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Abstract 

We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global 
navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 
1.7 km. We focused on a heavy rainfall event that occurred on August 13–14, 2012, around Uji city. We employed a 
local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV 
increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay 
data observed by the Uji network showed that the characteristic length scale of water vapor distribution during 
the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolu-
tion (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV 
data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the 
sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizon-
tal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall 
amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In 
contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In 
the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most 
improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of 
PWV data was related to the characteristic length scale of water vapor variability.
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Background
Low-level moisture in the troposphere is essential for the 
initiation and development of deep moist convection. 
Kuo et  al. (1993) assimilated precipitable water vapor 
(PWV) data observed by radiosonde into a mesoscale 
numerical model by relaxing the predicted PWV toward 
the observed PWV. They reported that assimilation of 
PWV improved accuracy of short-range precipitation 
forecast. Guo et al. (2000) assimilated PWV data detected 

by the global navigation satellite system (GNSS) by using 
a four-dimensional variational assimilation system and 
succeeded in reproducing the observed precipitation pat-
tern associated with a squall line. The Geospatial Infor-
mation Authority of Japan (GSI) operates a nationwide 
GNSS observation network called GNSS Earth Observa-
tion NETwork (GEONET), which contains a mean inter-
station distance of about 20 km over Japan. Assimilation 
experiments of GEONET-PWV were performed using 
four-dimensional variational assimilation systems (Seko 
et  al. 2004; Kawabata et  al. 2007; Shoji et  al. 2009). Yan 
et  al. (2009) performed assimilation of GNSS-derived 
zenith tropospheric delay (ZTD) data, that is, atmos-
pheric delay above the receiver, observed by a dense 
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GNSS network during the Convective and Orograph-
ically-induced Precipitation Study (COPS) campaign, 
where the shortest distance between the assimilated ZTD 
was longer than 10  km. They reported improvement in 
forecasts during weak precipitation but reduced accu-
racy in heavy precipitation. Kawabata et  al. (2013) con-
ducted an assimilation experiment of GEONET-derived 
slant path delay (SPD) data, that is, the atmospheric delay 
along the ray path of a GNSS radio signal, and succeeded 
in reproducing the heavy rainfall event that occurred 
over Okinawa Island in August 19, 2009.

Although many assimilation studies of GNSS-derived 
water vapor data with variational assimilation systems 
have been conducted so far, there have been few studies 
that assimilated PWV using an ensemble Kalman filter 
(EnKF; Evensen 1994) system. Seko et  al. (2011) con-
ducted an assimilation experiment of GEONET-derived 
PWV by using a local ensemble transform Kalman filter 
(LETKF; Hunt et  al. 2007) method based on the Japan 
Meteorological Agency Non-Hydrostatic Model (JMA-
NHM; Saito et  al. 2007). Seko et  al. (2013) developed a 
two-way nested NHM-LETKF system and investigated 
the synergistic effects of simultaneous assimilation of the 
Doppler radar radial wind velocity and water vapor data 
observed by GEONET (i.e., PWV and slant water vapor 
(SWV) that is the accumulated water vapor amount 
along the ray path of a GNSS radio signal). They suc-
ceeded in increasing the number of ensemble forecasts 
that reproduced localized heavy rainfall by assimilating 
the GNSS data and the Doppler radar data.

The EnKF is a state estimation technique based on a 
Monte Carlo method. The EnKF uses short-term ensem-
ble forecasting to estimate flow-dependent background 
error covariance, assuming each ensemble member result 
is a statistical sample. However, generic EnKF studies 
use up to 100 ensemble members partially due to limited 
computational resources. This limited ensemble size in 
EnKF introduces sampling errors into the background 
error covariance and deteriorates the accuracy of analysis 
ensemble. To address this problem, the covariance locali-
zation method has been used to remove spurious error 
correlations between distant locations (Houtekamer and 
Mitchell 1998; Hamil et al. 2001). In recent years, some 
assimilation studies applied multiple localization scales. 
Zhang et  al. (2009) applied a small localization scale to 
high-resolution Doppler radar observation data and 
a large localization scale to synoptic scale radiosonde 
observation data. Miyoshi and Kondo (2013) applied a 
multi-scale localization approach by changing the locali-
zation scale, depending on the scales of error correla-
tions, and reported promising results.

Oigawa et al. (2014) simulated large PWV fluctuations 
at the local scale less than 10  km during heavy rainfall. 
Aonashi (2008) reported that the horizontal scale of 
background error correlations in a precipitating region 
is smaller than that in a non-precipitating region. These 
earlier studies suggest that a smaller horizontal localiza-
tion radius should be used to assimilate PWV data over a 
precipitating region. However, as far as the authors know, 
there has been no study that assimilated PWV data with 
a horizontal resolution less than 10  km, using a small 
horizontal localization radius for PWV data over a pre-
cipitating region.

