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Abstract 

We introduce MoVFEM, a computational algorithm for the modeling of three-dimensional magnetotelluric (MT) data 
using a vector finite element method of specific order from multiple elements’ orders. Our algorithm allows com‑
plex geometries, topography, and anisotropic resistivity structures. The software calculates secondary electric and 
magnetic fields for a plane-wave primary magnetic field. Accurate calculation of fields in the boundary regions of 
the computational domain are ensured by the implementation of the Generalized Perfect Matched Layers method. 
We validate the MoVFEM algorithm by applications to various scenarios, which allow a comparison with analytical or 
accepted numerical solutions where available. The respective results of our algorithm are in good agreement with 
existing solutions.

Keywords:  Numerical modeling, Electrical resistivity anisotropy, Finite element method, Edge elements, 
Magnetotellurics

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Introduction
The inversion of MT data in connection with the mod-
eling of three-dimensional resistivity structures has 
become a significant area of research with the increase 
of large-scale MT surveys (e.g. Robertson et  al. 2016; 
Schultz 2010; Schultz et  al. 2019) and the availability of 
high-performance computing strategies (Newman 2014). 
The modeling step is the critical hub of inversion meth-
ods. It consists of parametrizing the subsurface in terms 
of resistivity and generating synthetic MT responses. The 
results are obtained by numerically solving the partial 
differential equations describing the propagation of elec-
tromagnetic (EM) fields in various media.

The primary numerical methods for 3D MT modeling 
are integral equation, finite difference (FD), and finite 
element methods (FEM) (Avdeev 2005). Finite differ-
ence methods are well developed, but the focus has been 
changing toward finite element methods, because these 

can account for topography, bathymetry, and complex 
geometry of subsurface structures more accurately (New-
man 2014). Since the publication of Reddy et al. (1977), 
nodal FEM has been applied to solve the forward EM 
modeling problem (e.g. Mogi 1996; Puzyrev et al. 2013).

Two types of numerical element geometries are com-
monly used in 3D FEM; namely grids of tetrahedrons or 
hexahedrons. According to Yilmaz and Kuzuoglu (2008), 
tetrahedron meshes are commonly used, because of the 
availability of mesh generation schemes. They have been 
frequently applied for the modeling of 3D structures 
from EM data (e.g.  Ahagon and Kameari 2017; Ahagon 
et al. 2018; Cai et al. 2017; Camargos et al. 2017; Liu et al. 
2010, 2018; Puzyrev et al. 2013; Ren et al. 2013; Schwar-
zbach et al. 2011; Weiss 2017). On the other hand, hexa-
hedron mesh geometries are also commonly applied (Cai 
et al. 2014; Farquharson and Miensopust 2011; Mitsuhata 
and Uchida 2004; Mogi 1996; Nam et al. 2007; Shi et al. 
2004; Xiao et  al. 2018; Xiong et  al. 2018; Zyserman and 
Santos 2000).

Han et al. (2009) argue that although FD methods are 
fast, vector finite element methods (VFEM) yield more 
accurate solutions. In VFEM, the EM fields are calculated 
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at the edges of the tetrahedron or hexahedron element 
of the grid. On the other hand, FEM computes them as 
a vector with three unknowns on each node of the ele-
ment. Therefore, VFEM reduces the degrees of freedom 
of the modeling problem and includes the continuity of 
EM fields among shared elements of the computational 
domain.

Mostly linear-order edge elements have been applied 
in the modeling of MT data (Farquharson and Mien-
sopust 2011; Mitsuhata and Uchida 2004; Nam et  al. 
2007; Shi et  al. 2004; Jin 2002). Mitsuhata and Uchida 
(2004) used linear-order edge elements and nodal basis 
functions to model MT data with the help of the T−Ω 
Helmholtz field decomposition on rectilinear elements. 
Shi et  al. (2004) incorporated a divergence correction 
technique into VFEM for 3D MT modeling using linear-
order edge elements on a hexahedral mesh. Farquharson 
and Miensopust (2011) also applied a divergence correc-
tion to 3D MT forward modeling and then used piece-
wise linear functions to define the vector basis functions 
on a rectilinear mesh. Nam et al. (2007) were the first to 
apply distorted hexahedrons in order to include surface 
topography for 3D MT modeling, using linear-order edge 
elements.

Edge elements of linear order require a fine grid spacing 
of the finite elements to obtain accurate solutions. Con-
sequently, the problem has to be formulated with a large 
numbers of unknowns, which again leads to large numeri-
cal arrays. Yilmaz and Kuzuoglu (2008) therefore recom-
mended the use of high-order edge elements for the EM 
scattering problem, since it is possible to obtain accurate 
solutions with larger elements. The resulting numerical 
problem contains fewer elements, which leads to reduced 
requirements in computer memory and faster conver-
gence of solutions. Most recent applications of high-order 
elements have been using tetrahedral mesh (e.g. Ahagon 
et  al. 2018; Schwarzbach et  al. 2011; Weiss 2017). There 
have been some applications of high-order elements in 
hexahedral mesh (e.g Grayver and Kolev 2015; Käufl et al. 
2018; Zyserman and Santos 2000). Kruglyakov and Kuvs-
hinov (2018) introduced high-order polynomial basis for 
the volume integral-equation method.

The 3D forward modeling algorithms, available within 
the scientific community, consider the subsurface as 
isotropic (Cai et al. 2014; Farquharson and Miensopust 
2011; Grayver and Kolev 2015; Käufl et  al. 2018; Liu 
et  al. 2010; Mackie et  al. 1993; Mitsuhata and Uchida 
2004; Nam et al. 2007; Shi et al. 2004; Xiao et al. 2018; 
Xiong et  al. 2018; Zyserman and Santos 2000). How-
ever, an anisotropy of the modeled medium affects the 
interpretation of MT data (e.g. Naif et al. 2013); there-
fore. it is advantageous to extend the computational 

capabilities of modeling algorithms toward the han-
dling of full 3D anisotropic structures. Recent imple-
mentations of anisotropy in VFEM have been applied 
with either linear-order tetrahedral elements (Cai et al. 
2017; Liu et al. 2018) or using linear-order hexahedral 
elements (Xiao et al. 2018).

At this point, several algorithms for the forward 
calculation of MT responses for a given resistivity 
structures exist and have been used to infer unknown 
subsurface structures. However, the application of 
high-order hexahedral elements including anisotropy 
has not been discussed in the literature. We developed 
a multi-order vector finite element Method (MoVFEM) 
for the calculation of MT data for 3D structures, includ-
ing anisotropy and complex geometry such as topogra-
phy and subsurface interfaces. In addition, high-order 
hexahedral elements have been implemented in the 
algorithm. This algorithm produces accurate results if 
the right choice of boundary conditions is made along 
with the most efficient element order.

The MT problem is based on the secondary field 
formulation, in which the EM fields are defined as the 
sum of given primary EM fields with unknown sec-
ondary EM fields, where the primary fields are the 
EM fields propagating in the air. Both the electric and 
magnetic field governing equations are implemented in 
MoVFEM. Boundary conditions are considered using 
the Generalized Perfect Matched Layers (GPML). The 
GPML boundary conditions are applied by defining a 
layer zone (called Perfect Matched Layer), where the 
field values will gradually decrease to a zero value on 
the boundary of the domain (Fang and Wu 1996; Zhou 
et  al. 2012). This method was first proposed by Fang 
and Wu (1996), and later Zhou et  al. (2012) modified 
the GPML equations for MT and CSEM modeling. 
Both GPML approaches are included in MoVFEM to 
compare their behavior. Dirichlet boundary conditions 
are also implemented in this algorithm.

In this feasibility study for MoVFEM, we also com-
pare three types of edge elements: linear-order hexa-
hedrons (12 edges), quadratic-order hexahedrons (36 
edges), and Lagrangian hexahedrons (54 edges). Linear- 
and quadratic-order hexahedral elements have been 
proposed by Kameari (1990). The Lagrangian edge ele-
ments are based on Crowley et al. (1988) and Kameari 
(1990). All element types and their respective basis 
function definitions lead to a global stiffness matrix, 
which is usually sparse and symmetric. The required 
matrix inversions are calculated using the MUMPS 
software library, which is a parallel direct-solver opti-
mized for sparse matrices (Amestoy et al. 2006).
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The multi‑order vector finite element method
Finite elements
According to Börner (2010), nodal basis functions force 
the EM fields to be continuous across element bounda-
ries, and it becomes difficult to impose boundary con-
ditions. It is common to obtain spurious (non-physical) 
solutions, because of the lack of applying the divergence 
free condition (Jin 2002).

