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Abstract 

Solar wind particles and ionospheric  O+ ions influence the near-Earth plasma sheet and inner magnetospheric com-
position. We studied the behavior of  H+,  O+ and  He+ ions (9–210 keV) for intense and moderate geomagnetic storms 
of solar cycle 23 and 24. An average energy density < ε > of ions over a given interval and flux enhancement is esti-
mated using observations from satellites at different L values, namely STICS sensor on-board Geotail spacecraft and 
HOPE spectrometer on-board Radiation Belt Storm Probes. It provides a comprehensive understanding of the energy 
density variation of  H+,  O+ and  He+ ions with the strength of IMF Bz, Psw, intensity of storms and L value. Statistically, 
we observed that (1) In the plasma sheet region, during main phase of the intense geomagnetic storm, < εO+/H+ >  
and < εHe+/H+ > enhances, (2) < εO+/H+ > is well correlated with Psw (CC = 0.86) and IMF Bz (CC = 0.85), (3) < εO+/H+ > 
shows higher correlation (CC = 0.73) with Kp than < εHe+/H+ > (CC = 0.65), indicating a fairly good dependence on 
the strength of geomagnetic activity, (4) < εO+/H+ > and < εHe+/H+ > dependence on L value indicates that  O+/H+ 
and  He+/H+ is more pronounced near L = 3. It is a cumulative extension of the previous studies on ion composition 
change which is in accordance with the existing picture of the plasma sheet and inner magnetosphere. 
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Introduction
The Earth’s magnetosphere is formed by the deflection 
of continuously flowing solar wind and the geomagnetic 
field. The motion of the charged particles (coming from 
the solar wind) in the Earth’s magnetosphere is governed 
by the existing electric and magnetic fields. A charged 
particle gets trapped in the different regions of the 
Earth’s inner magnetosphere depending upon its ener-
gies and the strength of convection electric field. During 
a geomagnetic storm, the ring current ion composition 
changes considerably (Daglis et al. 1999). Gloeckler et al. 
(1985) found that the quiet time ring current consists of 
mainly protons  (H+), while the intense storm time ring 
current is dominated by  O+ ions. The numerical simu-
lations have shown that at the time of solar maxima, 

geomagnetic main phase ring current is dominated by 
the energy density of  O+ ions (Jordanova et  al. 2001; 
Kozyra et al. 2002).

The near-Earth plasma sheet contains a mixture of 
ions, both from the ionosphere  (O+,  He+ and  N+) and 
solar wind  (H+,  H++ and  He+) (Daglis 2006) which is 
the direct source of ring current (Jordanova 2013). The 
ultimate source of main phase ring current is the inward 
convection of plasma from the nightside plasma sheet 
region (Keika et  al. 2013). André (2015) developed a 
new technique to detect low-energy (eV) ionospheric 
ions by detecting the wake behind a charged spacecraft 
in a supersonic ion flow. Ionospheric ions are a major 
source of the magnetospheric plasma during a geomag-
netic storm and quiet conditions (Chappell et  al. 1987). 
The characteristics of ionospheric heavy ions (like  O+) 
in the magnetosphere has been extensively studied by 
many researchers (Pulkkinen et al. 2001; Greenspan and 
Hamilton 2002; Nosé et al. 2005; Ebihara et al. 2006; Yu 
and Ridley 2013; Kronberg et al. 2014). In the near-Earth 

Open Access

*Correspondence:  veenaiig@gmail.com; bveena@iigs.iigm.res.in 
1 Indian Institute of Geomagnetism, New Panvel, Navi Mumbai - 410218, 
India
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2344-3069
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-018-0977-3&domain=pdf


Page 2 of 16Pandya et al. Earth, Planets and Space          (2018) 70:203 

plasma sheet region, during geomagnetic storm main 
phase, an extensive enhancement in  O+ ion energy den-
sity is observed compared to  H+ ions (Nosé et al. 2001). 
Nosé et  al. (2005) studied the dynamics of the iono-
spheric ions using Geotail/EPIC instrument and IMAGE/
LENA satellite for the superstorm of 29–31 October 
2003. They found that the energy density ratio for  O+/
H+ reached 10–20 during the storm maxima. This was 
the largest ratio observed by Geotail in the near-Earth 
plasma sheet, giving more than 90% of  O+ ions out of 
the total energy density observed. Zhao et  al. (2015) 
studied the evolution of ring current ion energy density 
for 29 March 2013 geomagnetic storm (Dst = − 61  nT), 
using Radiation Belt Storm Probes (RBSP). During the 
main phase of this geomagnetic storm,  O+ ions contrib-
uted ~ 25% of the ring current energy content of which 
maximum contribution is from < 50  keV energy range. 
This indicates an important role of ionosphere to the ring 
current ions even during moderate geomagnetic storms. 
Recently, using Cluster mission, Kronberg et  al. (2017) 
extensively studied that the contribution of > 40  keV 
heavy ions to the plasma sheet pressure becomes signifi-
cant as the geomagnetic storm main and recovery phase 
is approached. However, during the geomagnetically 
quiet phase, < 40  keV ions play a negligible role in the 
ring current pressure.