The objective of this study is to investigate the assimi-
lation effects of the high-resolution PWV data derived 
from a hyper-dense GNSS receiver network in an effort 
to improve the simulation accuracy of heavy rainfall. 
Here we use a two-way nested NHM-LETKF system and 
apply it for a heavy rainfall event over Uji, Kyoto, Japan, 
in August 14, 2012. Figure  1 shows the hyper-dense 
GNSS receiver network with a mean inter-station dis-
tance of 1.7 km near the Uji campus of Kyoto University 
(Sato et al. 2013), hereafter called the Uji network. Hori-
zontal resolution of the retrieved PWV derived from the 
Uji network was improved by estimating the PWV from 
a slant delay at the highest elevation angle. Large hori-
zontal inhomogeneities of PWV, even at the local scale 
less than 10 km, have been observed by the Uji network 
in periods of heavy rainfall over the Uji network. Con-
sidering the difference in the characteristic length scale 
of PWV fluctuations between precipitating regions and 
non-precipitating regions, we applied multiple horizontal 
localization radii, scales of which depend on precipita-
tion intensity. We also investigated the optimum inter-
station distance of GNSS receivers for reproducing heavy 
rainfall by thinning out PWV data at several stations in 
the Uji network.

The structure of this paper is as follows. First, the 
heavy rainfall event on August 14, 2012, and the asso-
ciated PWV variations observed by the Uji network 
are described. Second, the design of the data assimila-
tion system and the assimilation method of PWV are 
explained. Next, results of the data assimilation experi-
ment using high-resolution PWV data are described. 
Finally, a summary and discussion are presented.

Heavy rainfall event on August 13–14, 2012, in Uji, 
Kyoto, Japan
We focused on the heavy rainfall event occurring on 
August 13–14, 2012, in Uji, Kyoto (called “Uji heavy rain-
fall” hereinafter). The Uji heavy rainfall is considered the 
most devastating event to take place during the observa-
tion period of the Uji network between 2010 and 2015. In 
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this event, two people were killed and 2275 houses were 
damaged due to stationary back-building-type convective 
systems. Figure 2 shows the hourly rainfall derived from 
precipitation data observed by the radar network of the 
Japan Meteorological Agency (JMA). Mesoscale convec-
tive systems (MCSs) were stationary over the Uji network 
from 2100 local time (LT) on August 13 to 0600 LT on 
August 14. Ishihara and Takara (2013) reported that the 
nature of the MCSs over the Uji network changed with 
time. The MCS before 0000 LT on the 14th was a back-
building type. After a weak rain period during 0000–0200 
LT on the 14th, a back-building-type MCS was formed 
again during 0200–0500 LT. The MCS changed into a 
squall line after 0500 LT on the 14th. As shown in Fig. 2, 
the MCS became active after 0300 LT, and the precipi-
tating region started to move southward after 0500 LT 
as the MCS was transformed into a squall line. The accu-
mulated precipitation was 322  mm, accumulated over 
10  h until 0600 LT on the 14th, measured at the build-
ing of Research Institute for Sustainable Humanosphere 
(RISH). The heavy rainfall at RISH was brought by con-
vective clouds that were continuously generated one after 
another west of the Uji network. During the heavy rain-
fall event, the Uji network was located at the northern 
edge of the MCSs.

GNSS‑derived PWV observed by the Uji network
In the conventional GNSS meteorology technique, the 
delays from all available GNSS satellites above an eleva-
tion angle of 5°–10° are averaged to arrive at a single-
value estimate for PWV. As a result, GNSS-derived PWV 
is estimated as a spatially averaged water vapor amount 
within an inverse cone defined by the elevation cutoff 
angle, resulting in smoothed local-scale PWV fluctua-
tions. Sato et al. (2013) succeeded in improving the hori-
zontal resolution of PWV derived from the Uji network, 
estimating PWV from a single slant delay at the highest 
elevation angle. High horizontal resolution PWV data 
retrieved by this method are called  PWVSPD-H, hereinaf-
ter. When we retrieved  PWVSPD-H, we projected the slant 
delay at the highest elevation angle onto the zenith direc-
tion by using the global mapping function (GMF) (Böhm 
et  al. 2006). We also retrieved PWV data by the con-
ventional GNSS meteorology technique by using a low 
elevation angle cutoff of 10°, which is called “PWVCON,” 
hereinafter. Details about the strategy of the GNSS analy-
sis used in this study are described in Appendix. The sat-
ellite constellation of the Quasi-Zenith Satellite System 
(QZSS) is preferable for retrieving  PWVSPD-H because 
the QZSS provides at least one satellite continuously 
close to the zenith over Japan. The errors of  PWVSPD-H 

Fig. 1 a Simulation domain of inner model. Red triangles and plus symbols indicate selected and unselected GEONET stations for data assimilation, 
respectively. The rectangle A is the domain for evaluating the simulation accuracy of hourly accumulated rainfall amounts. Seven GEONET stations 
inside the circle and the GNSS stations of the Uji network were used to investigate the spatial inhomogeneity of PWV. b The dense GNSS receiver 
network around Uji, Kyoto, Japan. Blue and red triangles indicate stations of the Uji network and GEONET, respectively. Contour lines indicate eleva-
tions of the ground (m). A rain gauge was installed at RISH station
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due to the variable geometry of satellite–receiver line of 
sights during heavy rainfall could be reduced by about 
20% if  PWVSPD-H is retrieved by using the QZSS satellite 
at the highest elevation instead of using the GPS satellite 
at the highest elevation (Oigawa et al. 2014). During the 
Uji heavy rainfall event, the QZSS satellite did not exist 
close to the zenith. Therefore, the GPS satellites above 60° 
elevation angle were used to estimate  PWVSPD-H.

