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Abstract 

The refilling of the plasmasphere following geomagnetic storms remains one of the longstanding and interesting 
problems in ionosphere–magnetosphere coupling research. The objective of this paper is the formulation and devel-
opment of a one-dimensional (1D) refilling model using the flux-corrected transport method, a numerical method 
that is well-suited to handling problems with shocks and discontinuities. In this paper, the developed methodology 
has been validated against exact, analytical benchmarks, and good agreement has been obtained between these 
analytical benchmarks and numerical results. The objective of this research is the development of a three-dimensional 
(3D) multi-ion model for ionosphere–magnetosphere coupling problems in open and closed line geometries.
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Introduction
The refilling of the plasmasphere following a geomag-
netic storm remains one of the longstanding and inter-
esting problems in ionosphere–magnetosphere coupling 
research. (Banks et  al. 1971; Carpenter and Park 1973; 
Darrouzet et  al. 2009; Goldstein et  al. 2002; Gringauz 
1963; Millian and Thorne 2007; Obana et al. 2019; Pezzo-
pane et al. 2019; Sandel et al. 2003) As a direct effect of a 
geomagnetic storm, the plasma in the outer boundaries of 
the plasmasphere is removed from the region by storm-
time electric fields and convected to the magnetopause in 
the sunward direction. Thus, the plasma contained inside 
the magnetic flux tubes is lost, and at the end of the geo-
magnetic storm, the outer layers of the plasmasphere are 
significantly depleted. The pressure gradient between the 

ionosphere and the depleted outer plasmasphere drives 
the ionospheric plasma upward along the magnetic flux 
tubes, which initiates the refilling process.

The primary focus of this work is the development of a 
hydrodynamic model geared toward the numerical solu-
tion of the refilling problem, along with the development 
of benchmarks for its validation. A schematic diagram 
of the flux tube at the end of the geomagnetic storm is 
shown in Fig. 1.

During the last several decades, several numerical 
studies have been undertaken to model plasma trans-
port between the ionosphere and the plasmasphere and 
these studies have led to the development of ionosphere–
magnetosphere coupling models. These models can be 
divided into two broad categories. In the first category 
of models (called ‘diffusion models’), the nonlinear iner-
tial terms in the plasma transport equations are ignored, 
and thus, these models are limited to low-speed diffu-
sion dominated flows. This category of models includes 
the Sheffield University Plasmasphere Ionosphere Model 
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(SUPIM) (Bailey et  al. 1997), the Ionosphere–Plasmas-
phere Model (IPM) (Schunk et  al. 2004), and the Field-
Line Interhemispheric Plasma (FLIP) model (Young 
et  al. 1980). The FLIP model has recently been inte-
grated into the Ionosphere Plasmasphere Electrodynam-
ics (IPE) model and a different category of models that 
exists in the literature, where the nonlinear inertial terms 
are retained in the transport equations, is the so-called 
‘hydrodynamic model,’ introduced by Banks et al. (1971) 
and further developed by Khazanov et  al. (1984), Singh 
et al. (1986) and Rasmussen and Schunk (1988). Based on 
our literature survey, as of today, the most well-developed 
hydrodynamic model of the low-latitude ionosphere is 
SAMI2/SAMI3 introduced by Huba and Joyce (2000) 
and later applied to ionosphere–magnetosphere coupling 
(Krall and Huba 2013, 2019) problems. In this model, the 
motion along the field line is described by a set of advec-
tion/diffusion equations, and these equations are solved 
using the implicit donor cell method (Hoffmann and Chi-
ang 2000), which is first-order in nature.

In this paper, we present a ‘flux-corrected transport’ 
(FCT) based solution methodology (Boris and Book 
1976; Kuzmin et al. 2012), a method that is accurate to 
second-order which provides the scientific rationale for 
adapting the method to ionospheric outflow problems. 
FCT-based solution methodologies have been devel-
oped for the plasmasphere refilling problem for a sin-
gle (H+) ion (Singh et al. 1986; Rasmussen and Schunk 
1988), where neither the algorithmic details nor the 
validating benchmarks were presented. In Chatterjee’s 
doctoral dissertation (Chatterjee 2018), an FCT-based 
solution methodology was developed independently of 

Singh et al. (1986) and Rasmussen and Schunk (1988), 
and this solution methodology has the capability of 
accommodating multiple ions and neutrals. The refill-
ing results involving multiple ions and neutrals are pre-
sented in Chatterjee (2018) and Chatterjee and Schunk 
(2019), but here in this paper, the basic algorithmic 
details of the solution methodology developed in Chat-
terjee (2018) are provided along with the validating 
analytical benchmarks that are close approximations of 
the refilling problem. The validation benchmarks and 
results described in the following sections involve only 
H+ ions.