Numerous studies on the acceleration mechanism of 
the charged particles trapped in the magnetosphere have 
been proposed. Of these, magnetic field dipolarization is 
a very peculiar phenomena which is capable of accelerat-
ing ions to few hundreds of keV (Takahashi et al. 1987). 
During geomagnetic storms, the substorm phenomenon 
is very prominent which collectively gives the ion com-
position change. At substorm onsets,  O+ ions are more 
effectively accelerated than  H+ ions in the near-Earth 
plasma sheet (Möbius et  al. 1987). Ohtani et  al. (2015) 
explained the velocity filtering effect for  O+ ion energiza-
tion which is much more effective closer to the neutral 
sheet, wherein the plasma flows perpendicular to the 
local magnetic field. Grigorenko et al. (2015) studied the 
energy spectra for  H+,  He+ and  O+ ions using Cluster/
RAPID instrument. They found that the heavy ions were 
more effectively accelerated by ion resonant interactions 
with low-frequency electromagnetic fluctuation in the 
plasmoids associated with turbulence. A thorough review 
of the acceleration mechanism of  O+ ions is discussed 
by Nosé et al. (2016) and Kistler et al. (2016). The plausi-
ble mechanism responsible for ion acceleration has been 
addressed in the discussion part.

Earlier works are confined to the importance of iono-
spheric ions and its dependence on the severity of the 
geomagnetic storm. They addressed the role of iono-
sphere as a source of plasma sheet ions upon analyzing 

a couple of events using the satellite-based observations, 
whereas the importance of IMF Bz and solar wind 
dynamic pressure in the near-Earth plasma sheet has 
been studied by many researchers like Kronberg et  al. 
(2012, 2015) but not specifically pertaining to the mag-
netic storms and it will be given in the present work. A 
cumulative study of intense and moderate geomagnetic 
storms of solar cycle 23 and 24 is studied by relating 
energy density and flux enhancement for  O+,  H+ and 
 He+ ions. Two spacecraft observations cover the differ-
ent regions in the near-Earth plasma sheet that explains 
the dynamics of the ion composition in space and time 
domain along with the energy density estimation in dif-
ferent L values. “Data” section of the present study deals 
with the data collected from different satellites like 
Advanced Composition Explorer (ACE), Wind, Geotail 
and RBSP along with the selection of geomagnetic storm 
events. “Analysis and results: Geotail and RBSP observa-
tions” section discusses the statistical analysis and their 
comparison. “Discussion” section is the discussion fol-
lowed by conclusions in “Summary” section.

Data
In the present work, we compiled a list of moderate 
and intense geomagnetic storms that occurred dur-
ing solar cycle 23 and 24 using Dst index from World 
Data Centre for Geomagnetism, Kyoto. One-minute 
resolution Sym-H and hourly Dst index, both are almost 
alike (Sugiura et  al. 1964) giving a measure of magnetic 
storm activity; the only difference is the time resolu-
tion and the set of the stations taken into consideration 
(Iyemori et  al. 2010). The Kp index data are obtained 
from GFZ German Research Centre for Geosciences. 
Sym-H and the interplanetary data like interplanetary 
magnetic field (IMF) Bz and solar wind dynamic pres-
sure were observed at 1 AU from ACE spacecraft. The 
selected geomagnetic storm events are categorized into 
moderate (− 100  nT < Sym-H < − 50  nT) and intense 
(Sym-H < − 100 nT).

The geomagnetic storms are selected based on their 
intensity and having its main phase duration less than 
5  h. Additionally, the Geotail satellite path, during the 
geomagnetic storm main phase, should be on the night-
side to give a better insight into the nightside plasma 
sheet region. The corresponding quiet days are selected 
from the list of monthly quietest days available from the 
Kyoto website, such that Geotail satellite’s position is in 
the nightside plasma sheet region. The satellite path dur-
ing quiet and disturbed intervals is chosen to be nearly 
equal in order to ensure that the satellite position is not 
responsible for the observed compositional change. 
Table 1 enlists a total of eight intense (Sym-H < − 100 nT) 
and three moderate (− 100  nT < Sym-H < − 50  nT) 
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geomagnetic storms from solar cycle 23 and 24, which 
satisfies the above-mentioned criteria. The most recent 
severe magnetic storm on 17 March 2015 had a long 
main phase duration of about 15  h. For this event, we 
are able to investigate the effect of the main phase dura-
tion on the plasma sheet ion composition. This event is 
verified with the simultaneous observations from RBSP 
measurements and Geotail. For each of the above events, 
we have calculated the energy density and differential 
flux for  H+,  He+ and  O+ ions during main phase.

Geotail data
Geotail satellite was launched on 24 July 1992, hav-
ing an elliptical orbit of 9–30 RE, with an inclination of 
nearly 9.5° and an orbital period of approximately 125 h 
(Nishida 1994). Geotail carries an Energetic Particle and 
Ion Composition (EPIC) instrument (Schlemm et  al. 
1994) which consists of two sensors: the ion composition 
system (ICS) and the suprathermal ion composition spec-
trometer (STICS). In the present study, EPIC/STICS sen-
sor data are used that provide the differential flux, mass 
and charge state of low-energy charged particles having 
an energy range of 9–210 keV/e in eight logarithmically 
spaced spectral points. The EPIC/STICS sensor has an 
angular coverage of nearly 4π sr and about 30 ion spe-
cies channel, of which only three channels corresponding 
to  H+,  O+ and  He+ ions are used in this study. For every 
spin period (~ 3 s), there is a change in the energy step, 
so one complete spectrum is obtained at the end of eight 
spin period (~ 24 s). From each of these energy spectra, 
the energy densities for  H+,  O+ and  He+ are calculated 
by a method proposed by Nosé et  al. (2001, 2003). The 

energy densities obtained by the same method are aver-
aged over 10 min interval for better statistics.