Figure  3a indicates the time variation of the 10-min 
rainfall observed by a rain gauge at RISH. To investigate 
the degree of the spatial inhomogeneity of PWV around 

the Uji network, we calculated the root-mean-square 
(RMS) values of PWV using the GNSS data observed by 
15 GNSS stations around Uji, i.e., seven GEONET sta-
tions inside the circle in Fig. 1a and eight GNSS stations 
of the Uji network. The RMS values were calculated every 
2 km,

(1)

RMS(2(i − 1) ≤ r < 2i) =

√

√

√

√
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2
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Fig. 2 Maps of hourly accumulated rainfall from 2200 LT on August 13, 2012, to 0600 LT on August 14, 2012, derived from radar data of JMA. Trian-
gles indicate stations of the Uji network
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where n is the total number of combinations of any two 
GNSS stations inside the circle. The inter-station distance 
(r) is greater than or equal to 2(i −  1) km and smaller 
than 2i km, where i varies from 1 to 12. Variable dPWV is 
the difference in PWV between two GNSS stations. Dur-
ing 0300–0600 LT on August 14 when the MCS became 
active, RMS values of  PWVCON and  PWVSPD-H also 
became large. Precipitation intensity at RISH became 
strong after 0240 LT. RMS of  PWVSPD-H became strong 
after 0140 LT at a horizontal scale between 5 and 10 km, 
while RMS of  PWVCON became larger after 0205 LT. 
In addition, RMS values of  PWVCON and  PWVSPD-H 
achieved maximum values, preceding the peak time of 
the surface rainfall at RISH. Oigawa et al. (2015) analyzed 
a 250-m mesh model data simulated by JMA-NHM that 
successfully simulated the observed rapid increase in 
PWV prior to surface rainfall during the Uji heavy rain-
fall event. It was found that in the model, the local PWV 
maximum began to form about 16 min before the surface 
rainfall due to wind convergence near the ground. Based 
on the earlier study, it can be inferred that the RMS of 
PWV, i.e., horizontal inhomogeneity of PWV, became 
large because the local PWV maximum formed by wind 
convergence near the ground was detected by the Uji 
network. The RMS of  PWVCON and  PWVSPD-H was espe-
cially large for a mean inter-station distance between 5 
and 10  km (Fig.  3b), suggesting that the GNSS receiver 
network with spatial separation denser than GEONET is 

useful for observing the variations in water vapor asso-
ciated with convective precipitation. Figure  3b and c 
shows that the RMS values of  PWVSPD-H were larger than 
those of  PWVCON at scales of 1–10  km, indicating that 
 PWVSPD-H is more suitable for detecting water vapor 
fluctuations at the meso-γ scale (2–20 km).

Figure  4 indicates spatial distributions of  PWVSPD-H 
over the Uji network during 0300–0430 LT at about every 
30 min. The PWV distribution is relatively homogeneous 
at 0300 LT. However, with time the distribution became 
increasingly complex, and a strong meridional gradi-
ent formed in which the PWV values in the north were 
higher than those in the south.

To investigate the horizontal scale of PWV variations, 
we analyzed the distance dependency of correlation coef-
ficients of zenith wet delay (ZWD), that is, the vertically 
integrated signal delay by water vapor, of the Uji network. 
According to Askne and Nordius (1987), the ZWD is pro-
portional to the PWV and the proportionality factor can 
be estimated from the surface temperature at the GNSS 
receiver (Bevis et al. 1992; Rocken et al. 1993). To elimi-
nate the effect of errors derived from the conversion pro-
cedure from ZWD to PWV, we analyzed ZWD instead of 
PWV. Figure 5 shows the correlation coefficient of ZWD 
of the Uji network as a function of horizontal distance. 
The correlation coefficient was relatively high during 
0600–0900 LT, the period when raining had ceased at 
Uji. On the other hand, when there was weak rain dur-
ing 0000–0300 LT and heavy rain during 0300–0600 LT 
at Uji, the correlation coefficients were smaller as the 
precipitation intensity became strong. This observational 
fact means that the characteristic length scale of water 
vapor variability became smaller, affected by convective 
activity. Fitted curves indicate that the e-folding scales, 
where e is Napier’s constant, were 3.5 km during 0000–
0300 LT and 1.9 km during 0300–0600 LT. This result is 
comparable to the result of Shoji et al. (2004), which ana-
lyzed the distance dependency of correlation coefficients 
of GNSS post-fit residuals and reported that the horizon-
tal distance at which the correlation coefficients equaled 
1/e was about 2–3 km.

Design of the data assimilation experiment
Assimilation system
We used the LETKF assimilation method implemented 
in the JMA-NHM. The NHM-LETKF system used in this 
study was developed by Seko et al. (2013), in which mes-
oscale assimilation is conducted in the outer domain with 
a 15-km mesh, and convective scale assimilation is con-
ducted in the inner domain with a 1.875-km mesh. The 
model domains were centered at Uji (135.8°E, 34.88°N) 
on a Lambert conformal projection with horizontal 
grid points of 80 × 80 and 120 × 120 for outer and inner 

Fig. 3 a Time variation of 10-min rainfall observed by a rain gauge 
installed at RISH. b Time–distance variations of RMS of  PWVCON 
around Uji. c Time–distance variations of RMS difference of  PWVSPD–H 
around Uji
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domains, respectively. We used a hybrid terrain-follow-
ing coordinate system with 50 layers and a model top of 
22.6 km. The depth of the layers increased from 40 m to 
886 m as their height increased. In the outer domain, the 
Kain–Fritsch cumulus parameterization scheme (Kain 
and Fritsch 1993) was used. In the inner domain, we 
employed bulk cloud physics, which predicts the mixing 
ratios of cloud, rain, ice crystals, and graupel without a 
cumulus parameterization scheme.