Hano (1984) introduced linear edge elements for 2D 
rectangular cells. Each basic polyhedral structure (i.e., 
each cell) consists of nn nodes and ne edges, on which the 
numerical elements are defined using mixed-order poly-
nomials, i.e., polynomials of order op−1 on the direction 
of the edge element itself, and order op in other direc-
tions. Using mixed-order polynomials, the degree of free-
dom in the polyhedral structure is reduced from 3nn in 
FEM to ne in VFEM. In the following, we assume a tiling 
of the numerical domain by Ne (hexahedral) cells, and all 
numerical elements refer to edge elements. The overall 
number of nodes is Ne · nn − N shr

e · nshrn  and the overall 
number of edge elements Ne · ne − N shr

e · nshre  , where the 
superscript shr refers to shared elements.

In addition to reducing the degrees of freedom, mixed-
order vector basis functions will also have zero diver-
gence for rectangular cells and very small divergence 

for distorted geometries. These elements will define EM 
fields that are continuous across the element boundaries 
(Jin 2002).

Kameari (1990) introduced a linear-order hexahedral 
element (8 nodes, 12 elements), and high-order edges for 
the quadratic element (20 nodes, 36 elements). Crowley 
et al. (1988) presented a formulation for high-order ele-
ments on hexahedra, called covariant projection element 
(see Fig.  1a–c), from which the Lagrangian element (27 
nodes, 54 elements) is deduced. The mixed-order vector 
basis functions Bi

ξβ
 are defined locally for each element i, 

i = 1 . . .Ne.
These edge elements allow the construction of local 

elements by defining the covariant projection of a global 
vector function V(r), r = (x, y, z), onto a local coordinate 
system (ξ̂ , η̂, ζ̂ ):

The coordinate orientations are shown in Fig. 1d.

EM field formulations
We consider both the electric ( E ) and the magnetic 
( H ) fields as total fields, each consisting of the primary 

(1)Vξβ = V ·
∂r

∂ξβ
, β ∈ {1, 2, 3}.

Fig. 1  Edge elements and nodes on the basis hexahedron. a Linear-order elements, nn = 8 , ne = 12 (Kameari 1990). b High-order (quadratic) 
elements, nn = 20 , ne = 36 (Kameari 1990). c High-order covariant projection (Lagrangian) elements, nn = 27 , ne = 54 (Crowley et al. 1988). 
d Coordinate systems orientations. e Enumeration scheme for element nodes and element edges is internally enumerated depending on the 
numerical element
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and secondary field components, as E = Ep + Es and 
H = Hp +Hs , respectively. The secondary field compo-
nents are calculated within the range of the conducting 
medium.

Primary field
For the primary EM fields, the domain Ω is considered as 
air. The EM fields for xy-polarization are

Electric field
The electric field governing equation is

with 3× 3 tensors for the conductivity ( σ ) and for the 
magnetic permeability ( µ ). The electric source term on 
the right-hand side is

in which the primary electric field is modified by the 
model change δσ . This change is defined as the difference 
between the model in study σ and the model used for pri-
mary fields σ p , i.e., δσ = σ − σ p.

For MT data, it is common to approximate µ ≈ µ0I , with 
I ∈ R

3×3 as the identity operator, and σ ∈ R
3×3 being a pos-

itive definite and symmetric tensor. This tensor again can be 
written as σ = σ real + iωε0I; σ real ∈ R

3×3. The free-air 
conductivity is implemented by letting σ real ≡ 0 S/m.

Magnetic field
For the magnetic component in MT modeling, we 
assume that the magnetic permeability does not change 
from the primary model to the model in study. Therefore, 
we assume that δµ = 0 and ∇ ×

(

µ−1δµ ·Hp

)

= 0.

The magnetic field governing equation is given by

with a magnetic source term

Generalized formulation
The MT problem is solved for the secondary field, 
from a known primary field. If the electric field prob-
lem is used, the total magnetic field H is obtained by 
applying Faraday’s Law to the electric field solution: 
E = Ep + Es ⇒ H = −(iωµ)−1∇ × E. On the other hand, 
if the magnetic field problem is used, the total electric 

(2)
E
p
x = E0 − iωB0z; E0 = 0

Bp
y = B0; B0 = 1nT .

(3)∇ ×
(

µ−1 · ∇ × Es

)

+ iωσ · Es = sE .

(4)sE = −iωδσ · Ep,

(5)∇ ×
(

σ−1 · ∇ ×Hs

)

+ iωµ ·Hs = sH ,

(6)sH = ∇ ×
(

σ−1δσ · Ep

)

.

field E is calculated from Ampere’s Law applied to the 
magnetic field solution: H = Hp +Hs ⇒ E = σ−1∇ ×H.

Because of the similarity of the governing equations. 
(3) and (5), a generalized governing equation can be 
formulated:

with

The MoVFEM procedure is applied to this general 
formulation.

Applying the Galerkin method to Eq. (7), the problem 
to be solved becomes the inner product of a differentiable 
weighting function w with the governing equation, such 
as �w, D(ν, κ)Fs� =

〈

w, sF
〉

, ∀w ∈ C′(Ω), where D(ν, κ) is 
the left-hand side of Eq. (7). The solution for the afore-
mentioned partial differential equations is given by the 
following integrals, 

 These integrals are computed over the numerical domain 
Ω or over its boundary Γ  , the vector n̂ is a normal vector 
to the respective boundary element.

The boundary Γ  integral in Eq. (8) describes the Neu-
mann boundary condition for tangential fields. From the 
construction of edge elements in MoVFEM, the tangen-
tial EM fields are considered to be continuous among 
shared elements; therefore, CΓ = 0 in the local calcula-
tion of Eq. (8) (Farquharson and Miensopust 2011). On 
the boundary of the domain, homogeneous Neumann 
boundary conditions are applied. Hence, Hs × n̂ = 0 and 
Hp × n̂ = 0 , and Es × n̂ = 0 and Ep × n̂ = 0 . By applying 
these conditions, we can omit the respective boundary 
integral.

Implemented boundary conditions
GPML‑I
Dirichlet boundary conditions, in which the values of 
boundary elements are specified to be a known func-
tion, require that the boundaries are far away from 
the inhomogeneities. Therefore, the model domain 
is extended for several skin depths in each direction 
(x, y, z) . However, it is often computationally impossible 

(7)∇ ×
(

ν−1 · ∇ × Fs

)

+ iωκ · Fs = sF ,

{F, ν, κ} =

{

{E, µ, σ } electric field problem,
{H, σ , µ} magnetic field problem.

(8a)

�w, D(ν, κ)Fs� =

∫

Ω

[

(∇ × w) · ν−1 · (∇ × Fs)+ iωw · κ · Fs

]

dΩ

− CΓ

∫

Γ

w · (ν−1 · ∇ × Fs)× n̂ dΓ

(8b)
〈

w, sF
〉

=

∫

Ω

w · sF dΩ .
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to extend the domain until Dirichlet boundary condi-
tions are satisfied. This results in reflections of propa-
gating fields at the outer boundaries back into model 
domain and even the inhomogeneities, making the 
solution inaccurate. The GPML approach is based on 
the assumption that the secondary EM fields gradually 
decrease to zero in the PML zone (Fang and Wu 1996) 
as shown in Fig. 2.

According to Fang and Wu (1996), the original PML 
formulation of Berenger (1994) does not absorb effi-
ciently evanescent waves and significant reflections can 

occur at the boundary of models involving wave propa-
gation in lossy media. The author suggested the GPML 
method, a modified version of the original PML method, 
able to absorb evanescent waves propagating in lossy 
media. We implemented that improved version (GPML) 
to appropriately handle propagating and evanescent 
waves.

The implementation of the GPML method is based on 
the transformation of real valued into complex valued 
coordinates. The relevant governing equations in this case 
transform into

Fig. 2  GPML scheme and parameters. a PML boundary extension around a modeling domain with irregularly shaped structures of different 
conductivity values σi . PML zone starts at xa and ends at the point xb which are indicated for one of x̂ direction (marked by red lines). b Vertical 
cross-section through the computational domain of the respective structure, including the PML zone. The numerical grid contains irregularities of 
the model structure and is regular within the PML zone. c Horizontal cross-section through the computational grid structure. The numerical grid is 
regularly spaced within the model domain and non-regularly extended in the PML zone. The model domain is marked by the yellow rectangle in b 
and  c 
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where s̃F is the source term using the modified Nabla 
operator

and h(x1+x2+x3) = hx1hx2hx3 . The hxm = hxm(xm) (m = 1, 2, 3);  
are called stretching factors and are defined by Fang and 
Wu (1996) as follows: 

 The xam and xbm are the starting and end points of PML 
zone, respectively (see Fig. 2), and index m identifies the 
Cartesian coordinate component.