RBSP data
Recently, a specialized, twin RBSP mission (recently 
renamed the Van Allen Probes) was launched in 2012. 
To maintain the consistency with other Van Allen Probes 
instrument papers, we use here the RBSP acronym. 
It operates in the equatorial plane between perigee of 
600  km and apogee of 5.8 RE with a ~ 9  h orbit period. 
The spin period of the spacecraft is ~ 12 s, with its spin 
axis pointing nearly in the solar direction (Mauk et  al. 
2013). The RBSP spacecraft has several instruments of 
which we consider ECT-HOPE (Helium, Oxygen, Proton, 
and Electron) (Funsten et  al. 2013). ECT-HOPE meas-
ures  H+,  He+, and  O+ ion differential flux using a time 
of flight mass spectrometer with channel electron multi-
plier detectors from 1 eV to 50 keV.  H+ and  O+ ion flux 
data are obtained at nearly every 24 s because the HOPE 
instrument measures ions and electrons during alternate 
spins (Funsten et al. 2013). HOPE instrument comprises 
of 72 energy channels that are logarithmically spaced, 
with measurements in five directions relative to the spin 
axis and at 16 spin angles (Sarno-Smith et al. 2015). We 
have selected the geomagnetic storms such that both 
RBSP-A and RBSP-B have at least one of the probes 
located in the nightside sectors (i.e., 1800–0600 Magnetic 
Local Time (MLT) and crossed L greater than or equal to 
3.5 during the storm main phase. To estimate the storm 
time enhancements, the quiet days are considered when 
less magnetic disturbance is recorded in Kp index and the 
twin probe crosses the nightside sector.

The detailed observation of ion composition in the 
near-Earth plasma sheet and inner magnetosphere is 
given in the following sections.

Analysis and results: Geotail and RBSP 
observations
Energy density and its ratio variation during intense 
geomagnetic storms
The energy density of ions in the near-Earth plasma 
sheet is studied because (1) RBSP and Geotail cover the 
different regions in the near-Earth plasma sheet. (2) A 
quantitative analysis has been extended from the previ-
ous studies for other geomagnetic storms of solar cycle 
23 and 24. (3) It contributes maximum to the high-energy 
portion of the ion population (> 20  keV) covered by 
the STICS energy band (Kistler et  al. 1992). In order to 
observe the energy density and flux enhancement during 
intense geomagnetic storms, we study two examples of 
20 November 2003 and 17 March 2015.

Figure 1 shows the largest geomagnetic storm of solar 
cycle 23 that occurred on 20 November 2003. This 

Table 1 Intense and  moderate geomagnetic storms 
during solar cycle 23 and 24

Asterisk (*) mark shows the special event having its main phase duration of 
nearly 15 h

Intense 
events

Storm days Quiet days Satellite observation

1 10 Feb 1997 4–5 Feb 1997 Geotail

2 24 Apr 2000 13 Apr 2000 Geotail

3 06 Nov 2001 27 Nov 2001 Geotail

4 20–21 Nov 2003 4–5 Nov 2003 Geotail

5 28 May 2011 22–23 May 2011 Geotail

6 05–06 Aug 2011 10–11 Aug 2011 Geotail

7 30 Sep–01 Oct 2012 27–28 Oct 2012 Geotail

8 17–18 Mar 2013 16 Mar 2013 RBSP

9 01–02 June 2013 31 May 2013 RBSP

10 17–18 Mar 2015* 11–13 Mar 2015 Geotail + RBSP

11 23 June 2015 21 Jun 2015 RBSP
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geomagnetic storm is associated with the passage of a 
large magnetic cloud that originated from active region 
0501 (Gopalswamy et al. 2005). The lower three panels in 
Fig. 1a–c show the Sym-H minimum of − 490 nT at 1817 
UT on 20 November 2003 and variations of interplan-
etary parameters like IMF Bz and solar wind dynamic 

pressure (Psw), respectively, during the magnetic storm 
period. The time interval shown here is for about 25-h 
duration from 0400 UT on 20 November 2003 to 0500 
UT on 21 November 2003. The main phase duration is 
of nearly 5 h, during which the average intensity of IMF 
Bz remains constantly southward at almost − 40  nT 

Fig. 1 Geomagnetic storm data from 20 November 2003 0400 UT to 21 November 2003 0500 UT, using Geotail satellite. a Sym-H, b, c 
interplanetary parameters (IMF Bz,  Psw), d  He+, e  O+, f  H+ ions energy density during storm (red) and quiet (blue) intervals, g  O+/H+, h  He+/H+ 
energy density ratio. The black vertical line shows the time of storm sudden commencement (SSC)
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having peak intensity of − 52 nT and Psw reaching nearly 
20 nPa. The Geotail orbit path has been carefully checked 
during the main phase of the geomagnetic storm and was 
located at (XGSM, YGSM) = (− 9, − 3)  RE during the Sym-H 
minimum (not shown here).

Figure 1d–f depicts the energy density measured from 
Geotail spacecraft, for  He+,  O+ and  H+ ions, respec-
tively. The top two panels show its ratio  O+/H+ and  He+/
H+ (Fig. 1g, h), and the black vertical line shows the sud-
den commencement (SC) of the storm. The red and blue 
curves (Fig. 1d–h) stand for the geomagnetic storm and 
the corresponding quiet interval. The quiet interval cor-
responds to 1300 UT on 04 November 2003 to 1400 UT 
on 05 November 2003. A gap in Fig.  1d–h is observed 
due to satellite’s exit from the plasma sheet which does 
not give any information about ion composition. The ion 
species,  He+,  O+ and  H+ ions, clearly shows the maxi-
mum enhancement during the main phase of the storm, 
especially during the interval (1600–2200 UT) on 20 
November 2003 and then slowly reducing in its recov-
ery phase. The average values of energy density (< ε >)1 
at the storm main phase (1600–2200 UT) and corre-
sponding quiet intervals were < εH+ >S = 16.9703  keV/
cm3, < εH+ >Q = 0.681  keV/cm3 for  H+ and 
< εHe+ >S = 0.721  keV/cm3, < εHe+ >Q = 0.0078  keV/cm3 
for  He+, where subscript S and Q indicates the storm and 
quiet intervals, respectively. The ion composition of  O+ 
ions shows a drastic change in the energy density from 
the storm time (< εO+ >S = 47.3279 keV/cm3) to the quiet 
time (< εO+ >Q = 0.0762 keV/cm3).