Figure  6 shows the flowchart of the data assimilation 
experiment. The number of ensemble members was 40 
in both cases. For the first cycle, the initial conditions of 
the outer domain were derived from a JMA mesoscale 

analysis every 6  h from 1500 LT on August 1, 2012, to 
0900 LT on August 11, 2012. The outer LETKF cycle was 
repeated from 0900 LT on August 11, 2012, until 0900 
LT on August 14, 2012, with a 6-h assimilation window. 
Observed data were assimilated every 1 h. Lateral bound-
ary conditions were derived from the JMA mesoscale 
analysis every 6 h from 1500 LT on August 11, 2012, to 
0900 LT on August 14, 2012. In the inner domain, the 
initial conditions in the first cycle and hourly boundary 
conditions were derived from the ensemble simulation 
results of the outer domain. The assimilation window was 
1 h, and observation data were assimilated every 10 min. 
Nine cycles were conducted from 2100 LT on August 13, 

Fig. 4 PWVSPD-H distributions observed by the Uji network about every 30 min from 0300 LT to 0430 LT on August 14, 2012
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2012, to 0600 LT on August 14, 2012. Surface and upper 
air sounding data used in the operational analysis at 
JMA, i.e., upper air sounding data (horizontal wind, tem-
perature, and relative humidity), aircraft data (horizontal 
wind and temperature), wind profiler data (horizontal 
winds), ship and buoy data (pressure), and surface sta-
tion data (pressure), were assimilated in both outer and 
inner domains. PWV data derived from the Uji network 
and nearby GEONET were assimilated only in the inner 
domain.

Assimilation method of PWV
It is not easy to assimilate PWV by using LETKF because 
analysis is independently performed at each model grid 

point in LETKF, while PWV is not a local variable. One 
of the methods is to assimilate PWV as observation 
data at the surface where water vapor amount is large. 
This method modifies water vapor amount mainly near 
the surface by using the vertical localization because 
the sampling error in the background error correla-
tion between PWV and water vapor amount generally 
becomes larger as the layer of the model is distant from 
the surface. However, we needed to modify the water 
vapor amount of the model also at the middle tropo-
sphere because Uji was located at the south side of a 
stationary front and the middle troposphere was very 
humid during the Uji heavy rainfall event. Therefore, 
in this paper, we used the assimilation method of PWV 
proposed by Seko et  al. (2011) which retrieves rela-
tive humidity (RH) at the all layers of the model above 
a GNSS station before conducting the LETKF analysis. 
This method retrieves a RH profile above a GNSS station 
by modifying RH of the first-guess ensemble mean of 
the LETKF, considering the ensemble spread of RH and 
the correlation between PWV and water vapor amount 
estimated from the ensemble perturbations. Those inter-
mediate profiles of RH were assimilated by LETKF. The 
procedure to produce the intermediate profile is as fol-
lows: (1) calculate the ensemble mean relative humidity 
 (RHmean(k)), mixing ratio (Qmean(k)), density (ρmean(k)), 
and ensemble spread of relative humidity  (RHspread(k)) 
at the position of GNSS receivers; (2) estimate the cor-
relation coefficient (Corr(k)) between PWV and water 
vapor amount by using first-guess ensembles; and (3) 
modify the first-guess relative humidity using the follow-
ing equations:

(2)

RH mod (k) = RHmean(k)+ α × RHspread(k)

× Corr(k) (k = 1, . . . , 50)

Fig. 5 Horizontal distance dependency of correlation coefficient 
of ZWD within the Uji network. The ZWD was converted from the 
SPD with the GNSS satellite at the highest elevation angle. Observa-
tional periods during 0000–0300 LT (green), 0300–0600 LT (red), and 
0600–0900 LT (blue) on August 14, 2012, corresponded to weak rain, 
heavy rain, and no rain periods at RISH, respectively. Curves are fitted 
second-degree polynomials

Fig. 6 Flowchart of the data assimilation experiment using the nested NHM-LETKF system. Thick arrows indicate ensemble simulations with 40 
members
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where  RHmod(k),  PWVmod, and dz are the modified 
relative humidity, modified PWV, and thickness of lay-
ers, respectively. The coefficient α is determined so 
that  PWVmod has the same PWV value as the observa-
tion. Considering the height difference between the real 
and model ground altitude at the position of the GNSS 
receivers, we calculated the product between the water 
vapor amount at the lowest layer and the altitude differ-
ence, and we added or subtracted it from the observed 
PWV data. This modification to the observed PWV 
data can be applicable only when the height difference 
between the real and model ground altitude at the posi-
tion of the GNSS receivers is small. Therefore, PWV data 
were not assimilated when height differences between 
the real and model ground altitude exceeded 50 m. Loca-
tions of the eliminated stations for this reason are indi-
cated in Fig.  1a. PWV data were also not assimilated 
when the PWV difference between the model and obser-
vation was larger than 5  mm. For the GNSS stations 
shown in Fig.  1b, both  PWVCON and  PWVSPD-H were 
used for data assimilation, while, for other GEONET sta-
tions not included in Fig. 1b, only  PWVCON was used for 
data assimilation.