Expanding Eq. (9) with the modified Nabla operator 
(Eq.  10), it is possible to factorize the stretching factors 
from the partial differentiations (e.g., ∂mn ) into the model 
tensors νij in the anisotropic case, obtaining the final for-
mulation of the MT governing equation for the GPML 
method:

We use the modified model tensors

The indexes m = 1, 2, 3 and n = 1, 2, 3 are related to the 
components of the partial derivatives in the expanded 
curl–curl (e.g. ∂mn in Eq.  9). Consequently, 1/hxmhxn 
belongs to the partial derivatives of the expanded curl–
curl with the modified Nabla operator. The indexes 
i = 1, 2, 3 and j = 1, 2, 3 are related to the components 
of ν that correspond to the respective derivative. Appen-
dix  shows the expanded governing equation where the 
modified model tensor ν̃ can be deducted.

According to Fang and Wu (1996), it is necessary to 
define the best parameters a0 , b0 , and n that lead to a 
smooth increase of the stretching factor hxm(xm) over 

(9)
h
(x1+x2+x3)

[

∇̃ ×
(

ν−1 · ∇̃ × Fs

)

+ iωκ · Fs

]

= h
(x1+x2+x3)s̃

F
,

(10)∇̃ :=

(

1

hx1

∂

∂x1
,
1

hx2

∂

∂x2
,
1

hx3

∂

∂x3

)

,

(11a)hxm(xm) = hx0(xm)

(

1+
b(xm)

(iωε)

)

,

(11b)∀ xm ∈ PML zone ;

(11c)b(xm) = b0 sin
2

(

π |xm − xam|

2|xbm − xam|

)

;

(11d)hx0(xm) = 1+ a0

(

|xm − xam|

|xbm − xam|

)n

.

(12)
∇ ×

(

ν̃−1 · ∇ × Fs

)

+ iωκ̃ · Fs = s̃F .

(13)
ν̃ =

{

ν̃mn
ij

}

=

{

νij
h(x1+x2+x3)

hxmhxn

}

,

κ̃ = h(x1+x2+x3)κ .

space, for a frequency range f ∈ [fmin, fmax] . If b(xm) and 
hx0(xm) (Eq.  11) have large values, the attenuation will 
be faster. However, these parameters vary with space, 
bringing up numerical discretization errors that could 
cause reflections as the wave travels through the PML 
zone. Steeper variation of these parameters will bring 
larger numerical reflections (Fang and Wu 1996). For 
these reasons, the parameters b(xm) and hx0(xm) have 
to be increased gradually in space until the end of the 
PML zone. As stated by Fang and Wu (1996), a0 must be 
bounded by the condition that �/(1+ a0) > 2 to 3dxm 
where dxm is the spacing of the grid, and � is the shortest 
wavelength. The parameter b0 could be determined from 
the theoretical reflection coefficient of the absorber (Fang 
and Wu 1996). Therefore, these parameters have to be 
numerically determined based on the given setup.

GPML‑II
Zhou et al. (2012) modified the stretching factors to opti-
mize the GPML method for an application to MT and 
CSEM forward modeling: 

 The smoothness of the stretching factors hxm(xm) is 
modified by the parameter set {amin , amax , bmin , bmax} , 
which again has to be selected according to the range of 
signal frequencies, and based on the given setup. In both 
formulations, the exponent n is usually chosen from the 
interval [1,3] for evanescent waves.

All definitions of hxm(xm) (Eqs. 11a and 14a) depend on 
the frequency applied. For higher frequencies, this stretch-
ing factor smoothness increases in space than for lower fre-
quencies. The selection of the stretching factor parameters 
is important to achieve a sufficiently smooth increase for all 
frequencies. Figure 3 shows the increase of both definitions 
of the stretching factors for different frequencies, and fixed 
GPML parameters. However, a systematic analysis of these 
parameters has not been carried out up to this point.

Domain discretization
The model domain consists of an input subsurface model 
including an air domain with height hair . It is extended 
to a distance ∼ 3δmax in all directions, where δmax is the 
maximum skin depth, calculated from the minimum 

(14a)hxm(xm) = 1± ib(xm)/(a0 + iω),

(14b)b(xm) = b0

(

|xm − xam|

|xbm − xam|

)n

,

(14c)a0 = (amax − amin)
(f − fmin)

(fmax − fmin)
+ amin,

(14d)b0 = (bmin − bmax)
(f − fmin)

(fmax − fmin)
+ bmax.
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conductivity of the model and minimum frequency of the 
frequency range in use. The extension can be truncated to 
avoid numerical problems in cases of large computational 
grids. The conductivity values on the extension zones will 
be identical to the values on the respective boundaries of 
the input model.

The computational domain Ω is the model domain 
together with the extension zones. This domain is discre-
tized into Ne = Nx ·Ny ·Nz unstructured hexahedral 
elements {Ωi} , such that Ω =

⋃Ne
i=1Ωi. Let Γik be the kth 

surface of Ωi and Γjl the lth surface of Ωj , then Γik = Γjl for 
adjacent Ωi and Ωj.

Each hexahedral element is defined by the outer product 
of intervals in directions of the orthogonal basis (x̂, ŷ, ẑ):

The element size is subsequently increased throughout 
the extension zone with a geometric stretching factor 
of 1.3. These hexahedral elements will fit any topogra-
phy and subsurface interfaces by defining z = z(x, y) . 

(15)

Ωi = [xj , xj+1] × [yk , yk+1] × [zl(x, y), zl+1(x, y)]

∀i ∈ {1, 2, . . . ,Ne}

with 1 ≤ j ≤ Nx, 1 ≤ k ≤ Ny, 1 ≤ l ≤ Nz .

The surface and interfaces interpolation is applied using 
a quadratic Shepard method that interpolates scattered 
data by weighted average of data point values (Algo-
rithm 660: QSHEP2D of Renka 1988). Figure 2 shows this 
discretization approach with its extension zones.

The nn element nodes are defined in isoparametric 
coordinates ( ξ ), and the representation in Cartesian coor-
dinates ( r ) is 

Three types of numerical elements are defined accord-
ing to the numbers of nodes used for each local calcula-
tion. These are the linear, the quadratic, and the Lagrangian 
element. Figure 1a–c shows the location of the respective 
nodes.

(16a)x =
1

2

[(

xj+1 − xj
)

ξ +
(

xj + xj+1

)]

,

(16b)y =
1

2

[(

yk+1 − yk
)

η +
(

yk + yk+1

)]

,

(16c)

z =
1

2

[(

zl+1 − zl
)

ζ +
(

zl + zl+1

)]

,

with (ξ , η, ζ ) ∈ [−1, 1] × [−1, 1] × [−1, 1] ; z = z(x, y).

Fig. 3  Top panel shows the magnitude of stretching factor from Fang and Wu (1996), for fixed parameters a0 = 100 and b0 = 10−10 . Bottom panel 
shows that from Zhou et al. (2012), with amin = 0 , amax = 100 , bmin = 10−2 , bmax = 106
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For the linear element, eight corner points of the hexa-
hedral element are used (nodes 1–8 in Fig. 1e). The edge 
nodes are included for the quadratic element (nodes 
1–20 in Fig. 1e), and in addition, the six face nodes and 
the center are included for the Lagrangian element 
(nodes 1–27 in Fig. 1e).

Vector basis functions
The vector basis function v is defined in the Sobolev space 
H0(Ω , curl) to satisfy the divergence-free condition and 
to have these basis functions defined on element edges. In 
addition, these vector functions are defined in a way that 
the basis function of edge α will have a value of one on the 
node β of the edge, and zero on other nodes that do not 
belong to the edge α , such as vα(ξβ) = δαβ , where δαβ is the 
Kronecker delta.

Crowley et  al. (1988) described the field F components 
as Fξβ a projection onto the curvilinear basis vectors 
ξ̂β = ∂r/∂ξβ:

This field component is called the covariant component, 
and consequently, this definition is the so-called covari-
ant projection. According to Crowley et  al. (1988), the 
total field and the local gradient are then locally defined 
as

where |J| is the determinant of the Jacobian matrix of the 
respective coordinate transformation and ε the Levi-Civ-
ita symbol for permutations.

The resulting gradients ∇ξβ = (∇ξ ,∇η,∇ζ ) are orthog-
onal to the surfaces spanned by pairs of basis vectors of the 
curvilinear elements (η̂, ζ̂ ) , (ξ̂ , ζ̂ ) , (ξ̂ , η̂) , and therefore, they 
define local basis vectors. Kameari (1990) used the same 
definition.

The vector basis functions are defined with mixed-order 
polynomials Bi

α (α ∈ {1, 2, 3}, i = 1, . . . , ne) (Crowley et al. 
1988; Kameari 1990). The use of mixed-order polynomials 
results in a problem with me degrees of freedom. With a 
consecutive indexing of the edges within one isoparametric 
hexahedral cell, the field interpolation can be locally for-
mulated as

with the respective vector basis functions (Kameari 
1990):

(17)Fξβ = F · ξ̂β .