A brief description of the FCT‑based solution 
methodology
In this section, the plasmasphere refilling problem is 
modeled as a single ion species ( H+ ions) along with 
electrons and refilling along a 1D flux tube, without 
considering the curvature of the tube and neglecting 
the effects from Coulomb collisions. The time-depend-
ent continuity and momentum equations are given 
below (Oran and Boris 2001):

where t is time, x the spatial coordinate, ni,e the ion/
electron concentration, ui,e ion/electron velocity, mi,e 
the ion/electron mass, pi,e = ni,ekT  the partial ion/elec-
tron pressure, T the constant temperature along the flux 
tube, k the Boltzmann constant, E the electric field and 
g(x) the spatially dependent gravitational force. Impos-
ing quasi-neutrality gives rise to ni = ne and neglecting 
the electron mass in the electron momentum equation 
gives rise to an expression for the electric field given by 
E = −(kT/eni)(∂ni/∂x) . The substitution of this electric 
field in the ion momentum equation gives rise to the set 
of equations given by

and this set of equations is solved using the FCT method 
(Boris and Book 1976; Kuzmin et al. 2012). The specific 
scheme adopted in this work is a generalization of Otto 
(2013). In Otto (2013), the source terms were assumed 
to be zero, but in the solution methodology that we have 
developed, non-zero source terms can be accommodated.
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Fig. 1 The schematic of a flux tube after a geomagnetic storm, 
where the ionosphere is shown by hatched lines. The depleted 
flux tube lies above the ionosphere. The symbols θ and r represent 
colatitude and geocentric distance, respectively, and S =+ Smax 
show the boundaries in the conjugate ionospheres (Singh et al. 1986; 
Rasmussen and Schunk 1988)
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We re-write Eq. (2) as

From a numerical standpoint, the difficulty lies in the 
fact that immediately after a geomagnetic storm, there 
is a sharp discontinuity at the ionosphere–plasmasphere 
boundary. Had it not been for this discontinuity, a second-
order scheme such as the Lax–Wendroff (MacCormack 
method) would have been adequate, where the numeri-
cal method itself does not introduce any diffusion in the 
problem (Hoffmann and Chiang 2000). The fundamental 
philosophy behind flux-correction is that “diffusion” is 
artificially introduced at spatial points where shocks and 
discontinuities are present. To formulate a flux-correction 
based solution, a solution based on the Lax–Wendroff 
(MacCormack method) scheme denoted as f k ,LWi , is first 
introduced, where the subscript i represents the spatial 
index and the superscript k represents the time index. The 
Lax–Wendroff scheme is a two-step scheme given by

In the flux-corrected scheme adopted in this work, a 
diffusive flux is generated after the first step using

while an anti-diffusive flux is generated after the second 
step and defined as follows

There can be many choices for the diffusion and anti-
diffusion coefficients, but a widely used choice (Otto 
2013) is given below

with α0 = 1/6,α1 = 1/3,α2 = −1/6. The solution with 
diffusion introduced into it can now be computed using

and the variation in the diffusive solution between suc-
cessive grid points is computed as
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(8)f k ,Di = f k ,LWi + f k ,Di+1/2 − f k ,Di−1/2

As mentioned before, the fundamental premise 
of flux-correction is that diffusion is not required at 
points in space where the solution is continuous and 
smooth. As a result, the anti-diffusive flux is modified 
by comparing the variation in the diffusive solution 
given by Eq. (9) with the anti-diffusive flux Pk ,AD

i+1/2 given 
by Eq. (6):

where σi+1/2 = sgn
(

Pk ,AD
i+1/2

)

 . Finally, the modified anti-
diffusive flux is applied to the solution; it mitigates the 
effects of unnecessary diffusion and the flux-corrected 
solution for Eq. (3) is given by

