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Abstract 

The large slip along the shallow subduction interface during the 2011 Tohoku-Oki earthquake (Mw9.0) caused a 
huge tsunami that struck the northeast coast of Honshu, Japan. The Integrated Ocean Drilling Program Expedition 
343 JFAST program revealed that the fault zone is composed primarily of smectite. Our swelling experiments using 
the fault material demonstrated that the swelling pressure systematically increases with a decrease in sample poros-
ity. Based on in situ porosity estimations in the IODP borehole, the swelling pressure of the fault is as high as 8 MPa, 
which is comparable to the effective normal stress at the drill site (~ 7 MPa). This also suggests that the modified effec-
tive confining pressure of the fault is quite low or potentially zero, meaning that fault strength is governed mainly 
by cohesion rather than frictional strength. The fault may therefore be intrinsically weak, which could enhance the 
coseismic displacement toward the trench when earthquake slip propagates from depth.
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Introduction
Smectite, which is a common clay mineral in the shallow 
crust, swells when in contact with water (Mitchell and 
Soga 2005). The immersion of smectite-containing rocks, 
such as bentonite, causes expansion, and a swelling pres-
sure develops if the volume is restricted. Experiments 
with compacted bentonites have shown swelling pres-
sures of several tens of MPa (e.g., Tripathy et  al. 2004). 
Such swelling and accompanying pressure can deform 
soils and foundations, posing a threat to human activities 
(Mitchell and Soga 2005).

Smectite is also a typical component of shallow crus-
tal faults (Vrolijk and van der Pluijm 1999), and numer-
ous studies have examined the frictional properties of 
smectite and its relationship to earthquakes (Logan and 
Rauenzahn 1987; Moore and Lockner 2007; Saffer et  al. 
2001). In addition to its intrinsic low friction, smectite 
swelling pressure can influence the stress state of the 
solid matrix within the fault. The effective stress acting 
on a fault ( σn′ ) is generally described as

where σn is the normal stress and Pf is the fluid pressure. 
If the fault zone is composed primarily of swelling clays, 
the swelling pressure ( Ps ) needs to be taken into account 
by considering a modified effective confining pressure 
( σn′′ ; Chatterji and Morgenstern 1990), where

A modified shear strength formulation, following the 
Coulomb failure criterion, has been validated from shear-
ing tests of montmorillonite soils (Chatterji and Morgen-
stern 1990) as follows:

where τres is the residual shear strength, c′ is the residual 
effective cohesion and ϕres is the residual friction angle. 
Therefore, the influence of smectite swelling pressure on 
the stress state of the fault is similar to that of pore fluid 
pressure. Experiments have also shown that the effec-
tive stress plays a fundamental role in the slip behaviour 
of smectite gouges (Ikari et al. 2007; Moore and Lockner 
2007). However, few studies have focused on the swelling 
behaviour of smectite in fault zones (Deng and Under-
wood 2001; Kameda et  al. 2010), and none of these has 

(1)σn
′ = σn − Pf,

(2)σn
′′ = σn

′ − Ps.

(3)τres = c
′ + σn

′′ tan ϕres,
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addressed its potential relevance to earthquake mechan-
ics. Here we provide the first documentation of a possible 
link between smectite swelling in an active fault and the 
generation of a large earthquake.

2011 Tohoku‑Oki earthquake (Mw9.0) 
and the source fault
The 11 March 2011 Mw9.0 Tohoku-Oki earthquake was 
the largest event in Japan’s long recorded seismic history. 
The coseismic rupture and slip of the earthquake propa-
gated to the trench along the plate boundary fault (Ide 
et al. 2011; Fujii et al. 2011; Fujiwara et al. 2011; Kodaira 
et  al. 2012), generating a huge tsunami that resulted in 
massive damage along the northeast coast of Honshu. 
The shallow part of the plate interface has generally been 
considered as a zone of stable slip, meaning that the 
propagation of slip and rupture to such shallow crustal 
depths was unexpected.