To determine the extent of enhancement in the iono-
spheric species  (O+ and  He+) during varying interplan-
etary conditions, the ratio of energy densities for  He+/H+ 
and  O+/H+ is taken. The energy density ratio for  He+/
H+ shows less enhancement from quiet to storm time 
(< εHe+/H+ >Q = 0.0172 to < εHe+/H+ >S = 0.0424), while the 
energy density ratio for  O+/H+ enhances drastically from 
< εO+/H+ >Q = 0.732 to < εO+/H+ >S = 2.8556.

On the other hand, Fig.  2 shows the largest geomag-
netic storm of solar cycle 24, i.e., 17 March 2015, fol-
lowing double-halo coronal mass ejections (CMEs) 
hitting the Earth’s magnetosphere reaching to a mini-
mum Sym-H of − 234  nT at 2247 UT on 17 March 
2015 (Fig.  2a) with the Geotail position in the (XGSM, 
YGSM) = (− 3,9)   RE. The panel representations of Fig.  2 
are same as Fig. 1, and the vertical line gives the time of 
SC at 0445 UT. Figure 2d–f represents the enhancement 
in the energy densities for  He+,  O+ and  H+ ions during 

the storm main phase, with slightly fluctuating Bz, reach-
ing to − 25  nT at 1307 UT and Psw peaking to nearly 
40 nPa at 1350 UT. It is observed that the enhancement 
in energy density is higher for  O+ ions than  H+ or  He+ at 
1800–0200 UT, while the composition of all three species 
is shown by blue curve during the quiet intervals.  O+ ion 
shows the drastic enhancement from < εO+ >Q = 0.52 keV/
cm3 to < εO+ >S = 3.8  keV/cm3. Figure  2g shows the 
enhancement in the energy density ratio of  O+/H+ ions 
from quiet to storm interval with < εO+/εH+ >Q = 0.1061 
and < εO+/εH+ >S = 1.3326, while  He+/H+ energy den-
sity ratio does not vary (Fig. 2h). For 20 November 2003 
geomagnetic storm, the overall enhancement in  O+ ion 
energy density is 10.72 times greater than during the 17 
March 2015 event. Table 2 represents the energy density 
of the individual species along with their ratio observed 
by Geotail and RBSP for the intense and moderate geo-
magnetic storms.  

For a given geomagnetic storm, the minimum value of 
Sym-H along with the main phase duration and time are 
shown in Table 2. The interplanetary parameters, like the 
peak value of southward IMF Bz (nT) and its duration in 
hours along with the maximum value of Psw (nPa) and 
the corresponding energy densities for  H+,  O+ and  He+ 
ions, are shown. The observations are taken using Geo-
tail spacecraft for geomagnetically quiet and disturbed 
intervals. Similar analysis is carried out for the largest 
proton event (in terms of particles above 40 MeV range), 
i.e., 06 November 2001 geomagnetic storm (not shown 
in figure). Owing to the high injection rate of the ener-
getic particles in the interplanetary medium, there arises 
a spacecraft anomaly. During this period, solar wind 
velocities from ACE/WIND satellites were degraded and 
could not be obtained during peak activity (Alex et  al. 
2005). So, Vsw is absent in Table 2. A detailed analysis of 
the dependence of plasma sheet energy density and inter-
planetary parameters is carried out in this study.

For 17 March 2015 event, we have studied the energy 
density variations in the near-Earth plasma sheet and 
inner magnetosphere using Geotail and RBSP spacecraft. 
This event is very important to investigate as it provides 
energy density variation at different L values with obser-
vations from both satellites. The direct measurements of 
energy density of ionospheric ions  O+,  H+ and  He+ are 
not available; hence, the product of ion partial density 
(n) and ion temperature (T) from the RBSP observations 
are used as a proxy for the energy density (https ://www.
rbsp-ect.lanl.gov/scien ce/DataD irect ories .php). Fig-
ure  3 depicts the Sym-H and IMF Bz variations for the 
period of 17–18 March 2015 (48 h). Figure 3a illustrates 
the energy density ratio for  O+/H+ (red) and  He+/H+ 
(blue) measured using RBSP-A. The yellow dashed line 
represents the L value of the spacecraft trajectory. The 

1 Average value of energy density < ε >, average values of energy density at the 
storm main phase is < εH+ >S, average values of energy density at the Quiet 
interval is < εH+ >Q.

https://www.rbsp-ect.lanl.gov/science/DataDirectories.php
https://www.rbsp-ect.lanl.gov/science/DataDirectories.php
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data gap observed in Fig.  3a is due to motion of space-
craft below L = 3.5. This ensures that the satellite is com-
pletely immersed into the inner magnetosphere. It can 
be observed that the energy density increases with the 
increase in intensity of the geomagnetic storm. Moreo-
ver, the < εO+/εH+ > ratio is about 170 and < ε+He/εH+ > ratio 
is about 10 during the geomagnetic storm main phase 
(1800–0200 UT).