Discussion of results
The results for three benchmark applications are given 
below:

A. The problem of the propagation of a wave with a 
constant velocity in an 1D problem domain is con-
sidered, which is the equivalent of solving mass 
transport under the approximation of constant drift 
velocity: 

where n is the propagating quantity of interest (say 
concentration), x the position coordinate, t time, u 
the constant wave/drift velocity and f(x) any given 
initial condition. However, if the initial condition is 
a function with spatial discontinuities, such as the 
square wave, a second-order scheme such as Lax–
Wendroff given in Eq.  (4) produces spatial oscilla-
tions as shown in Fig. 2a. It should be noted that this 
kind of spatial discontinuities is indeed encountered 
in the plasmasphere refilling problem.

 This problem of spatial oscillations is easily miti-
gated using the flux-corrected scheme described in 
Eqs.  (3)–(11), and the results are shown in Fig.  2b. 
As expected, flux-correction was able to remedy the 
problem of oscillation at the edges, but at the expense 
of the broadening of the solution resulting from the 
introduction of diffusion, which begs the question if 
the flux-corrected method can provide the required 
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level of accuracy for the plasmasphere refilling prob-
lem. With that in mind, a problem similar in spirit to 
the refilling problem for which an analytical solution 
exists is chosen as Benchmark Problem B.

B. The problem in Eq.  (1) is simplified by ignoring the 
contribution from the gravitational force and the 
result is isothermal plasma expanding into vacuum. 
The specifics of the problem and solution to this 
problem are given in Eq.  (13). In this problem, a 
constant, sub-sonic drift velocity is imposed on the 

plasma, and this is a generalization of the self-similar 
solution in Schunk and Nagy (2009) where the initial 
velocity of the plasma was zero: 

 where uth =
√

kT/m is the ion-acoustic speed and 
ξ = (x/tuth) is known as the self-similar parameter. 
The solution is characterized by a “rarefaction” wave 
moving back into the plasma layer with the ion-
acoustic speed, and it can be observed from Fig. 3a, b 
that there is excellent agreement between the numer-
ical solutions and the analytical results. The self-
similar solution captures the essence of the refilling 
problem at its onset after a magnetic storm when the 
concentration of the ions is small inside the plasma-
sphere. Thus, the concentration gradient is large at 
the ionosphere–plasmasphere boundary, thus mak-
ing the sum of the pressure gradient and electric field 
term in Eq. (1) significantly greater than the gravita-
tional force term.

C. In the third application example, plasmasphere refill-
ing after a geomagnetic storm is modeled as a single-
stream isothermal flow of H+ ions, governed by mass 
and momentum conservation equations. The stand-
ard collision-dominated energy conservation equa-
tion is not rigorously valid in the plasmasphere and 
our eventual objective is to replace the constant tem-
perature in our model with a spatially varying tem-
perature profile from an empirical model (Titheridge 
1998), which has been seen to produce results more 
consistent with experiments when it was integrated 
into the IPM (Schunk et  al. 2004). In this problem, 
the position coordinate in Eq.  (2) lies within the 
range 0 ≤ x ≤ X , where X = 58,000 km is the length 
of the L =4 magnetic field line. It is assumed that 
plasma expands into the simulation domain at both 
ends (x = 0 and x = X). It is also assumed that grav-
ity opposes the inward plasma expansion, so gravity 
points to the right on one side of the equator and to 
the left on the other side of the equator. A constant 
temperature of 3560  K is assumed for both elec-
trons and ions, which corresponds to an ion-acoustic 
speed (uth) of 5.4 km/s. A constant gravitational force 
is assumed over the entire field line, which is the 
average of the gravitational force at the equator and 
at either extremity of the field line: 
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Fig. 2 a Square wave propagation without flux-correction. A square 
wave with constant amplitude propagating through a 1D problem 
domain: Lax–Wendroff scheme without flux-correction. The initial 
square wave is given in green; the square wave after 1 s is given in 
red. The fluctuations on the edges arise from the discontinuity in 
the initial square wave at the edges and the use of a second-order 
algorithm. b Square wave propagation with flux-correction. A square 
wave with constant amplitude propagating through 1D problem 
domain: Lax–Wendroff scheme with flux-correction. The initial square 
wave is given in green; the square wave after 1 s is given in red. The 
fluctuations on the edges observed in a are eliminated by use of 
flux-correction 
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where g ′ = 2.45  m/s2. The boundary conditions 
imposed for the concentration and velocity of H+ 
ions are given by 