One year after the Tohoku-Oki earthquake, deep-
sea drilling by the Integrated Ocean Drilling Program 
(IODP Expedition 343 JFAST program) was carried out 

to directly investigate the shallow source fault of the 
earthquake (Chester et al. 2012, 2013). The drilling at site 
C0019E, 5 km landward from the trench axis where the 
largest fault slip (> 50 m) occurred (Fig. 1a), identified a 
< 5-m-thick plate boundary fault zone at ~ 820 m below 
the sea floor (mbsf; Fig.  1b; Chester et  al. 2013) and 
recovered core samples of the fault zone. Mineralogical 
analyses of the core samples revealed that the fault zone 
is marked by an extremely high concentration of smectite 
(60–80  wt%) as compared with surrounding sequences 
(< 20 wt%; Fig. 1b; Kameda et al. 2015).

Experimental
Swelling experiments
We conducted laboratory swelling experiments using the 
powdered core samples recovered from the borehole to 
estimate the in situ swelling pressures of the Tohoku fault 
zone. A sample from the host rock (12R-2w-48–52  cm; 
grey mudstone interval) and another from the fault zone 
(17R-1w-67.5–69  cm) were tested using the apparatus 
shown in Fig. 2a. Figure 1b shows the locations of these 
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Fig. 1  Location, lithological units, porosity and mineralogical profiles of the JFAST drill site. a Location of the JFAST drill site (Site C0019; modified 
from Kimura et al. 2012). b Lithological units at the JFAST drill site, porosity profile deduced from logging data and core sample analysis (MAD), and 
variations in the bulk-rock smectite content. The solid and dotted lines along the porosity profile represent 1σ and 2σ, respectively. Note that the 
fault zone (Unit 4) is strongly enriched in smectite
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two samples in relation to the fault zone (fundamental 
properties of the samples are also shown in Additional 
file 1: Table S1). The swelling pressure of the expanding 
rock has been previously estimated using Gouy–Chap-
man theory, which is based on the repulsive force that 
stems from an overlap of the diffuse double-layers of 
adjacent charged plates (i.e., diffuse double-layer theory; 
Bolt 1955; van Olphen 1963; Mitchell and Soga 2005). 
However, the salinity of fault zone pore fluid is as high 
as that of seawater (Kameda et al. 2016), indicating that 
this theory cannot precisely predict reasonable pressure 
values (Komine et  al. 2009). Therefore, we used both 
pure water and artificial pore water (Na+ = 455.8  mM; 
Ca2+ = 24.7  mM; K+ = 7.7  mM; Mg2+ = 37.8  mM; Kam-
eda et al. 2016) as the reacting fluids at a fluid pressure 
of 0.2 MPa. We only measured the pressures under pure 
water conditions for the host rock sample (12R-2w-48–
52  cm). A previous experiment demonstrated that the 
swelling pressures in brine are equal to or smaller than 
those in pure water (Komine et al. 2009), indicating that 
data for the host rock represent the upper bound of the 
system.

The swelling tests were performed using 0.3  g of the 
ground powders (except for Test 05; Additional file  1: 
Table S1), stored and weighed at room humidity, employ-
ing a cylindrical sample cell ( Φ = 0.8 mm ) in the appa-
ratus (Fig.  2a). We did not heat the powders to obtain 
the dried samples, because such treatment could poten-
tially damage their swelling properties (Schleicher et  al. 

2015). The samples were pre-compacted to the objective 
porosity (see Additional file  1 for estimation of sample 
porosity), and the piston position was fixed to avoid a 
volumetric expansion of the wet sample, thereby main-
taining the sample porosity during the test.

Porosity estimates from borehole logging data
Our porosity estimates refer to the ‘total porosity’ (Conin 
et al. 2011), which is defined by the total volume of water 
in intergranular pore spaces and the mineral assemblage, 
as well as what is adsorbed at the mineral surface. We 
estimated the downhole porosity ( φ ) from the resistivity 
logging data using Archie’s law:

where the constant a is equal to one (see Conin et  al. 
2011 for an explanation). The parameter m was deter-
mined by fitting the porosity estimations from logs to the 
core measurements (Chester et  al. 2012), using a least-
squares method. In this case, m = 2.7. The porosity of the 
cores was obtained from MAD (moisture and density) 
measurements (Blum 1997). The bulk conductivity of the 
sediments ( σb ) was measured from the resistivity logging 
data (Chester et  al. 2012). The interstitial fluid conduc-
tivity ( σf ) was computed from the downhole temperature 
( T  , in °C; Bourlange et al. 2003) as