Settings of localizations
As noted in earlier studies (Houtekamer and Mitch-
ell 1998; Hamil et  al. 2001), covariance localization is 
needed in the ensemble Kalman filter to handle the prob-
lem of sampling errors due to the limited ensemble mem-
ber size. In the LETKF, an observation localization is 
adopted such that the inverse of the localization function 
is multiplied by the observation error covariance (Hunt 
et al. 2007, Miyoshi et al. 2007). The localization function 
used in this study was the following Gaussian function:

where σ is the parameter that determines the localization 
scale and r indicates the physical distance between the 
analysis grid point and the observation point. Because 
this function does not go to zero, the covariance values 
were forced to equal zero outside the following localiza-
tion radius:

That is, only the observed data inside a circle with 
radius r are assimilated. The σ values of five grids in the 

(3)

PWV mod =

50
∑

k=1

RH mod (k)

RHmean(k)
× Qmean(k)

×ρmean(k)× dz

(4)w(r) = exp

(

−
r2

2σ 2

)

,

(5)r = 2

√

10

3
σ

horizontal direction and three layers in the vertical direc-
tion were used in the previous study, which corresponded 
to a horizontal localization radius of 34.2 km in the inner 
LETKF. The vertical error correlation of relative humid-
ity is generally large over a rainfall region. To reduce the 
vertical error correlation of the assimilation data, we 
thinned out the retrieved humidity data every four layers. 
In addition, we set the vertical localization parameter “σ” 
equal to the length of one layer.

In the conventional setting of the NHM-LETKF, a sin-
gle horizontal localization radius of 34.2  km was used. 
However, this radius is larger than the horizontal scale 
of convection, i.e., a few km, and scale of background 
error correlation of PWV around convection. When the 
ensemble simulation reproduces observed precipitation, 
assimilation of PWV observed in the precipitation area 
makes the simulation accuracy worse at distant grids 
from the observation site. This is because of sampling 
errors due to limited ensemble size. In contrast, when 
the ensemble simulation does not reproduce observed 
precipitation, a wide area around the GNSS receiver is 
incorrectly moistened by assimilating PWV with the 
large localization radius. To deal with these problems, we 
make the localization radius smaller when precipitation 
is observed. Figure 7 shows the background error corre-
lation of PWV derived from a numerical model as a func-
tion of the horizontal distance. The model-derived PWV 
values were calculated by vertically integrating the prod-
ucts of the density and water vapor mixing ratio at each 
model layer. The error correlations were analyzed using 
a 500-m mesh ensemble dataset with 40 members. Cor-
relation scales were analyzed for a rain-free area, weak 

Fig. 7 Horizontal distance dependency of error correlation of PWV. 
Black, blue, and red colors indicate correlation coefficients at rain-free, 
weak rain, and heavy rainfall areas, respectively
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rain area, and heavy rain area, by dividing the rain rates 
(R [mm/h]) into the three intensity levels, i.e., R < 0.1, 
0.1 ≤ R < 10, and R ≥ 10. The e-folding scales for the corre-
lations were 30.8, 7.5, and 4.8 km for the rain-free, weak 
rain, and heavy rain areas, respectively. This result sug-
gests that if we use the localization radius of 34.2 km, the 
assimilation of PWV observed in the precipitating region 
introduces analysis errors because of the effects of spu-
rious error correlations that were not eliminated by the 
large localization. Therefore, we investigate whether the 
simulation accuracy can be improved by using smaller 
localization radii to assimilate  RHmod data converted 
from GNSS-derived PWV over the precipitating region. 
Although increasing the ensemble size or model reso-
lution is effective alternative methods to estimate the 
appropriate background error covariance, we fixed the 
ensemble size and model resolution in order to evaluate 
the effects of using small localization radii. We adopted 

multiple horizontal localization radii, depending on the 
rain rates observed by weather radar. This multi-localiza-
tion setting is called “SLOC,” hereinafter (Table 1), while 
the experiment using the single localization of 34.2 km is 
named “CNTL.” Figure 8 shows a flowchart showing how 
to set the localization radii in the SLOC experiment. In 
the SLOC experiment, the horizontal localization radii 
on each grid point for assimilating  RHmod data converted 
from GNSS-derived PWV were determined by estimat-
ing the precipitation intensity at the analysis grid point 
from the interpolation of JMA weather radar data. The 
 RHmod data converted from GNSS-derived PWV were 
assimilated with the horizontal localization radius of 
SLOC only when the radar-derived precipitation inten-
sity at the GNSS stations belonged to the same intensity 
level at the analysis grid point. Before conducting the 
LETKF analysis, we made a list file which wrote combina-
tions of analysis grid (i, j, k),  RHmod data and its latitude/
longitude information, and localization radius “r.” This 
file is read by LETKF program to change the localization 
radius to assimilate  RHmod data.

