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EXPRESS LETTER

Estimation of emission mass 
from an eruption plume for the Aso 
volcano eruption, on October 8, 2016, using 
a four‑dimensional variational method
Kensuke Ishii*

Abstract 

When an explosive eruption, such as a Plinian eruption, occurs, in order to estimate ash fall around the volcano 
and for hazard mitigation, a numerical model is often used. Simulation by a numerical model needs emission mass 
from the eruption column including vertical profile and size distribution of ash particles. Hence, the accuracy of the 
emission mass from the eruption column is vital to estimate and forecast ash fall accurately. We developed a data 
assimilation system based on the four-dimensional variational method (4D-Var) as an estimation method for emission 
mass from volcanic eruption columns as a function of altitude and ash particle size. This system includes a forward 
model which calculates volcanic ash forecast, and an observation operator, which are used for the calculation of 
misfit between observation and forecast. It also includes an adjoint model of the forward model which calculates 
the correction of emission mass from the misfit, and an algorithm to minimize the cost function as a measurement 
of optimization. In this system, observation and prior knowledge about emission mass from the volcanic eruption 
column, such as the Suzuki function, can be simultaneously treated with weight considering observation error and 
background error. Furthermore, this system has scalability for additional observations. That is to say, a variety of obser-
vations can be treated simultaneously, only if their observation operators which are an transformation from model 
parameters to observation value are developed. In this study, we applied this system to the October 8, 2016 Aso vol-
cano eruption in Japan. After this eruption, ash fall observation (including lapilli) around Aso volcano was preformed, 
and operational weather radar captured the eruption cloud echo. Using both of these observations and the 4D-Var 
system, we estimated emission mass from the eruption plume column as a function of altitude and particle size, and 
it led to ash fall simulation which was consistent with observations. In addition, the eruption mass which is the sum of 
emission mass from eruption column was estimated to be 1.32 × 108 kg.
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Introduction
When an eruption occurs, we need to know about erup-
tion source parameters such as eruption mass, height 
of the eruption column and duration of the eruption to 
forecast next possible hazards for mitigation. Although 
ash fall from explosive eruptions does not always take 

human life directly, even a minor ash fall impacts human 
health, farming lifelines and aviation safety (Mannen 
2014; Klawonn et  al. 2012). In general, ash fall forecast 
is calculated by numerical models which need emis-
sion mass as an initial distribution (i.e. mass of ash and 
lapilli particle segregation from the eruption column) of 
volcanic ash including ash particle size and ash amount 
depending on altitude (e.g. Bonadonna et  al. 2005), 
and the accuracy of ash fall simulation is particularly 
constrained by the difficulty of quantifying the ESPs 
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(eruption source parameters) as initial distribution (e.g. 
Folch 2012). Some ash fall simulations use empirical 
and theoretical assumptions such as the Suzuki function 
for the initial distribution of volcanic ash. In the Suzuki 
function, the total size distribution of ash particles is 
assumed as log-normal distribution, and the emission 
mass for each particle size and each altitude is calculated 
by a simplified model of vertical velocity of an eruption 
column and terminal velocity (e.g. Shimbori et al. 2010; 
Folch 2012). However, the reliability of such distribu-
tion has yet to be verified in detail. For verification of 
empirical distribution and understanding of the nature 
of an eruption column, reconstruction of the ash parti-
cle segregation pattern along the eruption column from 
observation using an inversion method is key (Mannen 
2014). There are a variety of inversion methods in diverse 
fields such as weather forecasts (e.g. Kalnay 2002). Of 
these, the four-dimensional variational method (4D-Var) 
is one of the most sophisticated data assimilation meth-
ods and widely used in weather forecasts of meteorologi-
cal organizations of various countries (e.g. WMO 2001). 
4D-Var is an optimization method based on Bayesian sta-
tistics. In 4D-Var, prior information and observation can 
be simultaneously considered. In addition, in the 4D-Var, 
because a variety of observations such as ash fall obser-
vation and radar observation are simultaneously possible, 
there is a possibility that diverse of information such as 
size distribution and the time series of emission can be 
extracted by combining them with model dynamics.