(18)

F =

3
∑

β=1

Fξβ∇ξβ , and ∇ξ τ =
ξ̂� × ξ̂κ

|J|
· ετ ,�,κ ,

(19)F =

ne
∑

i=1

Fivi(ξ) ,

These vector functions are continuous among shared 
edges, because they are constructed with the same nodes 
of the grid, thus the condition of continuity of tangential 
EM fields between interfaces is automatically satisfied 
(Jin 2002).

Mixed-order polynomials can be obtained from nodal 
basis polynomial functions by reducing the order in the 
direction of the edge, and normalizing it with the length 
of local edge. We will only define the respective poly-
nomials in ξ̂ direction here, the definitions for the other 
basis elements are equivalent.

Kameari (1990) presented basis functions for the lin-
ear (12 edges) and quadratic (36 edges) elements, and we 
use those definitions in MoVFEM. Webb and Miniowitz 
(1991) first presented the covariant projections for the 
implemented Lagrangian Element (54 edges), we modi-
fied those to obtain the formulation of Kameari (1990). 
The mixed-order polynomials are defined with nodes 
ξ ij = (ξj , ηj , ζj) , which are the end nodes of the respec-
tive edges (i), so the indexes for edges (i) and nodes (j) are 
bijectively connected for all element orders:

1.	 Linear order

	 The mixed-order polynomial for the ith basis vector 
in ξ direction in the linear element is 

2.	 Quadratic order
	 Two types of mixed-order polynomials are defined, 

one for basis vectors at the edges of the hexahedral 
element, and the second for basis vectors at the faces 
of the hexahedral element: 

3.	 Lagrangian order
	 Three types of mixed-order polynomials are 

obtained, i.e. polynomials of order op−1 on the direc-
tion of the edge element itself, and order op in other 
directions. The first type is defined for basis vec-
tors over element edges, the second type is defined 
for basis vectors over element faces, and the last is 
defined for elements on the center of this element: 

(20)

vi = Bi
ξβ
∇ξβ =















Bi
ξ∇ξ for edges in ξ direction ,

Bi
η∇η for edges in η direction ,

Bi
ζ∇ζ for edges in ζ direction.

(21)Bi
ξ =

1

4
(1+ ηjη)(1+ ζjζ ).

(22)

Bi
ξ =







1
8 (1+ ηjη)(1+ ζjζ )(ξjξ + ηjη + ζjζ − 1), ξ-edges

1
2 (1− η2)(1+ ζjζ ), (ξ × η)-faces
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With field and vector basis functions as defined in Eqs. 
(19) and (20), the curl of a field is 

 A detailed proof for Eq. (24b) can be found in Rivera-
Rios (2014).

Local numerical integration
When applying the basis functions in finite elements, the 
integration is first calculated on the local isoparametric 
hexahedral cell and is then transformed into global coor-
dinates. Gauss quadrature is used in MoVFEM. The num-
ber of quadrature points ng is selected according to the 
order of the respective polynomial, i.e., for linear order 
ng = 8 , and for quadratic order ng = 20 , and for Lagran-
gian elements ng = 27 (Jin 2002).

From the Galerkin formulation (Eq. 8), three integrals 
are calculated within each hexahedral cell Ωi : 

where wi , Fis , and siF are the weighting function, the 
unknown field, and the source term of the hexahedral Ωi , 
respectively.

The basis vectors vi (Eq.  20) are applied as the weight-
ing function wi in the Galerkin formulation ( wi = vi in 
Eq. 25). The curl of a field (Eq. 24a) is applied into I i1 in 
Eq. (25a), and the field interpolation (Eq.  19) is applied 
into I i2 in Eq. (25b). Subsequently, three integrals are cal-
culated on each hexahedral cell Ωi , for edges i1 and i2 : 

(23)

Bi
ξ =



























1
8 (1+ ξjξ)(1+ ηjη)(1+ ζjζ )ηjηζjζ ξ-edges

1
4 (1+ ξjξ)(1− η2)(1+ ζjζ )ζjζ (ξ × η)-faces

1
2 (1+ ξjξ)(1− η2)(1− ζ 2) central

(24a)∇ × F = ∇ ×

ne
∑

i=1

Fi · vi =

ne
∑

i=1

Fi ·
(

∇ × vi
)

,

(24b)∇ × vi = ∇Bi
ξβ

×∇ξβ , β ∈ {1, 2, 3}.

(25a)I i1 =

∫

Ωi

(∇ × wi) · ν
−1 ·

(

∇ × Fis

)

dΩ

(25b)
I i2 =

∫

Ωi

wi · κ · Fis dΩ

(25c)I i3 =

∫

Ωi

wi · s
i
F dΩ

(26a)

I i1 =

ne
∑

i1,i2=1

Fi2

∫

Ωi

(

∇ × vi1
)

· ν−1 ·
(

∇ × vi2
)

dΩ

(26b)I i2 =

ne
∑

i1,i2=1

Fi2

∫

Ωi

vi1 · κ · vi2 dΩ

 The second integration in Eq. (26c) represent Dirichlet 
boundary conditions, in which Fi2 is a value assigned for 
the boundary edge element i2 . Field values Fi2 at edge ele-
ments from the boundaries of the domain are usually the 
analytical or numerical solution of a 1D model or numer-
ical solution of a 2D model that best represent the EM 
boundary parameters. In the GPML formulation, the sec-
ond integration in Eq. (26c) disappears because Fi2 is also 
unknown at the boundaries.

These integrals can be re-written in matrix form for the 
finite number of elements:

In the matrix formulation, M̄i
1 ∈ R

ne×ne is commonly 
called stiffness matrix whose component Mi1i2 is the 
solution of the integral in Eq. (26a) for edges i1 and i2 . 
M̄i

2 ∈ R
ne×ne is commonly called mass matrix and com-

prises the integral over the Ωi element in Eq. (26b). The 
local source vector is b̄iF , comprised of the edge-wise 
integrations I i3 in Eq. (26c).

The global matrices are assembled by summing 
the respective matrices from all Ne hexahedral cells: 
the stiffness matrix ¯̄M1 =

∑Ne
i=1 M̄

i
1 ; the mass matrix 

¯̄M2 =
∑Ne

i=1 M̄
i
2 ; the source vector ¯̄bF =

∑Ne
i=1 b̄

i
F ; and 

vector of total unknowns ¯̄Fs =
∑Ne

i=1 F̄
i
s . The global sys-

tem of equations to be solved for the MT forward mod-
eling at this point is given by

This formulation results in a sparse and symmetric com-
plex valued matrix, because the integration is calculated 
locally, and elements that are wide apart will not share 
any edges on the global matrix. Therefore, the matrix 
storage can be reduced by defining an array of the non-
zero entries of global matrix. That global matrix is then 
inverted using MUMPS (Amestoy et  al. 2006), which is 
a parallel direct solver optimized for sparse matrices. 
Direct solvers do not use preconditioner, that is why it 
is not shown in Eq. (28). According to the authors, this 
direct solver takes advantage of parallelism of sparsity 
and dense factorization kernels. This package factorizes 
the symmetric matrix into a matrix of the form LDLT , 
where L is the lower triangular matrix, and D is the diag-
onal matrix.

(26c)

I
i
3 =

ne
∑

i1=1

∫

Ωi

vi1 · sF dΩ −

[ ne
∑

i1,i2=1

Fi2 ·

∫

Ωi

{

(

∇ × vi1

)

· ν−1 ·
(

∇ × vi2

)

+ iω vi1 · κ · vi2

}

dΩ , for vi1 , vi2 ∈ Ω ∧ vi1 /∈ Γ ∧ vi2 ∈ Γ

]

.

(27)
I i1 = M̄i

1 · F̄; I i2 = M̄i
2 · F̄;

I i3 = (b̄iF )
T ; F =

(

F1, . . . ,Fne
)T

.

(28)
[

¯̄M1 + iω ¯̄M2

]

· ¯̄Fs =
¯̄bF .



Page 10 of 25Rivera‑Rios et al. Earth, Planets and Space           (2019) 71:92 

From the matrix inversion we obtain the unknown sec-
ondary field components by ¯̄Fs =

[

¯̄M1 + iω ¯̄M2

]−1
· ¯̄bF . 

After obtaining the total field (e.g. Es + Ep ), the other EM 
field (e.g. H ) can be calculated directly using Maxwell’s 
equations. The modeled fields are finally stored as MT 
response functions (i.e. impedance tensor and tipper). To 
obtain these responses from the field values, the equa-
tions must be solved for the xy- and yx-polarization inde-
pendently in the formulation of the EM source fields 
(Eqs.  4,  6) as well as in the complex source of GPML if 
used (Eq.  9). The xy-polarization denotes the EM field 
with an non-zero amplitude of the electric component in 
x-direction (and a magnetic field component in y-direc-
tion, and the yx-polarization denotes the case of a non-
zero electric component amplitude in y-direction (and a 
magnetic component in x-direction).