During main phase, it is observed that  He+/H+ 
energy density ratio peaks at L = 5, while  O+/H+ 
remains high at all L values. During Sym-H minimum, 
the  O+/H+ ratio is not observed because the spacecraft 
trajectory is at L < 3.5. However, the observed enhance-
ment in the  O+/H+ energy density ratio, using RBSP, is 
maximum for 17 March 2015, among all the geomag-
netic storms of solar cycle 24 considered in our study 

Fig. 2 Same as Fig. 3 except for 17 March 2015
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and is therefore shown as an example. In fact, a few 
magnetic storms of solar cycle 24 are also analyzed 
using RBSP data and the enhancement of  O+/H+ and 

 He+/H+ energy density ratios is noticed. For an intense 
geomagnetic storm of 23 June 2015, the energy density 
ratios of  O+/H+ and  He+/H+ are 1.2596 and 1.1623.

Energy spectra
The plasma sheet energy density of the ionospheric ions 
like  O+ and  He+ becomes higher than solar wind ions, 
i.e.,  H+, during the storm interval giving enhancement 
in the  He+/H+ and  O+/H+ ratio (Nosé et  al. 2003). 
Energy density becomes larger if the particle tempera-
ture increases or particles undergo acceleration (it 
is marked by hardening of the energy spectrum). The 
energy density increase can also be owed to the shift-
ing of the energy spectrum to the higher energy fluxes 
thereby giving an increased number density. The energy 
spectra are analyzed to determine the cause of iono-
spheric energy density enhancement.

Figure 4a, b shows the energy spectra for  H+ and  O+ 
ions using Geotail observations, during 20 November 
2003 at the storm main phase (1720–1820 UT (red)), 
before the storm (0200–0400 UT (green)) and 21 
November 2003 after the storm (0600–0700 UT (blue)). 
The time interval corresponding to each is given by a 
horizontal bar in Sym-H (Fig. 4c). Figure 4d shows the 
energy spectra for  H+ (cyan),  O+ (yellow) and  He+ 
(magenta) flux—during the main phase period. It is 
obvious that during the main phase of geomagnetic 
storms,  H+ and  O+ ion flux becomes enhanced than 
pre-storm and post-storm intervals. Figure 4d gives the 
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Fig. 4 Differential flux measured using Geotail satellite, at different energies for 20–21 November 2003 at different phase of the storm for a  H+ and 
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flux enhancement for each ions and their subsequent 
acceleration at the storm main phase.  H+ and  O+ fluxes 
are almost equally enhanced for 20 November 2003 
marked by the hardening of the spectra giving accel-
eration of the ions, which will be discussed in further 
sections.

Similarly, Fig.  5a–d shows the energy spectra for the 
geomagnetic storm of 17 March 2015 in the same man-
ner as depicted in Fig. 4a–d using Geotail observations. 
Figure 5a, b shows a moderate enhancement for  H+ and 
 O+ ions at its main phase (2150–2250 UT) than the pre-
storm (0200–0400 UT) and post-storm intervals (1200–
1300 UT), respectively. There is no  O+ ion flux recorded 
before the storm and hence we do not obtain any spec-
tra for pre-storm interval for  O+ ions. Figure 5d clearly 
shows that the  O+ ions are accelerated to a lesser extent 
(marked by hardening of the spectra) than 20 November 
2003 storm. On the other hand,  H+ ion flux is highest at 
the storm main phase. The most common feature that is 
observable in both the geomagnetic storms is harden-
ing of  H+ and  O+ ion spectra at the storm main phase. 
The  O+ ion spectral hardening, shown in Fig. 4, is maxi-
mum for 20 November 2003, indicating the maximum 
acceleration of the plasma sheet ions outflowing from the 
ionosphere. On the other hand, for 17 March 2015, a lit-
tle hardening or no hardening is observed, giving lesser 
extent of acceleration.

It is interesting to verify the energy spectra of  O+ flux 
enhancement during 17 March 2015 on the energy-time 
spectrograms using HOPE instrument on-board RBSP 
which gives more information of ion flux in the inner 

magnetosphere. Figure  6a shows ion energy spectra in 
the inner magnetosphere, observed by RBSP spacecraft 
for a geomagnetic storm during 16–19 March 2015. The 
duration of 4 days includes the pre-storm days, which can 
be considered as a quiet interval. From top to bottom, the 
panels displayed are the energy-time spectrogram giving 
a spin-averaged differential flux for  H+,  He+,  O+ ions for 
RBSP-A and RBSP-B, solar wind dynamic pressure, IMF 
Bz and Sym-H, respectively. Blue vertical dashed lines 
correspond to an interval of each day from 0000 UT on 
16 March 2015 to 2400 UT on 19 March 2015. RBSP-A 
was positioned well on the nightside during the storm 
main phase and hence the spectrogram shows a great 
change in the ion flux during different intervals of geo-
magnetic disturbance. During the quiet time interval of 
16 March 2015, the  O+ and  He+ ion flux, measured from 
RBSP-A, varies in the range of  103–104/cm2-s-sr-keV at 
the higher energy channels (i.e., > 103 eV). The data gap 
observed approximately after every 5  h corresponds to 
the period of perigee (Ferradas et al. 2016). As observed 
in Fig.  6a, before onset of geomagnetic storm,  H+ ion 
flux is already present due to proton-rich plasma com-
ing from the solar wind and getting trapped in the Earth’s 
magnetosphere at all the energy channels. On the other 
hand, the  O+ and  He+ ion flux is very less. With the onset 
of the geomagnetic storm, the keV ion fluxes for  O+ and 
 He+ begin to increase while there is only a little differ-
ence in  H+ flux before and during the storm for higher 
energy channels. This incoming flux at keV range shows 
the injection of plasma into the inner magnetosphere 
during the main phase of the geomagnetic storm. The 