In this study, we developed a data assimilation system 
based on 4D-Var for the estimation of emission mass 
from an eruption plume as a function of altitude and ash 
particle size, and we applied it to the case of the 2016 Aso 
volcano eruption in Japan. We obtained an initial distri-
bution of ash particles which led to a forecast that was 
consistent with ash fall observation.

Data assimilation methodology
Overview of the 4D‑Var system for volcanic ash
We analyse emission mass from an eruption plume by 
4D-Var. This method is an optimization method based on 
Bayesian statistics (e.g. Kalnay 2002). The optimization 
is to find certain variables (called “analysis variables”) 
minimizing a cost function J, including a term of differ-
ence between forecast and the background, the difference 
between forecast and observation, and a penalty term. In 
this study, the cost function J  is defined as follows
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1
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where x̃(ti) is the emission mass from the eruption col-
umn for a discretized diameter Dn and a discretized alti-
tude zk at a discretized time ti

where c is the emission mass of volcanic ash (g/m3) and N 
is the index of eruption duration (i.e. t1 is the start time of 
the eruption, and tN is the end time of the eruption). x(tj) 
is the forecast value of ash concentration in the atmos-
phere and the ash fall amount (including lapilli) which 
are both functions of location and ash diameter. The 
forecast variable x(tj) is calculated by a forward model 
Mt (atmospheric transport model) from emission mass 
x̃ , i.e. x(tj) = Mtj (x̃) . x̃g is the first guess which is based 
on prior information. For example, emission mass x̃g for 
each altitude and each particle diameter is reproduced by 
plume height in Suzuki (1983). B is the background error 
covariance which has characteristics of a model forecast 
error. yj is defined as observation at time tj(j = 1, . . . ,K . 
tK  is the end time of the data assimilation window). H is 
the observation operator which is a transformation from 
the model variable x(tj) to observation value yj . For ash 
fall amount (g/m2), the observation operator is the sum 
of each size of ash fall amount with a diameter of 2 mm 
or less, and it includes interpolation to the location of ash 
fall observation from the model grid.
Jp is a penalty term which has the effect to add con-

straints to the optimization of the variational data assimi-
lation system (Parrish and Derber 1992). In this case, the 
emission mass for any size particle and any altitude must 
be positive, i.e. we take the penalty term Jp as follows

where µ is the penalty term factor. This penalty term has 
the effect of increasing cost function J  for negative emis-
sion mass. A sufficiently large µ restricts the optimization 
of the 4D-Var system with positive emission mass.

Description of forward model
The 4D-Var system includes a forward model Mt which 
calculates ash concentration and ash fall at the surface 
from emission mass x̃(ti) from the eruption plume.

The model Mt is a Euler model using finite difference 
methods to calculate time evolution of volcanic ash con-
centration using dynamical processes such as advection 

x̃(ti) = c(zk ,Dn, ti) i = 1, . . . ,N
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and gravity settling. For time discretization, the Euler 
scheme (e.g. Kalnay 2002) is used. For space discretization, 
we adopt a finite-volume method (FVM) which calculates 
the time evolution of volcanic ash concentration from flux 
of the grid boundaries. The forecast variables are volcanic 
ash concentration and ash fall. The volcanic ash concentra-
tion is defined as a function of each grid for each ash par-
ticle diameter, i.e. the number of forecast variables in one 
grid is the number of particle diameters. Ash fall forecast 
at the surface is also a forecast variable. For the advection 
process, we adopted third-order upwind discretization 
(Wicker and Skamarock 2002) and a flux limiter function 
(Koren 1993). The meteorological field, including wind, 
temperature and pressure, used in the advection process 
and gravitational process with interpolation linearly by 
space and time is the Meso Analysis. The Meso Analy-
sis is a 3 + 1-dimensional (space and time) meteorological 
field, such as wind and temperature calculated by the Japan 
Meteorological Agency (JMA 2013) with approximately 
5-km resolution horizontally for daily weather forecasts 
and meteorological hazard mitigation. The spatial coor-
dinates are uniform for latitude, longitude and altitude. 
Gravitational settling is vertically downward advection cal-
culated from terminal velocity which depends on the diam-
eter of ash particles based on Shimbori et al. (2010). In the 
calculation of terminal velocity, particle density is based on 
Wilson and Huang (1979). In addition, diameter D of ash 
particles is defined as the mean of diameter of the major 
axis a1 and short diameter a2 = a3 with a shape factor 
a2
a1

= 1
3 (Shimbori 2015). In this study, ash particle diameter 

D is defined by D = 1
3 (a1 + a2 + a3).