The impedance Z is obtained by a combination of EM 
field components (Fx′ , Fy′) for both polarizations (xy and 
yx): 

The basis for the representation of the resulting matrix 
Z can be transformed into the (x, y) system, and the 
impedance components can be expressed as a combina-
tion of apparent resistivity ρa and phase angle φ:

The tipper (Tx′z′ ,Ty′z′) , i.e. the transfer function of mag-
netic field components, is defined by the following 
equation

These transfer functions are obtained for either the whole 
domain Ω or just for receivers at the surface of the model. 
This section has shown that MoVFEM is expected to pro-
duce results with great accuracy when the correct choice 
of boundary conditions is made along with the most 
efficient element order (in accuracy and computational 
time).

(29a)

(

E
xy
x′

E
xy
y′

)

=

(

Zx′x′ Zx′y′

Zy′x′ Zy′y′

)

·

(

H
xy
x′

H
xy
y′

)

, for xy-polarization ,

(29b)

(

E
yx
x′

E
yx
y′

)

=

(

Zx′x′ Zx′y′

Zy′x′ Zy′y′

)

·

(

H
yx
x′

H
yx
y′

)

, for yx-polarization .

(30)

ρa
ij =

1

µ0ω

∣

∣Zij

∣

∣

2
; φij = tan−1

(

I{Zij}

R{Zij}

)

; i, j ∈ {x′, y′}.

(31)
(

H
xy
z′ ,H

yx
z′

)

= (Tx′z′ ,Ty′z′)

(

H
xy
x′ H

yx
x′

H
xy
y′ H

yx
y′

)

.

General validation of the MoVFEM algorithm
We validate the MoVFEM algorithm by testing it against 
a model with known MT responses. We start with the 
numerical analysis of synthetic data from a homogeneous 
Earth model, for which the resulting field values can be 
calculated analytically. The apparent resistivity is equal 
to the inverse of the pre-set conductivity ρa = 1/σ , and 
the MT signal phase is φ = 45◦ . The test input model is 
100 km in each x- and y-direction, and it extends down 
to a depth of 50 km. The resistive half-space has a con-
ductivity of 0.01 S/m. We analyze the MT responses 
obtained from MoVFEM for a frequency of 0.1 Hz. For 
the primary fields the domain is considered as air, where 
σ real ≡ 0 S/m.

The grid spacing is chosen according to the element 
order, and to the skin depth δ . For linear elements, the spac-
ing in all directions is dx = dy = dz = 1

8δ = 1.99 km, the 
air height is 20 km, and the model is extended to the sides 
in all directions by ∼ 55 km. The computational domain is 
Ω = [−104.33, 103.83] × [−104.33, 103.83] × [0, 178.65] km3 , 
and the number of cells is Ne = 62× 62× 47.

For quadratic and Lagrangian elements, 
dx = dy = dz = 1

3δ = 5.3 km, the air height is 
also 20 km, and the extension zone in all direc-
tions is ∼ 69 km. The computational domain is 
Ω = [−118.9, 114.3] × [−118.9, 114.3] × [0, 207.8] km3   , 
and the number of cells is Ne = 26× 26× 20.

GPML boundary conditions I
We have implemented GPML boundary conditions in 
the formulation of Fang and Wu (1996). The stretching 
factor parameters (c.f. Eq.  11) have been set to a0 = 1 , 
b0 = 1 , n = 2 , selected after testing some combinations 
of parameters’ values. The MT responses are presented in 
Fig. 4.

Table  1 displays the computational time and mem-
ory consumption for solving the model with the given 
parameters.

Using linear elements, the resulting values for the 
apparent resistivity are at ∼ 115�m over the whole com-
putational domain, and the profile shows less deviation 
toward the edges. Therefore, the effect of errors propa-
gating from the boundaries of the computational domain 
is present increasing the resistivity by ∼ 10�m.

The MT responses with quadratic elements are more 
accurate than before over the whole model domain. The 
apparent resistivity converges to 100 �m , and the phase 
converges to ∼ 46◦ . Also, very small effects of field reflec-
tions at boundaries can be observed. The average resistiv-
ity error is small with 0.20% , and the error of the phase is 
2.20%.

The solution based on Lagrangian elements displays 
almost the same accuracy as the solution for quadratic 
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elements. The average resistivity error is 0.17% , which is 
again slightly smaller than before. The error of the phase 
has not been changed compared to the results for quad-
ratic elements. Compared to the aforementioned cases, 
the current numerical solutions show a subtle but sys-
tematically observable oscillatory behavior over the range 
of the model domains. This implies that there are still 
errors propagating from the boundaries of the domain, 
but these errors are smaller than previous cases.

The application of GPML-I boundary conditions 
results in a significant decrease of boundary errors, espe-
cially the small amplitude oscillations over the domain 
when increasing the element order. The errors are ran-
domly distributed over the surface area of the modeling 
domain, and the absolute deviation is significantly small 
for quadratic and Lagrangian elements. This holds for 
both signal polarizations xy and yx. The values for the 
apparent resistivity are well recovered, and the values 

a

b

Fig. 4  MT responses obtained from applying GPML-I boundary conditions (Fang and Wu 1996). a Apparent resistivity at the model surface for 
xy-(left panel) and yx-(right panel) polarizations using Lagrangian elements. b Numerical values for apparent resistivity (left panel) and phase angle 
(right panel) along the profile y ≡ 0 for the xy-polarization, shown for all implemented numerical elements
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for the phase angle show a small but systematic devia-
tion from the correct values. An increasingly oscillatory 
behavior of the spatial profiles of values can be observed 
with increasing element order, but with amplitudes closer 
to the real solution. These effects suggest that the selec-
tion of stretching factor parameters could also be a func-
tion of the element order. However, a systematic study of 
these parameters was not performed.

GPML boundary conditions II
To optimize the numerical results obtained using the 
GPML-I boundary conditions, we implemented the alter-
native formulation (GPML-II) for the parameters as pro-
posed in Zhou et  al. (2012). We present results for the 
parameter values amin = 0 , amax = 100 , bmin = 10−2 , 
bmax = 106 , and n = 2 , which were the best results after 
tweaking with some combination of stretching factor 
parameters. The MT responses are shown in Fig. 5, and 
the computational parameters are presented in Table 2.

The grid parameters and number of degrees of free-
doms in this setup are the same as the setup for GPML-I, 
the effective differences in computation time are there-
fore small.

In the linear elements, the apparent resistivity con-
verges to ∼ 112�m , which is slightly better than using 
the Fang and Wu (1996) formulation; the average surface 
error is 12.77% . There still the presence of errors propa-
gating from the boundary of the domain that increases 
the resistivity values to ∼ 10�m . The phase converges to 
48.5° with this GPML formulation, and the average phase 
error is 3.29%.

Using quadratic elements, the obtained apparent resis-
tivity is approximately ∼ 100�m , the correct value, and 
the average resistivity error is 0.26% . The phase fluctuates 
around 46°, and the error is similar to that from the origi-
nal (Fang and Wu 1996) GPML-I formulation.

The solution for Lagrangian elements is similar to the 
one obtained for GPML-I. However, this solution appears 
more stable than the previous one. The surface resistivity 
values range here from 99.9 to 101�m , while they vary 
from 98.9 to 101�m, when using the formulation of Fang 
and Wu (1996). The average resistivity and phase errors 
are the same as before.

Frequency range
To demonstrate the behavior of the solutions over a 
range of frequencies, we model the resistivity structure 
for five frequencies in the range from 10−2 to 10−1 Hz. 
One decade was selected because of computational and 
time resources. The MT responses are shown to compare 
the boundary conditions for each element order. All dis-
played responses are taken from the center of the model 
surface (x, y) = (0, 0).

For higher frequencies, the results from all bound-
ary conditions converge to the same resistivity value of 
∼ 101�m . The phase ranges from ∼ 45◦ for 10−2 Hz to 
∼ 48◦ for 10−1 Hz. The results for the various setups are 
displayed in Fig. 6.

The skin depth ranges from 16 to 50 km for the fre-
quency range used. The air height is set to 10 km. For 
linear elements, a grid spacing of 2.3 km is used for all 
frequencies, which we expect will yield a solution ade-
quate for the whole frequency range. The apparent resis-
tivity obtained with Dirichlet boundary conditions ranges 
from ∼ 99�m for the lowest frequency to ∼ 120�m for 
the highest frequency. For both GPML formulations, the 
apparent resistivities range from ∼ 105�m for 10−2 Hz 
to ∼ 117�m for 10−1 Hz, and the phase from around 45◦ 
for 10−2 Hz, up to 50◦ for 10−1 Hz.