Fig. 5 Same as Fig. 4 using Geotail observations, except for 17 March 2015 storm having pre-storm interval 0200–0300 UT, post-storm interval 
1200–1300 UT and main phase at 2150–2250 UT
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third panel from the top shows  O+ ion flux enhance-
ment (roughly by two orders from  103/cm2-s-sr-keV to 
 105/cm2-s-sr-keV). The energy density of  O+ ion peaks 
to its maximum, at peak values of Psw (~ 40  nPa) and 
IMF Bz (− 20 nT), as shown by red vertical line in Fig. 6a. 
The central three panels correspond to the observations 
from RBSP-B. Since RBSP-B is identical to RBSP-A, it 
observes changes in the inner magnetosphere through 
both space and time. However, RBSP-B was on the day-
side of the magnetosphere during the main phase of both 
the storms, so we could not observe such strong effects in 
RBSP-B (Fig. 6a, b). The same analysis is shown below for 
other intense geomagnetic storms of solar cycle 24, using 
only RBSP spacecraft.

Figure  6b is same as Fig.  6a but for an intense geo-
magnetic storm of 21–24 June 2015 with minimum 
Sym-H peaking to − 208  nT at 0424 UT on 23 June 
2015. It can be observed that on 21 June 2015, when 
geomagnetic conditions are quiet, the recorded flux 
of each ion species on both the probes is of the order 
of  103/cm2-s-sr-keV, at higher energy channels. At the 

time of SSC, Psw increased suddenly from nearly 5 nPa 
to 59 nPa while the IMF Bz was down to -38 nT. This led 
to an enhancement in the ion flux throughout the given 
energy range at 1859 UT on 22 June 2015 (marked by 
red vertical line). The top three panels show the meas-
urements through RBSP-A depicting the  H+ ion flux 
enhancement from  103 to  105/cm2-s-sr-keV while the 
 O+ ion flux tremendously increased from  102/cm2-s-
sr-keV to  106/cm2-s-sr-keV. Probe B following Probe A 
also shows the flux enhancement for each ion species. 
A similar enhancement is observed for the intense geo-
magnetic storms of 01–02 June 2013 and 17–18 March 
2013, which are not shown but listed in Table 1.

Additionally, the analysis of other moderate geomag-
netic storms is studied in similar manner using Geotail 
spacecraft.  O+ ions undergo similar acceleration for 
moderate geomagnetic storms and its corresponding 
energy densities are mentioned in Table 2. The impor-
tance of enhanced energy spectra in the inner magneto-
sphere and related mechanisms is discussed in the later 
sections.
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Role of IMF Bz and solar wind dynamic pressure in energy 
density variations
The southward IMF Bz and solar wind dynamic pressure 
are very important in controlling the dynamics of the 
magnetosphere. So, it is worthwhile to understand the 
role of interplanetary conditions in driving plasma sheet 
dynamics during the geomagnetic storms. The Earth’s 
magnetosphere responds very quickly to the change in 
magnitude and orientation of IMF Bz that enhances the 
convection electric field. Compression of the Earth’s 
magnetosphere accounts for the global changes in the 
magnetosphere and ionosphere system, due to enhanced 
solar wind dynamic pressure (Zesta et  al. 2013). Mag-
netic energy stored in the magnetosphere (or magneto-
tail) is transported to the inner magnetosphere through 
the plasma sheet region. So, the changes in the plasma 
sheet ion composition will affect the inner magneto-
spheric composition. During a geomagnetic storm, the 
plasma sheet ion composition is mainly influenced by the 
solar wind dynamic pressure and southward IMF Bz. Fig-
ure 6a shows the sudden increase in Psw at 1100 UT on 
17 March 2015, and in Fig. 6b, it is observed at 1840 UT 
on 22 June 2015. The observed Psw increase continues 
to be at high values during the main phase of the storm. 
When high Psw impacted the magnetosphere, it caused 
a huge outrush of the ionospheric ions and remained 
high throughout the geomagnetic storm main phase. Fig-
ure 7a, b shows the correlation between Psw with energy 
density ratio of  O+/H+ and  He+/H+ ions using Geotail 
observations in the near-Earth plasma sheet. It is clearly 

seen that the plasma sheet  H+,  O+ and  He+ ion outflow 
is well correlated with Psw. The correlation coefficient 
of < εO+/εH+ > and < εHe+/εH+ > with Psw is 0.86 and 0.78, 
respectively. On the other hand, Fig. 7c, d shows that IMF 
Bz is the next important parameter giving ionospheric 
outflow. IMF Bz correlation with plasma sheet energy 
density ratio for  O+/H+ and  He+/H+ is 0.85 and 0.78, 
respectively. So, Psw and IMF Bz are both equally cru-
cial parameters giving rise to changes in plasma sheet ion 
composition.

L value dependence on energy density variations
The energy density ratio of  O+/H+ and  He+/H+ is not con-
stant at all L values due to varying distance from the Earth 
and also varying intensity of the storm. So, in order to esti-
mate L value dependence of the energy density ratio with 
the strength of geomagnetic activity, we have plotted Fig. 8, 
wherein, the observations from Geotail and RBSP are con-
sidered and combined together. The open circle and open 
diamond correspond to the energy density ratio of  O+/H+ 
from Geotail and RBSP, while closed circle and closed dia-
mond correspond to the energy density ratio of  He+/H+ 
from Geotail and RBSP, respectively. In L = 2–4, the obser-
vations are taken from RBSP, while for L > 5, the observa-
tions are taken from Geotail spacecraft. It can be observed 
that  O+/H+ and  He+/H+ are almost equally high (of the 
order of  101) in the L range of 2–4, while it decreases to 
lower energy range of  10−2 as the spacecraft moves to L > 5. 
For the moderate to high geomagnetic activity of Kp = 5–8, 
the energy density ratio goes high in the L range of 2–4, 
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while for the same strength of geomagnetic activity at L > 5 
the energy density ratio is low. It is important to notice that 
the enhancement in the energy density ratio of  O+/H+ and 
 He+/H+ is higher for RBSP observations than Geotail values 
of the order of almost 2 which explains the energization of 
ions in the near-Earth region. So, the energy density ratio for 
 O+/H+ and  He+/H+ peaks at L = 2–4 while it decreases at 
L > 5 for the same intensity of geomagnetic activity.