Optimization algorithm
The 4D-Var system calculates an optimized value (called 
the “analysis value”) from a first guess by minimizing the 
cost function. For minimizing the cost function, we use an 
iteration method using the gradient of the cost function 
∇iJ = ∂J/∂ x̃(ti) as follows

where MT is the adjoint of the forward model Mt , as 
follows
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Similarly, HT is adjoint of the observation operator H , 
as follows

The adjoint model MT calculates the sensitivity of cost 
function J  for emission mass x̃(t1), . . . , x̃(tN ) from misfits 
between observation and forecast HTR−1[H(x(tj))− yj] 
in a model space at time tj , including observation error as 
weight. Once we obtain a gradient of cost function ∇iJ  , 
the iteration method can be performed to minimize the 
cost function. In this study, the limited-memory quasi-
Newton (L-BFGS) algorithm is used as the iteration min-
imizing algorithm (Liu and Nocedal 1989). In Fig. 1, the 
flow of the overall system is shown.

Application to the 2016 Aso volcano eruption
We adopted the 4D-Var system for the 01:46 (JST) Octo-
ber 8, 2016 eruption of Aso volcano in Kyushu, Japan, 
which is an active volcano that JMA monitors with 
various instruments such as seismometers, tiltmeters 
and remote cameras. Most recently, several ash emis-
sions (2003–2005) and volcanic gases and ash emissions 
(2014–2016) occurred (Miyabuchi et  al. 2008; Maru-
moto et al. 2017). According to Ishii et al. (2018), in the 
October 2016 eruption, SO2 emitted from the eruption 
reached an altitude of 13–14 km, and the ash and lapilli 
fall spread several kilometres, mainly to the northeast by 
the ambient wind. Furthermore, lapilli which fell approxi-
mately 4.5  km from the vent broke window panes, and 
lapilli which fell approximately 6.5 km away broke more 
than 1500 solar panels.

Observation used in the 4D‑Var system
In this study, the input into the 4D-Var system is ash fall 
(including lapilli) and radar observations.

In the October 8, 2016 eruption, ash and lapilli fall 
spread to the northeast area of Aso volcano. Ash fall 
observations were performed from a few hours after 
the eruption by JMA-MOT (JMA Mobile Observa-
tion Team). However, in this experiment, it is assumed 
that observed ash fall was sedimented within 2 h after 
the eruption (i.e. 01:47–03:47 JST). Although we have 
no time series of ash fall observation, accounting for 
wind from aerological observation, etc., on the day, 
this assumption is sufficiently realistic. In addition to 
JMA-MOT field observations, JMA directly confirmed 
if ash had fallen or not by asking public offices (such as 
police stations) in the wider region. In this information, 

H(x + δx) = H(x)+ δx
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H
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un-quantitative values, such as “Ash fell but the amount 
is unknown” and “Lapilli is on the ground but the 
amount is unknown”, are included. Therefore, for this 
result of asking public offices, reports of “No Ash Fall” 
were used as ash fall 0 (g/m2) [including lapilli 0 (g/
m2)], but un-quantitative values such as “Ash fell but 
the amount is unknown” were not used in this experi-
ment. We assumed that observation of “Ash Fall Only” 
includes “No Lapilli”. Besides, the eruption plume was 
captured as radar echoes by JMA operational weather 
radars, and the top height of the plume was estimated 
about 12,000  m ± 687  m above sea level (Sato et  al. 
2018). In this study, radar observation which is input 
into the 4D-Var system assumes that there is no ash 
and lapilli above 13  km above sea level (in this study, 
radar data do not have a quantitative parameter in the 
eruption column).