(4)φ =

(

a×
σb

σf

)
1
m
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Fig. 2  Apparatus and typical results of the swelling pressure tests. a Schematic diagram of the test apparatus used in this study. b Typical swelling 
pressure measurements for the fault zone sample (blue line) and the host rock sample (red line). Note that the fluid pressure was fixed at 0.2 MPa
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The downhole temperature was calculated as

where TC is the thermal conductivity (1.1  W  m−1  K−1; 
Chester et  al. 2012), HF is the heat flow (45  mW  m−2; 
Tanaka et  al. 2004; Yamano et  al. 2008; Gao and Wang 
2014), T0 is the measured surface temperature (1.3  °C) 
and Z is depth below the seafloor (m).

Results
The porosity change along the borehole was estimated 
from the logging data, as well as onboard measurements 
of the recovered samples (Fig.  1b; Chester et  al. 2012), 
showing a compaction trend from 60 to 80% porosity 
just below the seafloor to 36–40% within the fault zone. 
Slightly higher porosities from in recovered cores (MAD 
measurements in Fig. 1b) are attributed to core rebound 
due to the release of confining pressure.

Figure  2b shows an example of the swelling pressure 
test. The host rock sample exhibited a rapid increase in 
swelling pressure within the first ~ 2 min of the test to the 
maximum value (3.3 MPa), and this pressure was main-
tained until the end of the test (70 h). However, the fault 
zone sample exhibited a more gradual increase in pres-
sure to the maximum value (7 MPa) after ~ 8 h, and this 
pressure was maintained until the end of the test (17 h). 
Given the fluid pressure of 0.2  MPa, the excess pres-
sure is taken as the swelling pressure. Figure  3 shows 
the observed swelling pressures of the fault zone (blue) 
and the host rock samples (red) as a function of sample 
porosity (Table  1). For both samples, the swelling pres-
sure increases with decreasing porosity, resulting in 
closer distances between the repulsive clay particles 
(Fig.  3). The results also indicate that the swelling pres-
sure becomes higher in the fault zone than in the host 
rock intervals at a given porosity, reflecting the higher 
abundance of smectite in the fault zone (Fig. 1). 

Discussion and conclusions
Our swelling experiments demonstrate that the swell-
ing pressure of each sample systematically increases with 
decrease of porosity. According to Hedin (2004), the 
relationship between the swelling pressure Ps (MPa) and 
water-saturated clay density ρc can be expressed empiri-
cally as follows:

(5)σf = 5.32× {1+ 0.02× (T − 25)}.

(6)T =
HF

TC
× Z + T0,

(7)

Ps = A× T

{

exp

{

B
ρs(ρc − ρf)

ρf(ρs − ρc)

}

− 1

}

×
1

1000
,

where A and B are fitting parameters, T  is the tempera-
ture (K) and ρf and ρs are the densities of water (1.0  g/
cm3) and solid particles, respectively. According to Conin 
et al. (2014), ρc is related to ρs through the sample poros-
ity φ as

The fault zone and host rock data of the present study 
are consistent with Eq.  (7), with fitting parameters of 
A = 0.36 and B = 0.87 , and A = 0.068 and B = 1.17 , 
respectively (dashed lines in Fig. 3). The fault zone data 
for pure and brine waters are represented by a single 
best-fit curve.

Comparison of the experimental results with the 
borehole porosity profile indicates that the swelling 
pressure is as high as ~ 8  MPa within the fault zone 
(Fig.  3), which is 0.6–1.2 times the effective normal 
stress σn′ applied on the fault based on the fault’s depth, 
hydrostatic pore pressure, and measured rock densi-
ties (~ 7 MPa; Fulton et al. 2013). Considering Eqs.  (2) 
and (3), this suggests that the modified effective con-
fining pressure σn′′ , and thus the frictional strength, of 
the fault is quite low or potentially zero, meaning that 
cohesion c′ is the dominant component of the shear 
strength of the fault.