Discussion
The mechanisms like (1) energization of the ionospheric 
ions to ring current energies, (2) the change in plasma 
sheet ion composition and (3) the extent of composi-
tional change observed during intense geomagnetic 

storms have not been completely understood. The trans-
port and energization of ions are complex in nature and 
one of the important issues in storm time dynamics and 
plasma circulation in the inner magnetosphere (Denton 
et  al. 2016). Through Geotail and RBSP observations, 
we find the energy density enhancement of  H+,  O+ and 
 He+ ions during disturbed intervals. The energy density 
ratio for  O+/H+ and  He+/H+ is well correlated with Psw, 
southward IMF Bz and also depends on the L values. 
Additionally, the studies by Nosé et al. (2003) have shown 
the probable dependence of the ionospheric outflow on 
the solar wind dynamic pressure.

Accelerated hot  O+ ions have its highest contribution 
to the ring current particles at the geomagnetic storm 
main phase (Hamilton et  al. 1988) due to strong con-
vection electric field and inflow of ions from the plasma 
sheet. Thus, plasma sheet has to become rich with  O+ 
ions before and during the geomagnetic storm main 
phase for the ring current plasma to become rich with  O+ 
ions, as observed in our studies (Figs. 1, 2, 3). Hence, the 
plasma sheet plays an important role in the development 
of the storm time ring current. The energy spectra for 
 H+,  O+ and  He+ ions are plotted for geomagnetic storms 
of different intensities (Fig.  9a–c). The  O+ and  He+ ion 
flux spectra show a slight tendency of spectral harden-
ing from moderate to the most intense magnetic storms 
(Fig.  9b, c). However, the hardest spectrum is observed 
for the most intense storm for all three ion species 
(Fig. 9a–c). In case of 6 November 2001, Sym-H (min) is 
− 320 nT (cyan curve), the  He+ and  O+ ion flux at lower 
energies shoot up to its maximum, exceeding the flux of 
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the most intense geomagnetic storm of solar cycle 23, 
i.e., 20 November 2003 (Sym-H (min) = − 490  nT, blue 
curve). The observed flux enhancement at 9.38  keV on 
6 November 2001 is maximum for  O+ ions (1.208 × 106/
cm2-s-sr-keV) than  H+ (3.294 × 105/cm2-s-sr-keV) and 
 He+ (7.126 × 104/cm2-s-sr-keV). The possible reason for 
this could be the increased IMF Bz strength to − 77 nT 
within 2 h. On the contrary, for 20 November 2003, with 
Sym-H (min) = − 490 nT (blue curve), the spectra for  H+, 
 O+ and  He+ ions are hardest among all the selected geo-
magnetic storms showing the acceleration of the particles 
in the plasma sheet. This higher acceleration of  H+,  O+ 
and  He+ ions could be attributed to higher strength of 
southward IMF Bz (− 55 nT) for longer duration (12 h). 
Thus, the geomagnetic storms having less hardening and 
hence less acceleration of the ions show lower magnitude 
of Sym-H decrease.

Estimation of storm time energy density variations 
with intensity of the storm-
We attempted to quantify the energy density and flux 
enhancements of  O+,  H+ and  He+ ions. The obtained 
results are compared with earlier studies, and it is 
observed that the plasma sheet < εO+ > and < εHe+ > are 
well in agreement with the results obtained by Kron-
berg et  al. (2017) for > 40  keV energies. The results are 
extended to bring a quantitative approach, which pro-
vides the comprehensive understanding of plasma sheet 
ions, the role of interplanetary parameters and intensity 
of the geomagnetic storms in enhancement of  O+,  H+ 
and  He+ ions.

Some studies have found that the energy density ratios 
for  O+/H+ and  He+/H+ strongly depend on the geomag-
netic conditions (Ipavich et al. 1984; Nosé et al. 2001) by 
considering a few case studies. In this work, we examined 
the Kp dependence of < εO+/εH+ > and < εHe+/εH+ > for all 
the storms from Geotail and RBSP observations (given 
in Table 2) separately shown in Fig. 10. It is known that 
the energy densities of  O+,  H+ and  He+ ions shows con-
siderable variation in (XGSE, YGSE) (Ohtani et  al. 2011). 
Hence, for removing the effects from different regions 
and to reduce the dawn-dusk asymmetry, we normalize 
the energy densities and applied the correction factor 
(from Fig. 8(d) in Ohtani et al. 2011). It is observed that 
< εO+/εH+ >s and < εHe+/εH+ >S depends on the average 
values of Kp index (i.e., < Kp >S). From Geotail observa-
tions, the correlation coefficient for  O+/H+ was found 
to be 0.73, while for  He+/H+, it is 0.65. This is consist-
ent with the observations from RBSP spacecraft (CC for 
< εO+/εH+ > = 0.86 and CC for < εHe+/εH+ > = 0.60). The 
regression curve for < εO+/εH+ > using Geotail observa-
tions is Y = 7.3 × 100.09*Kp and using RBSP observations is 
Y = 0.04 × 10(0.04*Kp). To determine the significance of our 

results, we calculated the P-values that are based on null 
hypothesis. The P value for  O+/H+ relation was found to 
be less than 0.0001, and for  He+/H+, it is less than 0.0022. 
This shows that the calculated correlation coefficients 
are significant. Additionally, the Geotail observations of 
only four magnetic storms of 1998 having minimum Dst 
(− 50 nT) have shown a strong correlation of 0.88 for  O+/
H+ (Nosé et al. 2001).