Simulation settings and first guess
In this simulation, the spatial coordinate is a hori-
zontal grid spacing of 0.01 degrees and a vertical grid 
spacing of 1 km. The area of calculation is 32.75–33.55 

degrees for latitude and 130.95–131.75 degrees for 
longitude, and the surface—16  km for altitude. The 
time step is 1 s. The forecast time is 2 h from eruption 
(i.e. time of ash fall observation). Forecast variables 
are ash concentration of φ-scale − 4 to + 4 discretized 
to 20 bins. Each variable has density which is based 
on Wilson and Huang (1979) (Table  1). The emission 
mass profile is based on the emission source model 
Suzuki (1983). In this study, as a centre diameter dm 
and standard deviation σ of log-normal distribution, 
we used dm = 0.25 mm, σ = 1.0 based on Shimbori 
(2015). The start time of the eruption and duration 
of the eruption are 01:46 October 8, 2016 (JST) and 
180 s from seismometer observation (Ishii et al. 2018). 
The vent is located at 32.8836N, 131.0969E. Total 
mass emission (i.e. eruption mass) for ash fall deposit 
(including lapilli-size crusts) is assumed as 1.8 × 108 kg 
from field survey (Miyabuchi et al. 2017). In this study, 
the meteorological field is the Meso Analysis of ini-
tial time 00, 03 and 06 JST to be interpolated linearly 
by the time and space. The background error covari-
ance B assumes Gaussian statistics between distance 

Fig. 1  Schematic showing 4D-Var iterative procedure in this study
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and correlation for vertical distribution, and between 
distance and correlation for size distribution. The ele-
ment of B is as follows.

where zi, zj are altitudes which are discretized and φn,φm 
are ash particle diameters which are discretized.

The dump coefficient of Gaussian σz and σφ is, 
respectively, 500  m and 1φ , and B0 is 10  g/m3. It is 
assumed that the observation error covariance is diag-
onal. Error of ash fall observation is 10% of the meas-
ured value, and error of radar observation is 10−3 g/
m3.

As mentioned above, the penalty term is used to 
avoid negative emission mass. The parameter µ in the 
penalty term needs to be sufficiently large. However, a 
too large value leads that a penalty term is too domi-
nant in the cost function, while a too small value leads 
negative mass emission. As a result of trying some val-
ues, we chose µ = 20,000 (m6/g2).
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Simulation results
Figure 2 shows that the ash fall simulation results with 
three hundred 4D-Var iteration steps, updating the first 
guess every 20 steps, are shown in Fig.  2. The ash fall 
forecast with the 4D-Var system is closer to observa-
tion than that with no 4D-Var. Especially, the main axis 
of ash fall moved southward which is more consistent 
with observation, and in the west and south of the main 
axis of ash fall, we can see an improvement of ash fall 
forecast. That is, in the result of no assimilation, the 
ash fall is overestimated clearly around the northwest 
and south ash fall area of the main axis; however, with 
4D-Var this is improved. As expected, these improve-
ments were due to ash fall observations.

The emission mass of the first guess and analysis, 
and corrections by the 4D-Var system (called “analy-
sis increment” or “increment”) are shown in Fig.  3. 
The overestimation of ash fall, which is forecast from 
the first guess to be compared to the ash fall observa-
tions in the west area, decreases emission mass of fine 
ash from low altitude (surface—5000  m, 0 ≤ φ ≤ 3 ). 
Besides, the difference between ash fall observations 
(with no ash) and ash fall forecast with no 4D-Var 
(Fig.  2a) in the south area of the main axis decreases 
emission mass at high altitude and coarse ash (sur-
face—10,000  m, − 4 ≤ φ ≤ − 1 ). In addition, there are 
positive increment areas at “7000–12,000 m of altitude 
around 0 ≤ φ ≤ 1 ”. This positive increment is due to 
underestimations of forecast with no 4D-Var around 
the main axis from observation (around the area of ash 
fall observation 109 g/m2, 183 g/m2, see Fig. 2a).

