-
hood estimation.

In maximum likelihood estimation, we adopted the 
binomial distribution (e.g. Savage 1972) as the error 
function of the data at each measurement point, which 
consists of the proportion of microboudinaged columnar 
grains as a function of the aspect ratio, because columnar 
mineral grains are divided into two classes according to 
whether they are microboudinaged.

The binomial distribution is a discrete probability dis-
tribution with parameters N and p as follows:

where

(7)P
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y
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In probability theory and statistics, N is the number of 
successes in a sequence of yes-or-no experiments, y is the 
number of success (y = 0, 1, 2,…, N), and p is the prob-
ability of success. Given that we treat a success as being a 
fractured grain, then for the microboudinage data set N is 
the total number of measured grains, y is the number of 
microboudinaged grains, and p is the ratio of the number 
of microboudinaged grains to the total number of grains 
(microboudinaged + intact). In the microboudinage case, 
the value of pr is represented in the elastic matrix and 
Newtonian viscous matrix models as follows:

and

respectively. The likelihood functions LE and LV are 
defined by the infinite product of Eq.  (7) for the elastic 
and Newtonian viscous matrix models in Eqs.  (9) and 
(10) as follows:

and

respectively. Nri and yri are N and y for the measurement 
point i, respectively.

We then evaluated the stress parameters λ and ψ using 
maximum likelihood estimation (e.g. Savage 1972). This 
approach provides the value of maximum likelihood 
Lmax for Eqs. (11) and (12), along with the corresponding 
stress parameters (λ and ψ) used to solve the optimiza-
tion problem.

Cross‑validation
AIC provides a useful solution for selecting the best 
model. However, if the available data are poor, then 
the best model selected might still be poor (Burnham 
and Anderson 2004). Thus, every effort must be made 
to ensure that the  data used are high quality, and we 
acknowledge the limitation of our data in this respect. 
This problem commonly arises in deformation analysis of 
metamorphic tectonites. To rigorously evaluate the rela-
tive quality of the models, it may be necessary to obtain 
a test data set on which the performance of the selected 
model is finally evaluated.

(9)pr = GE(r; �)

(10)pr = GV (r;ψ)
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Fig. 4  Photomicrograph of a typical microboudinaged structure 
within a tourmaline grain viewed on the foliation surface in sample 
MB28 (plane-polarized light). Qtz = quartz; Tou = tourmaline

Fig. 5  Schematic illustration of the measurement of columnar 
tourmaline grains, modified after Masuda et al. (2011). We measured 
the tourmaline grain length (L and Li), width (W), and inter-boudin 
distance (Gi)
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As such, we used the CV technique to address this 
problem. The CV technique is an effective method for 
evaluating the predictive capability of a statistical model 
for an unknown data set based on the generalization 
error (GE) (e.g. Bishop 2006; Kuwatani et al. 2014), and 
this approach has been generally applied to model selec-
tion (e.g. Stone 1974, 1977; Geisser 1975). In the CV 
technique, the given data set is divided into training and 
testing subsets. We used the training subset to construct 
a statistical model and then used the test subset to evalu-
ate the predictive performance of the model. In effect, we 
regard a part of the data sets as unknown data and then 
evaluate the predictive performance of the model for the 
unknown data.

In this study, we adopted the leave-one-out (LOO) 
method for the CV. The LOO method divides the data 
set into N (the number of data points) parts and then 
uses (N − 1)

/

N  parts of the data as the training subset 
zi and the remaining part of the data as the test subset 
xi for the CV. This procedure is then repeated for all N 

possible choices (Bishop 2006). In this study, the LOO 
method was adopted to calculate the GEE and GEV, cor-
responding to the probability density functions GE(r; �) 
and GV (r;ψ) as follows:

and

respectively, where n is the number of data points, and 
E(xi,GE(zi; �i)) and E(xi,GV (zi;ψi)) are the error of 
the testing subsets xi corresponding to the probabil-
ity distributions of the constructed models GE(r; �) and 
GV (r;ψ) , respectively. The set of statistical parameters λi 
and ψi was determined using the training subset zi that 
consists of all the data, apart from the testing subset xi. 