To quantify our outcome with other studies, we have 
plotted Fig. 11 that gives the Geotail observations on the 
energy density change. These results complete the obser-
vations of all events of solar cycles 23 and 24 and thus 
one can estimate the energy densities by knowing the 
intensity of the storm. The extension of the observations 
made by Nosé et al. (2005), with our results is shown in 
Fig. 11a, which is the summary plot showing the depend-
ence of  O+/H+ energy density ratio with Sym-H or Dst. 
Here, we have added all the moderate and intense geo-
magnetic storms to evaluate and extend the previous 
studies made by Nosé et  al. (2001, 2003, 2005) and the 
energy density ratio marked with red, blue and green cor-
responds to the studies from references. The black data 
points are the geomagnetic storms fitted to the plot from 
our studies. Figure 11b shows the energy density of four 
geomagnetic storms of 1998 (Nosé et  al. 2001) (shown 
in blue) extended with our observations. The geomag-
netic storms for which Sym-H or Dst falls above − 25 nT 
are considered as the quiet interval. It is observed that 
the intensity of geomagnetic storm or ring current is 
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dependent on  O+/H+ and  O+ ion composition change in 
the near-Earth plasma sheet. Hence,  O+/H+ ion compo-
sition changes in the near-Earth plasma sheet have been 
compared with those in the ring current. It is evident that 
< εO+/H+ > shows more enhancement for RBSP observa-
tions than Geotail (Fig.  11). This is possibly due to the 
RBSP observations at lower L values (Fig.  8) than Geo-
tail. Moreover, the ionospheric source increases closer to 
the Earth and there can also be additionally preferential 
acceleration of  O+ ions. This confirms previous findings 
(e.g., Kistler et al. 2016) and is very much consistent with 
the recent HOPE observations by Fernandes et al. (2017).

The energy-time spectrogram obtained using RBSP 
observations (Fig. 6) also confirms the flux enhancement 
at the higher energies giving acceleration of the convect-
ing ions from the plasma sheet into the inner magneto-
sphere. Hence, observations from the two spacecrafts 
help in explaining the inward convection and accelera-
tion of  O+ ions from the plasma sheet to the inner mag-
netosphere. The observations of 17 March 2015 show 
that the energy density (shown in Fig. 2) and flux (shown 
in Fig.  6a), measured simultaneously at two different 
locations, for all the three ion species increase with the 
onset of geomagnetic storm main phase. It clearly reflects 
the fresh plasma injection from the plasma sheet into the 
inner magnetosphere.

The two major routes through which the ionospheric 
 O+ ions can enter plasma sheet are: (1) the dayside cusp 
region that convects through the lobe, undergo recon-
nection and enters the nightside plasma sheet and (2) 
nightside aurora region (Lotko 2007; Yu and Ridley 
2013). Speiser (1965) first addressed the acceleration 

mechanism of particles in the current sheet, from the 
magnetotail toward the inner magnetosphere. In the 
proximity of the current sheet, the spatial scale of mag-
netic field change is less than the particle gyro-radius. 
Hence, the first adiabatic invariant is not conserved. So 
the particles injected in the current sheet undergo ener-
gization by dawn–dusk convection electric field. The 
plausible mechanism for the acceleration of  O+ ions is 
the non-adiabatic local acceleration due to oscillating 
electric field associated with the magnetic fluctuations 
(Nosé et  al. 2016). This discussion only deals with the 
 O+ ion dynamics; however,  H+ ions are also expected to 
behave similarly.

Summary
The complexity of ion composition variations in the 
near-Earth plasma sheet and inner magnetosphere 
during the main phase of the geomagnetic storms is 
investigated in this work by using two satellite-based 
observations. It is clear that these energy density vari-
ations are dependent on the intensity of the storm, but 
the extent of enhancement of the energy density ratio 
is quantified by considering some of the events of ear-
lier studies which cover geomagnetic storms during 
solar maximum of solar cycle 23 and 24. Additionally, 
we analyzed the possible role of the strength of south-
ward IMF Bz and solar wind dynamic pressure. The 
major outcomes of the present study are: (1) Geotail 
and RBSP observations reveal that the energy densities 
of  H+,  O+ and  He+ ions and the ratios  O+/H+ and  He+/
H+ in the near-Earth plasma sheet and the inner mag-
netosphere were nearly constant before the onset of the 
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storm and increases with the geomagnetic activity. (2) 
During intense geomagnetic storms,  O+ is the dominat-
ing ion. (3) Plasma sheet ion composition depends on 
the strength of IMF Bz, Psw and the time duration for 
which the IMF Bz remains southward. (4) The Kp index 
has a fairly good dependence on  O+/H+ (CC = 0.74) 
and  He+/H+ (CC = 0.58). (5) The energy density of 
keV range ionospheric ions is found to be higher in the 
near-Earth region (L = 2–4), which keeps on reducing 
as we move farther away from the Earth (L > 4). Thus, 
two satellite observations helped in finding evidence 
of the fact that the inner magnetospheric plasma is 
replaced with fresh plasma from the plasma sheet. 
Hence, the plasma sheet and inner magnetospheric ion 
composition are found to vary similarly as inferred in 
the previous studies and found to be consistent with 
the existing picture of the nightside magnetosphere.
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