Figure  4 is a plot between observation and forecast 
for ash fall. It shows that the ash fall forecast calculated 
from the emission mass with the 4D-Var system is bet-
ter than that with no 4D-Var. Therefore, this improve-
ment of forecast suggests that ash emission mass from 
the eruption column was improved by the 4D-Var sys-
tem and observation. However, for some ash fall obser-
vations with large amounts (> 500 g/m2, i.e. observation 
close to the vent), the ash fall forecast with 4D-var was 
worse than that from the first guess (small window in 
Fig. 4). This implies that phenomena close to the vent, 
including complex transport and depositional pro-
cesses with a huge variation of ash fall locally, cannot 
be treated properly in this system.

Discussion
Generally, because ash particles from each altitude and 
in each size fall at a variety of locations, an appropriate 
spatial arrangement of ash fall observation is needed 
for the accurate estimation of emission mass. Actually, 
in this case, inaccuracy from a lack of ash fall observa-
tion appeared in the estimation of emission mass by the 

Table 1  List of parameters for classified ash particle size

Index φ-scale Density (kg/m3) D (mm)

1 − 4.00 1116 16.0000

2 − 3.58 1121 11.9501

3 − 3.16 1129 8.9253

4 − 2.74 1138 6.6661

5 − 2.32 1150 4.9788

6 − 1.89 1166 3.7185

7 − 1.47 1187 2.7773

8 − 1.05 1214 2.0743

9 − 0.63 1249 1.5493

10 − 0.21 1292 1.1571

11 0.21 1344 0.8642

12 0.63 1408 0.6455

13 1.05 1481 0.4821

14 1.47 1564 0.3600

15 1.89 1655 0.2689

16 2.32 1749 0.2009

17 2.74 1843 0.1500

18 3.16 1933 0.1120

19 3.58 2017 0.0837

20 4.00 2090 0.0625
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4D-Var system. In Fig. 3, there is no correction for high 
altitude and fine ash (above 6000  m, 2 ≤ φ ≤ 4 ). Typi-
cally, fine ash is blown a long distance. Especially, fine ash 
particles emitted from high altitude reach several hun-
dreds to several thousands of kilometres away. Therefore, 
in order to correct fine ash emission from high altitude, 
ash observations in distant locations are needed.

However, in this study, we only have ash fall observa-
tions in the region of Aso volcano. (Observation points 
are shown in Fig.  2.) For this reason, fine ash emission 
from high altitude of the first guess could not be cor-
rected by ash fall observations. That is, the analysis 
value is almost the value of the first guess in the region 
for high altitude and fine ash. Except for large eruptions, 

Fig. 2  a Ash fall forecast without 4D-Var. b Ash fall forecast with 4D-Var. c Ash fall observation [Regional Volcanic Observation and Warning Center, 
Fukuoka Regional Headquarters, JMA (2018) (minor postscripts were added by the author)]. The white triangle is plotted at the location of Aso 
volcano for all figures. In the left and centre figures, black cross-marks are “No Ash Fall and No Lapilli Fall”, black circles are “Ash Fall (g/m2), No Lapilli 
Fall”, and white circles are “ash fall and lapilli fall (g/m2)”. White solid lines in the left and centre figures are the main axis of ash fall forecast. The white 
dotted line is the main axis estimated from observation
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we cannot obtain quantitative ash fall observations sev-
eral hundreds to several thousands of kilometres away 
because often the ash fall amount is too small to be meas-
ured accurately and to be represented locally because 
of dispersion over a long time, that is, more than 1 day. 
In this case, ash particles could only be identified by 
microscopic analysis at the Okayama Meteorological 
Observatory, over 300  km from Aso volcano (done by 
Dr. Yaguchi, who reported it). Therefore, when the ash 
fall amount is too small, it is difficult to obtain accu-
rate and local representative observation values, so it is 
not expected that a 4D-Var system with ash fall obser-
vation can correct emission mass of fine ash from high 
altitude. For example, although the eruption mass which 
is the sum of emission mass from the eruption column 
could be estimated to be 1.32 × 108 kg, it should be noted 
that this value includes some errors associated with a 
lack of observation such as this case. For a solution to 
this problem of fine particles from high altitude, other 