Experimental results were evaluated by the ensem-
ble mean of the hourly accumulated rainfall amount in 
the inner domain, where the radar rainfall data of JMA 
were referenced. We analyzed the spatial average of the 
root-mean-square error (RMSE) in the enclosed area 
that included the MCS over the Uji network, i.e., the 

Table 1 Setting of localization radii for SLOC

Rain rate (R) (mm/h) Localization radius (km)

R > 10 4.8

0.1 < R<10 7.5

R < 0.1 30.8

Fig. 8 Flowchart illustrating how the localization radii in the SLOC experiment were determined. Rm and Ro indicate precipitation intensity 
observed by weather radar at the analysis grid point, and the GNSS station, respectively. The character “r” indicates the localization radius needed to 
assimilate  RHmod data converted from the GNSS-derived PWV
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area delimited by the rectangle A shown in Fig.  1a. We 
calculated the improvement rates (IR) of RMSE using the 
equation below:

where “w/o PWV” indicates an experiment without 
assimilating PWV data. The sensitivity of the simulation 
accuracy of the MCS to the mean inter-station distance 
was investigated by thinning out the PWV data of the 
Uji network. Figure  9 shows the distribution of GNSS 
stations used in each thinning experiment. The code for 
each experiment and the settings of the thinning experi-
ments are described in Table 2. We aimed to clarify the 

(6)IR =
RMSEw/o PWV − RMSEw/ PWV

RMSEw/o PWV
× 100,

following two effects by the experiments: (1) effect of 
using multi-localization scale to remove sampling errors 
and (2) the number of assimilated PWV (i.e., information 
content) and observation error correlation. We inves-
tigated the first issue by comparing CNTL8.0km and 
SLOC8.0km or CNTL3.5km and SLOC3.5km. Next, we 
compared the results of five SLOC experiments to dis-
cuss a trade-off problem of the information content and 
observation error correlation. 

Results of the data assimilation experiment
Figure 10 shows the mean RMSE of PWV at 0200, 0300, 
0400, and 0500 LT on the 14th, analyzed by the inner 
LETKF. The RMSE values were calculated by using the 

Fig. 9 Distributions of GNSS stations around Uji used in the thinning experiments with mean inter-station distances of 8.0, 4.2, 3.5, 2.9, and 1.7 km. 
Blue- and red-colored triangles indicate stations of the Uji network and GEONET, respectively
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GNSS-derived PWV data observed at the ten GNSS 
stations in Fig.  1b. RMSEs of the analyzed PWV of the 
SLOC experiments were smaller than those of the CNTL 
experiments. This result suggests that small horizontal 
localization radii are needed to reproduce small-scale, 
i.e., less than 10  km, PWV distributions by ensemble 
data assimilation. In the SLOC experiments, the RMSE 
of the analyzed PWV was smallest when the horizon-
tal resolution of the assimilated PWV data was 2.9 and 
1.7  km. Figure  11 shows the horizontal distribution of 
the analysis increment of PWV for each SLOC experi-
ment, which assimilated  PWVSPD-H data at 0500 LT on 
the 14th. At this moment, a strong meridional gradient of 
PWV formed over the Uji network (Fig. 4). The observed 
meridional gradient of PWV was not well reflected in 
the analysis increment of the PWV of the SLOC8.0km 
experiment in which only GEONET-PWV data were 

assimilated. In contrast, the observed meridional gradi-
ent of PWV was well reflected in the analysis increment 
of PWV when the horizontal resolutions of the assimi-
lated PWV data were 3.5, 2.9, and 1.7 km. 

We show in Fig.  12 the assimilation effects of high-
resolution PWV on the simulation accuracy of the 
hourly rainfall amount. In the experiments in which 
the horizontal resolution of the assimilated PWV data 
was 8.0  km around Uji, the simulation accuracy of the 
SLOC experiment was better than that of CNTL. This 
is because we eliminated the spurious error correla-
tions of PWV between distant locations by applying the 
small localization radii over the precipitating region. 
This result suggests that the horizontal localization scale 
in the precipitating region should be smaller than that 
in the non-precipitating region when we assimilate the 
GEONET-derived PWV data. In the “CNTL” experiment, 
the simulation accuracy of the hourly rainfall amount 
was degraded when the mean inter-station distance of 
the assimilated PWV around Uji was decreased from 8.0 
to 3.5 km. In the nested NHM-LETKF, data assimilation 
is conducted on the assumption that observation data 
are uncorrelated. The simulation accuracy of the CNTL 
experiment decreased when the horizontal spacing of 
assimilated PWV data was 3.5 km probably because the 
assimilated PWV data around Uji were correlated. In 
contrast, in the “SLOC” experiment, the simulation accu-
racy was most improved when the inter-station distance 
of the PWV data around Uji was 3.5 km. We inferred that 
the influence of the observation error correlation of PWV 
was small because the number of PWV data used in the 
LETKF analysis in each grid point was decreased with the 
use of the small horizontal localization radii. Two kinds 
of “SLOC” experiments were conducted here (Fig. 12)—
assimilation of  PWVCON (black) and  PWVSPD-H (red). 
In all thinning experiments, the results of assimilating 
 PWVSPD-H were better than the results of assimilating 
 PWVCON. As already explained in section "GNSS-derived 
PWV observed by the Uji network",  PWVCON is esti-
mated as a spatially averaged water vapor amount within 
an inverse cone defined by the low elevation cutoff angle. 
Therefore,  PWVCON at each GNSS stations of the Uji net-
work observed same portions of the atmosphere, prob-
ably having larger observation error correlation than 
 PWVSPD-H data. We inferred that the results of the SLOC 
experiments assimilating  PWVSPD-H were better than 
those of assimilating  PWVCON because the observation 
error correlation of  PWVSPD-H was smaller than that of 
 PWVCON. However, quantitative examination about the 
observation error correlation of PWV should be investi-
gated in future study.