(13)GEE =
1

n

n
∑

i=1

E(xi,GE(zi; �i))

(14)GEV =
1

n

n
∑

i=1

E(xi,GV (zi;ψi))

Fig. 6  Histograms of the aspect ratios (r) of intact (white bars) and microboudinaged (grey bars) tourmaline grains in each sample



Page 8 of 12Matsumura et al. Earth, Planets and Space  (2017) 69:83 

When using the maximum likelihood approach, the error 
functions E(xi,GE(zi; �i)) and E(xi,GV (zi;ψi)) are repre-
sented as:

respectively. N (xi)
i  is the total number of measured grains 

in the testing subset and xi, y
(xi)
i  is the number of micro-

boudinaged grains in the testing subset xi. Equations (15) 

Fig. 7  Values of pr for each sample. The best-fit curves for the elastic and Newtonian viscous models are shown as solid and dashed curves, respec-
tively. Error bars are 95% confidence intervals of the binomial distribution

and

(15)E(xi,GE(zi; �i)) = −ln
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N
(xi)
i

y
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i

)
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y
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N
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and (16) provide the function of likelihood given by the 
testing subset xi in each model. The model that has a 
smaller generalization error value is determined to be the 
better model, based on its higher predictive performance 
for the unknown data.

Results
The values of AIC, GEE, and GEV can be calculated from 
Eqs. (6), (13), and (14), respectively. We determined these 
values for both models using the nine data sets. Figure 6 
shows the frequency distribution of microboudinaged 
tourmaline grains, which is characterized as the number 
of microboudinaged (grey bar) and intact grains (white 
bar) for each aspect ratio bin. Based on the maximum 
likelihood estimation applied to the data displayed in 
Fig.  6, we obtained the pr values and best-fit curves for 
GE(r; �) and GV (r;ψ), and the values of λ and ψ for each 
data set (Fig. 7). These curves show that the values of pr 
continuously increase with increasing aspect ratio of the 
tourmaline grains. The 95% confidence interval of each pr 
value represents the proportion of data from grains with 
a much larger aspect ratio (r > 10) that have lower quality 
than the grains with a smaller aspect ratio (r < 5), because 
the total number of grains is small (i.e. <25 grains, as 
shown in Fig. 6).

According to the values of AIC, GEE, and GEV, these 
criteria show that the elastic model always has smaller 
values than the Newtonian viscous matrix model. Thus, 
these statistical constraints identify the elastic matrix 
model as the appropriate model for the fracturing of 
tourmaline grains in all the analysed samples (Table  1). 
From the perspective of the goodness of fit, the data 
from sample EP6fb clearly show a much better fit to the 
elastic matrix model than the Newtonian viscous model, 
whereas for the other eight samples there are no signifi-
cant differences between the models. This result indicates 
that a qualitative assessment (e.g. Masuda and Kimura 
2004) does not always successfully identify the appro-
priate model for a given data set. Values of pr for grains 
with a high aspect ratio (r  >  10) are significantly larger 
than predicted by GE(r; �). These data ostensibly match 
GV (r;ψ) (Fig. 7), although they are insignificant in deter-
mining the quality of the model. Given that both models 
have only one parameter, the AIC evaluation is essentially 
the same as that derived from maximum log-likelihood 
values.

Statistical criteria can be used to objectively assess the 
validity of the elastic matrix model applied to the micro-
boudin palaeopiezometer. A substantial advantage of 
using information criteria such as AIC is that they are 
applicable to non-nested models (Burnham and Ander-
son 2002). In such models, one proposed model cannot 
be a subset of other models, as is the case for the elastic 

matrix and Newtonian viscous matrix models compared 
here. However, the information criteria must be chosen 
carefully for non-nested models due to the large possi-
ble variance in AIC (e.g. Ripley 2004). For the data sets 
examined in this study, AIC values for the elastic matrix 
model are approximately half of those for the Newto-
nian viscous matrix model (Table  1). These differences 
indicate that it is reasonable to regard the elastic matrix 
model as suitable for the microboudin palaeopiezometer 
for the analysed data sets.

Discussion
Evaluation of the results
Our result showed the validity of the elastic matrix model 
using for the microboudin palaeopiezometer and quanti-
tatively supported the conclusion in Masuda and Kimura 
(2004); as the microboudinage occurred in the solid 
state during metamorphism, the elastic matrix model is 
acceptable. However, we do not conclude that the elastic 
matrix model is the best model for all microboudin data. 
The criteria used in this study were selected to enable 
comparison between the relative predictive performance 
of the elastic and Newtonian viscous models for nine 
data sets, and there are no threshold AIC or GE values 
that indicate the need to discard or adapt the models. 
It is possible that an alternative model, such as a non-
Newtonian viscous model, would be more suitable than 
the elastic matrix model, although no other models have 
been proposed for the microboudin palaeopiezometer. 
The statistical model-selection approach could be used 
to undertake an objective comparison between the elastic 
matrix model and an alternative.