For quadratic elements, the grid spacing is 10 km, and 
the other parameters are kept the same as before. The 
resulting apparent resistivity values obtained from solv-
ing the problem with Dirichlet boundary conditions 
range from ∼ 98�m for 10−2 Hz to around 101�m for 
the highest frequency. The resistivity values obtained 
with GPML are more accurate and range from 100 to 
101�m for the frequency range of [10−2, 10−1] Hz. The 
three boundary conditions produce results that converge 
to the same resistivity values for the higher frequencies. 
The phase values are similar to the behavior obtained 
with linear elements for all the boundary conditions, and 
they vary from ∼ 45◦ to ∼ 48◦ over the frequency range.

In the case of Lagrangian elements, all parameters are 
the same as before for quadratic elements. The behavior 
and accuracy of the MT responses using Lagrangian ele-
ments are therefore very similar to the results obtained 
before, improving only with minor differences.

In all cases, a systematic increase of error with fre-
quency is observed. These large errors are due to not 

Table 1  Time and  memory used in  MoVFEM with  GPML-I 
boundary conditions (Fang and Wu 1996)

Times are shown in seconds, and the memory is presented in terms of the 
number of elements Ne , the number of unknowns (DoF) and the number of non-
zero entries for the global array NNZE. Average errors are shown for resistivity 
ǫ
avg
ρ  , and for the phase ǫavgφ

Element Linear Quadratic Lagrangian

Grid Ne 62× 62× 47 26× 26× 20 26× 26× 20

DoF 561,519 172,680 338,352

NNZE 9,291,615 6,979,448 17,158,968

Assembly time 195.27 s 382.04 s 750.64 s

Total time 9872.5 s 2104.37 s 3584.95 s

ǫ
avg
ρ 12.88% 0.23% 0.17%

ǫ
avg

φ
7.37% 2.21% 2.21%
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having the optimal grid setting for each frequency. As the 
skin depth is a function of frequency, so are the grid spac-
ing and boundaries’ position. However, these parameters 
were kept the same for all frequencies used. The higher 
the frequency, the smaller the skin depth is. Therefore, 
a finer grid is required for higher frequencies to achieve 
better results. Results with Dirichlet boundary conditions 
suggest an error in the implementation of the boundary 
elements.

Boundary errors
During the validation of MoVFEM, large errors have 
been noticed for a half-space model. For linear ele-
ments the errors are specially high, and for high-order 
elements, the errors oscillate closer to the solution, but 
are scattered across the surface. Figure 7 shows a com-
parison of the solution at the surface for (a) linear, (b) 
quadratic, and (c) Lagrangian elements. We compare 

a

b

Fig. 5  MT responses obtained from applying GPML-II boundary conditions (Zhou et al. 2012). a Apparent resistivity at the model surface for 
xy-(left panel) and yx-(right panel) polarizations using Lagrangian elements. b Numerical values for apparent resistivity (left panel) and phase angle 
(right panel) along the profile y ≡ 0 for the xy-polarization, shown for all implemented numerical elements
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the apparent resistivity, real electric field, and imagi-
nary electric field for the xy-polarization only.

In the case of linear elements, large oscillations are 
seen over ŷ axis, suggesting large errors propagating from 
the boundaries of the domain. In quadratic elements, 
the oscillations are smoother for the real field and larger 
oscillations are seen in the imaginary field.

Going to Lagrangian elements, the oscillations become 
even smoother for both the real and imaginary fields. 
These errors, although closer to the solution, scatter 
across the surface, suggesting that the GPML parameters 
may depend on the element order. However, the large 
oscillations on linear elements suggest an error in the 
implementation of the boundary conditions.

Figure 8 shows the convergence of the implementation 
using Dirichlet boundary conditions. For linear elements 
to reach a similar accuracy as the high-order elements, it 
needs a finer grid with more unknowns. However, even 
with Dirichlet boundary conditions, the model converges 
to a large error in relation to half-space model. This result 
suggests a bug in the implementation of boundary con-
ditions or in the implementation of boundary elements. 
Unfortunately, this error has not been found in the code 
up to this point.

Modeling of complex resistivity structures
Despite of the error mentioned above, we continued to 
validate MoVFEM with complex resistivity structures. 
We analyze the model 3D-2, that is a part of the COM-
MEMI project (Zhdanov et  al. 1997), for comparing 

Table 2  Time and  memory used in  multi-order VFEM 
with GPML-II boundary conditions (Zhou et al. 2012)

Times are shown in seconds, and the memory is presented in terms of the 
number of elements Ne , the number of unknowns (DoF) and the number of non-
zero entries for the global array NNZE. Average errors are shown for resistivity 
ǫ
avg
ρ  , and for the phase ǫavgφ

Element Linear Quadratic Lagrangian

Grid Ne 62× 62× 47 26× 26× 20 26× 26× 20

DoF 561,519 172,680 338,352

NNZE 9,291,615 6,979,448 17,158,968

Assembly time 184.55 s 389.12 s 770.37 s

Total time 8046.82 s 2603.16 s 3877.8 s

ǫ
avg
ρ 12.77% 0.26% 0.22%

ǫ
avg

φ
3.29% 2.3% 2.3%

Fig. 6  MT responses over frequency range. Apparent resistivity (left) and phase angles (right) at the center point of the model surface, dependent 
on the signal frequency. Results are shown for all implemented boundary conditions, and for the following element orders: a linear elements, b 
quadratic elements, and c Lagrangian elements
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a

b

c

Fig. 7  Electric field solution for all elements. Surface view of resistivity (left panel), real electric field (central panel), and imaginary electric field (right 
panel). a Linear elements, b quadratic elements, and  c Lagrangian elements
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EM forward modeling responses between international 
researchers. We use this model to compare the outputs 
of our algorithm with the respective reference values. 
Unfortunately, the COMMEMI report does not provide 
information about the phase angle data, and therefore, we 
additionally compare the MT responses from MoVFEM 
with the results obtained by Mackie et al. (1993).

Effects of a non-flat topography in the model are inves-
tigated using a homogeneous Earth model including a 
2D surface hill, as modeled by Wannamaker et al. (1986) 
and Nam et al. (2007). Results of MoVFEM are compared 
with that of linear VFEM modeling presented by Nam 
et al. (2007).

Finally, effects of an anisotropic resistivity structure are 
analyzed. In that case, the conductivity tensor has only 
diagonal components to understand the MT responses 
for a transverse anisotropic model.

The results for the modeling with MoVFEM are chosen 
from the tests executed for each synthetic example with 
different frequencies. Different edge elements′ orders 
and boundary conditions are applied to each synthetic 
test model. The results of MoVFEM are shown for the 
frequency used in previous publications. For models that 
have not been published, the results of MoVFEM are 
shown for the frequency related to the skin depth and 
dimensions of the input model structures.

COMMEMI 3D‑2
Figure  9 shows the synthetic test model COMMEMI 
3D-2 from Zhdanov et al. (1997), and also describes the 
geometry and structure of the computational grid used 
in MoVFEM. We compute the MT response for a signal 

frequency of 0.01 Hz. Dirichlet boundary conditions are 
applied, in which the boundaries are layered with the 
same thickness and resistivity as the background of the 
input model. Additional tests were run with GPML, 
changing the spacing and extensions of the model; the 
results showed MT responses that fluctuate around the 
values of each resistivity structure. Meaning that small 
amplitude errors propagate from the boundaries of the 
domain. Table 3 shows the time and memory used in this 
application of MoVFEM.

The matrix inversion and solution finished in ≈ 197 
min for both xy- and yx-polarizations. Zyserman and 
Santos (2000) applied an FEM algorithm with non-con-
forming vectors (12 edge elements for the electric field, 
plus 9 face-vectors for the magnetic field); their algo-
rithm required a model of 54 × 54 × 32 cells, for a total 
CPU time for one mode (xy-polarization) of ∼ 115 min in 
sequential mode.

Figure 10 displays the apparent resistivities and phase 
angles, taken at the model surface. The results from 
the COMMEMI report (Zhdanov et  al. 1997) and from 
the FD modeling algorithm of Mackie et  al. (1994) are 
shown for comparison. The phase angles obtained from 
MoVFEM are similar to the ones published in Mackie 
et al. (1994).

The xy-polarization plots show how the apparent resis-
tivity changes abruptly from one body to the next in the 
x direction. This model shows more clearly the effect of 
an electric field propagating orthogonal to the contact of 
resistivity structures, similar to the Transverse-Magnetic 
(TM) mode in 2D structures. Outputs of MoVFEM com-
pare well with the results from Zhdanov et al. (1997) and 
Mackie et al. (1994), differences are of about 2� m and 
4◦ . The largest discrepancies are at the contacts of resis-
tivity structures, due to the discretization scheme used in 
MoVFEM, where no grid refinement takes place.