Figure  13a shows horizontal distribution of 1-h rain-
fall amount at 0600 LT on 14 simulated by SLOC3.5km, 

Table 2 Code for each experiment and the settings of the 
thinning experiments

Localization Mean station distance (km)

CNTL8.0km CNTL 8.0

CNTL3.5km CNTL 3.5

SLOC8.0km SLOC 8.0

SLOC4.2km SLOC 4.2

SLOC3.5km SLOC 3.5

SLOC2.9km SLOC 2.9

SLOC1.7km SLOC 1.7

Fig. 10 RMSE of PWV analyzed by the inner LETKF. RMS values are 
averaged during 0200–0600 LT on August 14, 2012. Experiments 
indicated by the plus symbols are assimilated  PWVSPD-H with the SLOC 
localization setting. Experiments indicated by the cross symbols are 
assimilated  PWVCON with the CNTL localization setting. The GNSS-
PWVSPD-H data used to evaluate RMSEs were observed at the 10 
stations shown in Fig. 1b, which are the same data assimilated in the 
SLOC experiment with the mean inter-station distance of 1.7 km
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and Fig.  13b shows horizontal distributions of differ-
ence of 1-h rainfall amount between SLOC3.5km and 
CNTL8.0km. Rainfall amount simulated by SLOC3.5km 
increased compared to that of CNTL8.0km along the 
northern side of the MCS where the Uji network was 
located (Fig.  13b). In contrast, rainfall amount simu-
lated by SLOC3.5km decreased at the southern side of 
the MCS. It was found that simulation accuracy mainly 
improved at the leeward side of the Uji network.

Summary and discussion
We first investigated the characteristic length scale of 
water vapor variability observed by the Uji GNSS net-
work. The e-folding distance of the correlation coef-
ficients of the observed ZWD was 1.9–3.5  km when 
precipitation was observed around the network. We also 
analyzed the scale of the background error correlations 
of PWV by using 500-m mesh ensemble data with 40 
members. Correlation scales were analyzed for rain-free 
areas, weak rain areas, and heavy rain areas by dividing 
the rain rates (R [mm/h]) into three intensity levels, i.e., 
R < 0.1, 0.1 ≤ R < 10, R ≥ 10. It was found that the e-folding 

scales of correlations were 30.8, 7.5, and 4.8  km for the 
rain-free, weak rain, and heavy rain areas, respectively. 
Therefore, a smaller horizontal localization radius is rec-
ommended to assimilate PWV data over the precipitat-
ing regions.

Using the nested NHM-LETKF system, we conducted 
an assimilation experiment of high-resolution PWV data 
from the Uji network. Although a single localization 
radius of 34.2  km was used in the earlier conventional 
LETKF experiment, we applied small localization radii, 
depending on the rain rates (R [mm/h]) observed by 
weather radar, i.e., 30.8 km (R < 0.1), 7.5 km (0.1 ≤ R < 10), 
and 4.8 km (R ≥ 10). By using multiple localization radii 
over the rainfall area, the accuracy of both PWV ana-
lyzed by LETKF and the simulation results of the hourly 
rainfall was improved. The result was improved because 
we eliminated the spurious error correlations of PWV 
between distant locations by applying small localiza-
tion radii over the precipitating region. The use of small 
localization radii was also effective in reducing the influ-
ence of observation error correlation of PWV around the 
hyper-dense GNSS receiver network.

Fig. 11 Distributions of the analysis increment of PWV at 0500 LT on August 14, 2012, analyzed by the SLOC experiments that assimilated  PWVSPD-H 
at the stations indicated by triangle symbols. Open triangles and filled triangles indicate stations of the Uji network and GEONET, respectively
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Miyoshi et  al. (2014) conducted 10,240-member 
LETKF with an intermediate atmospheric global circula-
tion model (AGCM) and revealed meaningful long-range 
error correlations at continental scales. Kunii (2014) 
investigated the influence of sampling noise on the back-
ground error covariance by using 1000-member ensem-
ble forecasting with the JMA-NHM. It was reported 
that an ensemble size of 500 would be large enough to 
approximate the error covariance under the configura-
tion with a horizontal resolution of 15 km. We adopted 
an ensemble size of 40, so localization was needed for 
such a small ensemble size. Using multiple localization 
scales, we tried to solve the problem of sampling errors in 
the background error covariance. A grid size of less than 
a few km was needed to capture the structure of the con-
vective scale background error covariance. In this study, 
we set the grid size to 1.875 km to reproduce the heavy 
rainfall.

In the assimilation experiment, we used PWV data that 
were converted from slant delay data at the highest ele-
vation angle. This conversion procedure may introduce 
additional observational errors, so we consider that the 
direct assimilation of SWV or SPD (e.g., Kawabata et al. 
2013) is preferable to get more accurate analysis results. 
However, it is computationally expensive to assimilate 
SWV directly in the SLOC experiments because we need 

Fig. 12 Improvement rates of RMSE of hourly rainfall amount 
simulated by the inner domain model as a function of the inter-
station distances of the assimilated PWV data. To calculate the mean 
improvements of RMSE, we used the ensemble mean data of each 
inner model cycle during 0200–0600 LT on August 14, 2012, i.e., four 
samples. Red- and black-colored symbols indicate that assimilated 
PWV data around Uji shown in Fig. 1b were  PWVSPD-H and  PWVCON, 
respectively, using the SLOC localization setting. The blue-colored 
symbol indicates that assimilated PWV data were all  PWVCON, using 
CNTL localization setting