(8)ρc = ρs + φ(ρf − ρs).
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Fig. 3  Swelling pressure results for the JFAST samples. Swelling 
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Figure 4 shows how the swelling pressure of the fault 
changes at depths estimated from extrapolation of 
the porosity and swelling pressure curves. The effec-
tive normal stress at depths is also estimated from the 
porosity curve and the representative rock density of 
the recovered cores (2.6 g/cm3). Although the effective 
normal stress increases with depth, the swelling pres-
sure increases more rapidly, implying that effective nor-
mal stress applied on the fault can be fully supported 
by the swelling pressure. Because of a low thermal 
structure of the Japan Trench, smectite–illite transition 
is suppressed within 100  km distant from the trench 
(Kimura et  al. 2012; Kameda et  al. 2012), suggesting 
that the swelling of smectite may have a potential to 
weaken the wide area of the shallow plate interface. It 
should be noted, however, that when the temperature 
increases with depth, the swelling ability of clays may 
be reduced due to dissolution and collapse of smectite 
particles (Tessier et al. 1998; Schleicher et al. 2015). In 
addition, when the effective normal stress increases 
with depth, the interlayer water can be removed from 
the interlayer space, resulting in the deswelling. The 
driving forces of swelling would be the free-energy dif-
ference among bulk water, interlayer water, and clay. 
The energy balance may depend on the effective nor-
mal stress and temperature. Therefore, the extrapolated 
swelling behaviors shown in Fig. 4 should be verified by 
future experiments.

Although the estimated porosity represents the post-
seismic state of the fault, we infer that the porosity before 
the earthquake was no higher than that after the earth-
quake, because the coseismic slip zone often exhibits a 
decrease in density relative to the surrounding rocks after 

an earthquake (Wu et al. 2008; Li et al. 2014). This sug-
gests that the estimated swelling pressure represents a 
minimum value. Thus, the effective stress could be low, 
with the mechanical behaviour of the fault governed 
mainly by cohesion rather than the frictional strength 
before the earthquake. However, the stress state of the 
fault during the coseismic slip might be influenced by 
dynamic processes, such as thermal pressurisation (Sib-
son 1973; Ujiie et  al. 2013). Previous high-velocity fric-
tion experiments on the JFAST samples revealed that 
both the peak shear stress and fracture energy decrease 
as the normal stress decreases (Ujiie et al. 2013), suggest-
ing that earthquake rupture propagates more easily at 
lower normal stresses. If the effective normal stress state 

Table 1  Summary of the experiments

DW distilled water
a  Water-saturated sample density
b  Values represent the maximum pressures

Test Sample Solution Weight (g) ρr (g/cm3)a Porosity (%) Temperature (°C) Fluid 
pressure 
(MPa)

Total 
pressure 
(MPa)b

Swelling 
pressure 
(MPa)b

Time 
to maximum 
pressure (h)

00 17R-1W DW 0.300 1.98 47.5 Ambient 0.2 1.25 1.05 10.84

01 17R-1W DW 0.300 2.08 42.0 Ambient 0.2 3.30 3.10 24.78

02 17R-1W DW 0.300 2.19 36.0 Ambient 0.2 7.97 7.77 17.46

03 17R-1W DW 0.300 2.14 38.7 20 0.2 6.03 5.83 21.31

04 12R-2W DW 0.300 2.01 37.7 25 0.2 3.43 3.23 7.29

05 12R-2W DW 0.284 1.96 40.9 26.5–21.6 0.2 1.66 1.46 1.57

06 12R-2W DW 0.300 1.90 44.7 25 0.2 1.31 1.11 0.03

07 17R-1W Brine 0.300 2.15 38.0 25 0.2 7.11 6.91 7.72

08 17R-1W Brine 0.300 2.03 44.6 25 0.2 1.85 1.65 6.47
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was reduced by the high smectite swelling pressure, this 
low-barrier state could effectively facilitate slip propaga-
tion toward the trench during the earthquake.
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