Significance of the elastic model
As the fracturing of columnar grains occurs under solid-
state flow during metamorphism (e.g. Masuda et  al. 
2011), it is reasonable to use the elastic model to simu-
late the fracturing of columnar grains. Microboudinage 
of columnar grains into two segments can be considered 
to occur via the following three stages (Ferguson 1981; 
Lloyd et al. 1982; Masuda and Kuriyama 1988): (1) pre-
fracturing; (2) fracturing; and (3) separation. The prob-
ability density function considers stages (1) and (2) and 
describes the proportion of microboudinaged grains 
as a function of aspect ratio (Fig.  7). By focussing on 
the duration of the fracturing and separation stages, we 
consider the applicability of the elastic matrix model to 
microboudinage.

There is a significant difference in the duration of the 
fracturing and separation of columnar grains. Fracturing of 
a columnar grain is generally assumed to occur instantane-
ously when the applied stress reaches the fracture strength 
of a microcrack within the grain (e.g. Masuda et al. 1989, 
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2003). However, according to the principles of fracture 
mechanics (e.g. Davidge 1979; Atkinson 1987; Lawn 1993; 
Anderson 2005; Gdoutos 2005), crack growth proceeds 
gradually at stresses lower than the fracture strength and 
results in a process with a relatively slow crack veloc-
ity, known as subcritical crack growth (e.g. Masuda et al. 
2008). The slowest crack velocity estimated to date is 
5  ×  10−12 m/s (Wilkins 1980), with 1-mm-long cracks 
being produced in only 102 years. As fracturing occurs at a 
critical crack length, which is <50 μm in the analysed tour-
maline grains, the observed fractures can form in several 
decades. Compared with ductile flow during metamor-
phism that occurs on the geological timescale (i.e. at least 
106 years; e.g. Brown 2010; Hobbs and Ord 2014), cracks 
propagate instantaneously through intact grains to gen-
erate fractures even if the fracturing proceeded with an 
extremely slow crack velocity (Masuda et al. 2008).

During the separation stage, the shape of boudinaged 
segments is often determined by ductile deformation 
associated with viscous flow of the surrounding matrix 
(e.g. Malavieille and Lacassin 1988; Goscombe et al. 2004; 
Maeder et  al. 2009). Previous simulations have success-
fully reproduced the various observed shapes of boudi-
naged segments (e.g. Lloyd and Ferguson 1981; Treagus 
and Lan 2004; Maeder et al. 2009; Komoróczi et al. 2013). 
Therefore, fracturing of columnar grains can be reason-
ably simulated under the assumption of an elastic matrix, 
whereas the variation in segment shape requires a ductile 
matrix. This discrepancy may be due to the significant 
difference in timescales of duration between fracturing 
(~102 years) and separation (~106 years). This difference 
suggests that the elastic and viscous matrix models can 
be compatible in terms of the development of micro-
boudinage structures during metamorphism. However, 
the limitation of this compatibility remains problematic, 
although viscous theory has been applied to solid-state 
flow in the crust (e.g. MacKenzie 1979; Weijermars 1986; 
Masuda and Ando 1988; Passchier and Sokoutis 1993; 
Arbaret et  al. 2001; Jiang 2007, 2012; Mancktelow et  al. 

2002; Mancktelow 2013). The technique of statistical 
model evaluation is a valuable approach with which to 
address this problem.

Conclusions
We statistically evaluated the suitability of probability 
density functions describing elastic and Newtonian vis-
cous matrix models via AIC and the CV technique, using 
natural data from the microboudinage structure of tour-
maline grains within a quartz matrix contained within 
metacherts. Our statistical evaluation revealed that the 
elastic matrix model is the more appropriate probability 
density function for the fracturing of columnar grains. 
This result supports the use of the elastic matrix model 
for palaeostress analysis by the microboudin palaeopi-
ezometer. The microboudinage structure of columnar 
grains is one of the forms of evidence commonly used 
to estimate the palaeostress state imposed on metamor-
phic tectonites. Constructing a theoretical model for 
microboudinage and evaluating the model is essential 
to constraining geodynamics through such deformation 
analysis. We encourage further tests of the theoretical 
model for the microboudin palaeopiezometer and sug-
gest that the statistical approach outlined here will offer 
an important contribution to validating such future 
developments in the application of stress analysis to met-
amorphic tectonites.
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