observations such as volcanic ash mass loading from sat-
ellite observation (e.g. Bessho et al. 2016) are necessary. 
The volcanic ash mass loading from satellite observa-
tion provides the amount of fine ash in the atmosphere 
before fall and a few hours after eruption. In addition, in 
this study, ash fall observation includes only the amount 
of ash (and lapilli) and does not include size distribution 
or a time series of ash fall. For example, additional obser-
vation including these, such as PARSIVEL (e.g. Iriyama 
2018), could be expected to improve the accuracy of esti-
mation. In the 4D-Var system, it is necessary to develop 
an observation operator H(x) , its tangent linear ∂H

∂x
 and 

its adjoint HT to introduce new observations. The 4D-Var 
system can treat a variety of observations simultaneously 
by the development of the observation operators. This 
scalability for additional observation is the most signifi-
cant point for the 4D-Var system.

It also should be noted that the emission mass esti-
mated by the 4D-Var system includes also errors 

Fig. 3  Ash emission mass from eruption plumes. a First guess based on Suzuki (1983). b Analysis (corrected first guess by 4D-Var). c Analysis 
increment (analysis—first guess)

Fig. 4  Comparison between observation and simulation for ash fall and lapilli. a Without 4D-Var. b With 4D-Var. Small windows in both figures are 
enlargements of large regions (0–4000 g/m2)
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associated with uncertainty of the numerical model. 
In this case, even if ash fall observation is used, ash fall 
observation close to the vent could not be reproduced 
by the 4D-Var system because of model uncertainties 
such as complex transport and depositional processes 
with a huge variation of ash fall locally. For the solution 
to this problem, the model uncertainties will need to be 
reduced. One solution may be a high-resolution model 
including complex processes such as entrainment of 
ambient air into eruption clouds by turbulent mixing (e.g. 
Suzuki et al. 2005).

Conclusion and future work
In this study, in order to obtain emission mass from the 
eruption column for each altitude and each size of ash 
particles, we developed a data assimilation system based 
on 4D-Var. This system was applied to the Aso volcano 
eruption at 01:46 on October 8, 2016, and observation 
for the data assimilation system is the ash fall (includ-
ing lapilli) and meteorological radar. Except for fine ash 
from high altitude, the first guess was corrected by ash 
fall observation in the data assimilation system. Using the 
corrected first guess (i.e. analysis), the numerical model 
led to an ash fall forecast which is more consistent with 
ash fall observations than the first guess.

However, the 4D-Var data assimilation system did 
not correct emission mass of fine ash from high alti-
tude because the ash fall observation in the region of the 
volcano does not have sensitivity for fine ash from high 
altitude, as it does not fall in the region of the volcano. 
In order to correct fine ash from high altitude, it is nec-
essary to have other observations such as mass loading 
from satellites.

In this study, we developed a novel data assimila-
tion system for volcanic ash. There are many unknown 
parameters such as σz , σφ and B0 background error covar-
iance B , error of ash fall observation in the observation 
error covariance R , and the penalty term factor µ . We 
could not check these parameters sufficiently. In addi-
tion, ash fall close to vent also could not be reproduced 
by this system. The solution to this problem may be the 
use of high-resolution models including complex pro-
cesses. From the above, a lack of understanding remains 
in the interpretation of the emission mass estimated by 
the 4D-Var system. Therefore, it is should be noted that 
eruption mass 1.32 × 108 kg estimated by 4D-Var sys-
tem includes some errors. Nevertheless, the ash emis-
sion mass estimated by the 4D-Var system led to an ash 
fall forecast which is much more consistent with ash fall 
observation than that with no 4D-Var, except for the area 
close to the vent.

Recently, quantitative retrieval techniques using remote 
sensing have been developed. For example, Marzano 

et  al. (2013) developed quantitative retrieval techniques 
inside eruption columns based on weather radar. Com-
parison between the 4D-Var estimate and radar obser-
vation for an eruption column may reveal disadvantages 
and validate/improve each scheme.
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