For the yx-polarization, variations across the blocks 
are smoother than in the xy-polarization. The obtained 
results fit the available reference values, although the 
apparent resistivities are slightly lower than those of 
Zhdanov et  al. (1997) by ∼ 2�m , and Mackie et  al. 
(1994) by ∼ 3�m at the location of the blocks. Phase 
values obtained with MoVFEM are slightly higher than 
those of Mackie et  al. (1994) ( ∼ 3◦ ). Some of the dis-
crepancies between the results occur at the contacts of 
different structures, again most likely caused by the dis-
cretization scheme applied in MoVFEM.

The apparent resistivity surface maps indicate no sig-
nificant error propagating from the side boundaries of 
the computational domain (Fig.  10). In addition, the 
xy-polarization shows sharp contacts in the x direc-
tion, and the yx-polarization shows sharp contacts in 
the y direction. A slight asymmetry can be observed in 

Fig. 8  Convergence with Dirichlet BC. The average surface error is 
shown for ρxy as a function of the number of unknowns (DoF), which 
relates to the size of the grid
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the yx-polarization responses, probably due to a numeri-
cal round off that propagates through the matrix LU 
decomposition. The overall error is also influenced by the 
boundary errors mentioned before; however, the cause of 
this error has not been found in the code yet.

Topography effect for homogeneous earth
The effect of non-flat topography on the resistivity struc-
ture of MT responses is investigated using the 2D surface 
hill model by Wannamaker et  al. (1986) and Nam et  al. 
(2007) (Fig. 11). To compare our results with the values 
published by Nam et al. (2007), a signal frequency of 10 
Hz is used in this test, see Fig. 11 for the geometry and 
structure of the computational grid. GPML boundary 
conditions are applied, using the scheme of Zhou et  al. 
(2012). The stretching factor parameters are the same as 
in the homogeneous model shown previously in "GPML 
boundary conditions II" section ( amin = 0 , amax = 100 , 
bmin = 10−2 , bmax = 106 , n = 2).

Table 4 shows the time and memory used in this appli-
cation of MoVFEM.

The time spent for the matrix inversion and to cal-
culate the solution was ≈ 28 min. Nam et  al. (2007) 
applied linear VFEM to the problem, using 48× 48× 31 

a

b

Fig. 9  Input model of COMMEMI 3D-2. a Two adjacent rectangular blocks (A, B) with dimensions of 20× 40× 10 km3 are embedded in a 
horizontally layered background and located at the center of the top layer. Resistivities are A = 1�m , B = 100�m , C = 10�m , and D = 0.1�m . 
Thickness of the first two layers is 10 km and 20 km from top to bottom. This model has overall dimensions of x , y ∈ [−40, 40] km, and z ∈ [0,−50] 
km. Horizontal (left) and vertical (right) cross-sections. b Computational domain, including grid structure, air layer, and boundary extension zones. 
Horizontal (left) and vertical (right) cross-sections. Air height is set to 10 km, the spacing is dx = dy = dz = 3 km. The inner domain was extended 
175.5 km in all directions, and the computational grid dimensions are x , y ∈ [−215.5, 213.5] km and z ∈ [−205.5, 205.5] km

Table 3  Time and memory used in MoVFEM with COMMEMI 
3D-2 model

Times are shown in seconds, and the memory is presented in terms of the 
number of elements Ne , the number of unknowns (DoF) and the number of non-
zero entries for the global array NNZE

Element Lagrangian

Grid Ne 44× 44× 37

DoF 1,677,882

NNZE 85,154,263

Assembly time 4674 s

Total time 11,824 s
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a

b

Fig. 10  Modeled MT responses of COMMEMI 3D-2. Apparent resistivity and phase angles for a signal of 0.01 Hz. a Response curves of xy-(left) 
and yx-(right) polarizations. Values are taken at the model surface along the profile y ≡ 0, x ∈ [0, 2] km. Bottom plots show phase angle results. 
Results for MoVFEM and two references models are displayed. b Map view of apparent resistivities at the model surface for xy-(left) and yx-(right) 
polarizations
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cells. The total time to obtain a convergence of bi-con-
jugate gradient was about 5 min in xy-polarization and 
4 min in the yx-polarization. MoVFEM required more 
time because of the use of Lagrangian elements and 
anisotropy, where the isotropic model is stored as the 
symmetric part of σ I which has six components. Con-
sequently,  252 more local integrations are made within 
each element compared with the linear and isotropic 
case in Nam et al. (2007).

Apparent resistivity and phase angle values plots are 
presented (Fig.  12). Comparing the results obtained 
from MoVFEM to those of Nam et al. (2007), it can be 

seen that the yx-polarization exhibits a better agree-
ment between the results than the xy-polarization, 
with an average ρyx difference of ∼ 3� m and phase 
angle difference of ∼ 1◦ . However, the results from both 
polarizations show a similar pattern.

Values of ρxy calculated with MoVFEM are higher 
than the reference values from Nam et al. (2007). They 
vary by around 5�m in the center of the 2D hill, and by 
∼ 2�m toward the model boundaries. Phase angle val-
ues in the center of the hill are lower by around 1◦ . The 
authors discretized the domain with a finer grid at the 
air/subsurface contact. Meanwhile, MoVFEM applies 
the same spacing over depth, but taking into consid-
eration the topography of the model or any other sub-
surface interface defined, such that Eq. (15) is satisfied. 
In addition, the surface interpolation method used in 
MoVFEM obtains a smoother hill than the input model, 
where the break of slope is slightly different than the 
input surface.

For the xy-polarization, the apparent resistivity starts 
with a value of around 100 �m at the boundary where 
the topography is flat. When the topography starts to 
change ρxy takes its higher values and at the center of 
the hill, it decreases to its minimum value. The yx-
polarization changes gradually from 97 �m across the 
boundaries to 104 �m on top of the center of the hill. 
From the apparent resistivity model surface plots, it can 
be inferred that errors from the boundaries of the com-
putational domain are not significantly scattered across 
the inner model. Therefore, we conclude that the imple-
mented GPML boundary conditions work appropri-
ately, despite the mentioned bug in the implementation 
of boundary conditions.

Anisotropic homogeneous earth
We consider an anisotropic homogeneous model with 
spatial dimensions of 100× 100× 50 km3 and a trans-
verse resistivity tensor in (x, y, z) (Fig. 13)

a

b

Fig. 11  2D topography input model. a Geometry of the setup from 
a vertical cross-section, showing the topography of the model. The 
hill is a smooth vertical extension to a homogeneous background 
with ρ = 100�m , with a variable symmetric height profile reaching 
up to 100 m, and a lateral extent in x direction of 2.4 km. Input model 
dimensions are 4× 10× 5 km. b The model domain is indicated 
by a yellow rectangle. Air height is 2.5 km, and the depth of the 
input model is increased by 5 km. The spacing for the inner grid 
is of dx = 250 m, dy = 500 m, and dz = 250 m. The width of the 
boundary regions surrounding the inner model are 4.9 km in the x 
and z directions, and 9.75 km in the y direction. This computational 
grid has dimensions of x ∈ [−6.9, 6.9] km, y ∈ [−14.75, 14.75] km, 
and z ∈ [0, 17.35] km

Table 4  Time and memory used in MoVFEM with the non-
flat topography model

Times are shown in seconds, and the memory is presented in terms of the 
number of elements Ne , the number of unknowns (DoF) and the number of non-
zero entries for the global array NNZE

Element Lagrangian

Grid Ne 26× 30× 40

DoF 773,152

NNZE 39,529,728

Assembly time 2070 s

Total time 1689 s
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The signal frequency for the example presented here is 
0.01 Hz, and Fig. 13 describes the geometry and structure 
of the computational grid. GPML boundary conditions 
following the scheme of Zhou et al. (2012) is applied, the 
stretching factor parameters are amin = 0 , amax = 100 , 
bmin = 10−2 , bmax = 106 , and n = 2. Table 5 present the 
time and memory used for the anisotropic model. 

(32)ρ =





100 0 0
0 50 0
0 0 1



 �m.

Figure  14 shows the resulting apparent resistivity and 
phase angles for both polarization modes. For the xy-
polarization, the apparent resistivity has a constant value 
of 99.8 �m with an error of ∼ 0.2% , and the phase angle 
has a constant value of 44.2◦ , as opposed to the expected 
45◦ (error of ∼ 1.7% ). For the yx-polarization, the appar-
ent resistivity has a constant value of 49.8 �m with an 
error of ∼ 0.4% , and the phase angle has a constant value 
of 45.4◦ with an error of ∼ 0.88% . Consequently, the 
apparent resistivity in xy-polarization yields the ρxx com-
ponent of the input resistivity tensor, and the apparent 

a

b

Fig. 12  Modeled MT responses from the homogeneous model with 2D topography apparent resistivity and phase angles for a signal of 10 Hz. 
a Response curves of xy-(left) and yx-(right) polarizations. Values are taken at the model surface along the profile y ≡ 0 . Values for MoVFEM and a 
reference models are displayed. b Map view of apparent resistivities at the model surface for xy-(left) and yx-polarization (right)
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resistivity in yx-polarization yields the ρyy component of 
the input resistivity tensor.