Fig. 13 a Horizontal distributions of 1-h rainfall amount at 0600 LT on August 14, 2012, simulated by SLOC3.5km. b Horizontal distributions of dif-
ference of 1-h rainfall amount between SLOC3.5km and CNTL8.0km (shade) at 0600 LT on August 14, 2012. Solid (broken) line indicates that RMSE 
of 1-h rainfall of the SLOC3.5km is 1 mm smaller (larger) than that of CNTL8.0km. Open triangles and black squares indicate GNSS stations used in 
SLOC3.5km of the Uji network and GEONET, respectively. c Horizontal distributions of 1-h rainfall amount at 0600 LT on August 14, 2012, observed 
by JMA weather radar
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to estimate the precipitation intensity at each point where 
the slant paths of the SWV intersect each model layer 
and apply different localization scales for each point. 
Therefore, we converted SWV at the highest elevation 
angle into  PWVSPD-H to shorten the time for determining 
whether the assimilated relative humidity converted from 
GNSS water vapor data existed in the rainfall area or not. 
During the Uji heavy rainfall event on August 13–14, 
2012, the QZSS satellite did not exist at a high elevation 
angle. Therefore, we used GPS satellites above 60° eleva-
tion angles to estimate the PWV distribution within the 
Uji network. The error due to the mapping will be greatly 
reduced when the satellite constellation of the four QZSS 
is completed, and at least one QZSS satellite remains near 
the zenith. Shoji et al. (2014, 2015) showed that the error 
of  PWVSPD-H derived from mapping reaches its mini-
mum at the location where the line of sight reaches the 
scale height of water vapor. Assimilating the  PWVSPD-H 
data as PWV just over the location where the line of sight 
reaches the scale height of water vapor is recommended. 
However, we assimilated  PWVSPD-H just over the GNSS 
stations because the elevation angles were greater than 
60°.

The thinning experiments showed that in the case of 
the Uji heavy rainfall event, the simulation accuracy was 
most improved when the mean inter-station distance 
around Uji was 3.5  km. This result is consistent with 
the observed characteristic length scale of ZWD (1.9–
3.5 km) during the rainfall, suggesting that the optimum 
spatial resolution of the PWV measurement is related to 
the characteristic length scale of water vapor variability.

By using the PWV data observed by the hyper-dense 
GNSS receiver network, the present case study demon-
strated that the characteristic length scale of water vapor 
variability changed significantly depending on precipita-
tion intensity. It is important to consider the scales of the 
variability of water vapor to improve the simulation accu-
racy when PWV is assimilated.
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Appendix
Undifferenced GPS L1/L2 observations were processed 
by the precise point positioning (PPP) technique, using 
the RTNet software (http://gps-solutions.com/rtnet_
software). RTNet applies an extended Kalman filter to 
code and phase iono-free observations, with float phase 
ambiguities. The processing rate was set to 30  s. Final 
orbits and 30-s satellite clock products published by the 
International GNSS service (IGS) were used. The eleva-
tion cutoff was set to 10 degrees. The global mapping 
function (GMF) (Böhm et  al. 2006) was used to pro-
ject the slant observations to the zenith direction, along 
which the zenith tropospheric delay (ZTD) parameter 
is estimated. All the corrections commonly used in PPP 

http://gps-solutions.com/rtnet_software
http://gps-solutions.com/rtnet_software
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were applied, including the ocean loading displacements 
(FES2004 model) and satellite eclipses.

The time series of estimated ZTD were reduced to 
zenith wet delay (ZWD) by removing the zenith hydro-
static delay (ZHD) computed by means of the Saasta-
moinen model (Saastamoinen 1973). ZWD was then 
converted to PWV by using the Askne and Nordius for-
mula (Askne and Nordius 1987), with the weighted mean 
temperature of the atmosphere modeled by the equations 
derived by Shoji (2010). The passage from ZTD to PWV 
was carried out using ground pressure and temperature 
measured by weather stations deployed within the dense 
network. It was possible to deploy a weather station 
only at half of the GNSS station sites in the dense net-
work; pressure and temperature data for the remaining 
half were, thus, spatially interpolated by inverse distance 
weighting, taking into account their differences in height.

PWV derived from the Uji dense network by this pro-
cedure was extensively validated against radiosondes 
and microwave radiometers during the period in which 
the network was operating, yielding RMS differences of 
about 2 mm.

By applying the technique first proposed by Shoji et al. 
(2004), Kačmařík et al. (2017) obtained results confirm-
ing that raw post-fit residuals should not be used to 
reconstruct slant delays as they might contain strong 
systematic effects, such as unmodeled phase center varia-
tions (e.g., multipath). In this study, we followed the same 
technique, i.e., we generated an azimuth/elevation map of 
post-fit phase residuals averaged over a sufficiently long 
time span (6 months) for each Uji network station site, to 
eliminate the systematic effects from the post-fit residu-
als. The map resolution was 3 degrees (azimuth) × 1 
degree (elevation). This map was used to correct the 
post-fit residuals obtained for each station, which were 
then used to reconstruct the slant delays. PWV data con-
verted from a slant delay retrieved by this method were 
validated against radiosonde and higher accuracy was 
obtained than PWV retrieved by the standard GNSS 
meteorology technique (Sato et  al. 2013). This previous 
study suggests that the post-fit residuals cleaned by the 
method used in this study actually contain small-scale 
water vapor information.
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