The modeled apparent resistivities are constant over 
the total model surface, but high errors are associated 
with wrongly implemented boundary conditions in the 
code itself.

Discussion and conclusions
We have presented the multi-order vector finite ele-
ment algorithm MoVFEM, which has been implemented 
in Fortran to model 3D MT data for arbitrary resistiv-
ity structures, including anisotropy and complex geom-
etry. Linear, quadratic, and Lagrangian elements have 
been included, with Generalized Perfect Matched Layers 
boundary conditions. The software enables the handling 
and solving of electric and magnetic field decoupled gov-
erning equations. The resulting values are returned in the 
form of standard MT response estimates. All calculations 
have been implemented directly, with the exceptions of 

MUMPS (Amestoy et  al. 2006) and the Shepard Algo-
rithm 660 for surface interpolation (Renka 1988).

The general functionality of MoVFEM has been dem-
onstrated by modeling a homogeneous resistivity struc-
ture. This allowed not only the comparison of resulting 
values with known correct solutions, but also a detailed 
study of parameter dependencies. We see from the analy-
sis that high-order elements obtain a better solution with 
a coarse grid; linear-order elements require a finer spac-
ing to obtain the same accuracy. We obtained solutions 
with a minimum average resistivity error ranging from 
3% for linear order to 0.2% for high-order elements.

GPML boundary conditions stabilize the solution as 
the element order increases. However, the use of GPML-
I boundary conditions can cause oscillatory solutions 
that vary spatially on a small scale around the true value, 
especially for high-order numerical elements, which 
again return the lowest errors. These oscillations are con-
sidered to be small amplitude errors from the boundaries 
of the computational domain. The application of GPML-
II reduces these oscillations even more and produces sta-
bler results. In linear-order elements, the application of 
GPML (I and II) tends to stabilize the solution to numeri-
cal values that are systematically higher than the correct 
value for a homogeneous Earth. This suggests that high-
amplitude errors from the boundaries are encountered 
using linear elements, meaning that the code has a bug in 
the implementation of boundary conditions.

The selection of stretching factor parameters within 
the setup of GPML depends on the signal frequency and 
on the absolute value of the major conductivity struc-
tures. In addition, both GPML stretching factors seem to 
depend on the order of the element used. Consequently, 
it is difficult to implement robust values for a wide varia-
tion of Earth resistivities; a systematic study of stretching 
factor parameters is necessary to find the best values.

For the application of MoVFEM to complex resistivity 
structures, we obtained MT responses that agree with the 
average solutions presented in the COMMEMI project 
(Zhdanov et al. 1997). The main discrepancy occurred at 
the boundaries between resistivity structures. Most likely 
they stem from the applied grid spacing; in MoVFEM, a 
regular spacing is applied to the whole model domain, 
and it only increases gradually toward the boundary of 
the computational domain. Other authors implement a 
refined grid in areas of high conductivity gradients or in 
the location of receivers (Mackie et  al. 1994; Mitsuhata 
and Uchida 2004; Zhdanov et  al. 1997). A variable grid 
spacing can be implemented at a later stage in MoVFEM, 
but such a step requires more careful studies on the 
various parameter options. At the current state, we pri-
marily focused on the correct numerical behavior for 

Fig. 13  Anisotropic homogeneous model. Computational grid, 
showing the discretization of the homogeneous anisotropic Earth 
model. Blue color corresponds to the air domain, and the red 
color corresponds to the anisotropic subsurface with the diagonal 
conductivity tensor defined in Eq. (32).The input model was extended 
50 km downwards in z-direction, increasing the depth to 100 km 
before the extension zone. The air height is 10 km. A spacing of 
dx = dy = dz = 7 km has been chosen. The extension zone has 
a width of 191 km for all directions. The computational grid has 
dimensions of x , y ∈ [−241.1, 239.1] km, and z ∈ [0, 442.2] km

Table 5  Time and  memory used in  MoVFEM with  the   
anisotropic model

Times are shown in seconds, and the memory is presented in terms of the 
number of elements Ne , the number of unknowns (DoF) and the number of non-
zero entries for the global array NNZE

Element Lagrangian

Grid Ne 26× 26× 20

DoF 338,352

NNZE 17,158,968

Assembly time 814 s

Total time 1253 s
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the existing setup. Furthermore, high errors are mostly 
related to the bug in the code.

In the case of a non-flat surface topography, MoVFEM 
returns results that are similar to the values published by 
Nam et al. (2007), especially for the yx-polarization data. 
In the xy-polarization, the resistivity curve differs from 
the reference solution at locations where the topogra-
phy changes most rapidly. Again, we interpret this effect 
to occur due to the regular grid spacing and boundary 
errors.

Anisotropic effects were analyzed with a homogene-
ous (transverse) anisotropic resistivity structure. In this 
case, we did not have published results as references. 
The MoVFEM solution for the anisotropic homogene-
ous model correctly returns responses, in which the field 
polarization is related to the conductivity tensor compo-
nents. The xy-polarization is related to σxx and yx-polar-
ization to σyy . Only small deviations from the expected 
results have been observed. Numerical inaccuracies are 
small and are due to the error in the implementation 
of boundary conditions. However, we believe that with 
the correction of this error, the code will have a lot of 

capability modeling 3D anisotropic structures with com-
plex geometry.

Currently existing software that includes anisotropy is 
only able to handle 1D or 2D structures for the forward 
modeling and inversion of MT data (Key 2016; Pek and 
Santos 2006; Pek et al. 2011). A comparison of the results 
obtained from MoVFEM (3D forward modeling) with 
those of a 2D algorithm can be made, but the 3D effects 
of modeling anisotropic media cannot be described with 
a 2D algorithm.

MoVFEM assemble the global matrix in an accept-
able CPU time when compared with similar algorithms 
(Farquharson and Miensopust 2011; Nam et  al. 2007; 
Zyserman and Santos 2000), and first approaches toward 
minimizing the numerical costs have been made. How-
ever, the external MUMPS software library systematically 
requires a major part of the total computational time for 
the inversion of the global matrix.

We have presented here the results of a thorough 
analysis of the MoVFEM software to proof its function-
ality and demonstrate its capabilities. In addition to the 
cases discussed in the sections above, the algorithm has 

a

b

Fig. 14  Modeled MT responses for the anisotropic homogeneous model. Apparent resistivities and phase angles for a signal frequency of 0.01 Hz. 
a Apparent resistivity (left) and phase angles (right) for the xy- and yx-polarization. Values are taken at the model surface along the profile y ≡ 0. b 
Map view of apparent resistivities at the model surface for xy-(left) and yx-polarization (right)
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undergone more tests that we are not able to present 
within the scope of this article. We refer to Rivera-Rios 
(2014) for more detailed information on the implementa-
tion and additional test scenarios.

In conclusion, we have developed a MoVFEM compu-
tational algorithm for the forward modeling of 3D-MT 
synthetic data, for a model including anisotropy, topog-
raphy, and complex subsurface interfaces. This algo-
rithm implements edge elements of linear, quadratic, and 
Lagrangian orders, in which higher orders produce accu-
rate solutions when compared with linear order. In addi-
tion to Dirichlet boundary conditions, GPML boundary 
conditions were also implemented in this algorithm, 
showing large amplitude oscillations for linear elements, 
and small amplitude oscillations for higher orders. These 
oscillations are indicative of errors propagating from the 
boundaries of the domain. This suggests a bug in the code 
and that the selection of stretching factors’ parameters 
depends not only on the frequency used and conduc-
tivity, but also on the element order and spacing of the 
PML zone. A systematic study for the best combination 
of these parameters needs to be performed in order to 
properly apply GPML boundary conditions. Despite the 
oscillations with GPML, very accurate models can be 
obtained when choosing the right boundary conditions 
once the boundary error is fixed.

This algorithm provides to the EM community a set 
of vector basis functions of different order for hexahe-
dral cells, in addition to the GPML boundary conditions. 
MoVFEM can be applied to various scenarios, including 
anisotropic resistivity models and models with complex 

geometries. The domain discretization can be modified 
to implement h-adaptive methods, where the mesh is 
refined iteratively on areas that need better resolution, 
especially on the contacts between resistivity structures. 
The setting of element order can also be modified to 
implement p-adaptive methods, where the element order 
is increased iteratively on areas that need more accuracy. 
The hp-adaptive method incorporates both grid refine-
ment and element order assignment iteratively for better 
results.
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The source term becomes

From the above formulation is where the stretching fac-
tors can be factorized from the partial derivatives ( ∂mn ) 
into the modeling tensor νij.
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