(14)

g(x) = −g ′, 0 ≤ x < 0.5X

g(x) = 0, x = 0.5Xg(x) = g ′, 0.5X < x ≤ X ,

(15)
ni(0, t) = n0, ni(X , t) = n0,

ui(0, t) = 2 km/s,ui(X , t) = −2 km/s

 where n0 is the concentration at the extremities of 
the flux tube. The constant gravitational force given 
in Eq.  (14) and the boundary conditions given by 
Eq. (15) give rise to a steady-state solution given by 

which is obtained by setting ∂ni/∂t, ∂ui/∂t and 
∂ui/∂x equals to zero in Eq. (2). The initial conditions 
on ni and ui are assumed to be 

In general, the imposition of boundary conditions in 
numerical models (Oran and Boris 2001) can be imple-
mented in three different ways:

A. The unknown variables are formulated as linear 
superpositions of expansion functions where the 
boundary conditions are satisfied automatically. The 
method of flux-correction cannot be applied system-
atically to algorithms that use expansions.

B. The second approach is to develop separate finite-dif-
ference formulas for boundary cell values in addition 
to finite-difference formulas developed for points in 
the interior of the problem domain. This approach 
can be easy or difficult depending on the complexity 
of the problem and/or the boundary conditions.

C. The third approach is to develop extrapolations from 
ghost or guard cells that extend outside the compu-
tational domain outside the domain boundary. The 
cells on the domain boundaries are treated as interior 
cells and of the three methods; this is the easiest and 
most flexible.

In our problem, the boundary conditions of interest 
in Eq. (15) are imposed on the external guard cells. At 
small time scales, at the onset of refilling, the concen-
tration gradient term in Eq.  (2) dominates the gravi-
tational force term. As a result, the concentration and 
velocity profiles after 10  min, shown in Fig.  4a, b, are 
qualitatively similar to the solution profiles shown 
in Fig.  3a, b, respectively, and the maximum refill-
ing velocity reaches a value greater than 25 km/s. This 
value is consistent with numbers reported in the litera-
ture (Singh et al. 1986; Rasmussen and Schunk 1988).

The physical picture is that of plasma flowing in from 
both hemispheres, with supersonic velocities being 
attained at points accessible to the inflowing plasma 
(Fig.  4b). On the other hand, at points far from the 
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s
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0 < x < X

ni(x, 0) = 0,ui(x, 0) = 0.

Fig. 3 a Concentration profile showing plasma escaping into 
vacuum. Other than the concentration gradient, the plasma has an 
initial drift velocity. The initial concentration is shown in green, the 
analytical solution (after a given interval of time) is shown in red and 
the numerical solution (after the same interval of time) is shown 
in blue. b Velocity profile showing plasma escaping into vacuum. 
Other than the concentration gradient, the plasma has an initial drift 
velocity. The initial concentration is shown in green, the analytical 
solution (after a given interval of time) is shown in red and the 
numerical solution is shown in blue
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boundaries, not accessible to the inflowing plasma, the 
plasma concentration is almost equal to the initial con-
centration and the gravitational force governs the veloc-
ity profile.

It must be noted that the normalized concentration 
at each boundary point is less than unity, with the nor-
malized concentration on the guard cell being held to 
unity. At t =0, there is a sharp discontinuity in the profile 
(between the two domain boundaries and the two guard 
cells on each side) as shown in Eq.  (17) and the drift 
velocity boundary condition given in Eq. (15) is imposed 

on the guard cells as well. As mentioned before, the dis-
continuity in profile between the guard cell and the 
domain boundary is handled with the help of flux-cor-
rection where diffusion is added at the expense of slightly 
diminished accuracy.

The inflowing plasma reaches the equator approxi-
mately 30  min after the beginning of refilling and the 
plasma velocity in the equatorial region is zero in the 
single stream model and a shock is formed, with Fig. 5a 
showing a high ion concentration at the equator. The 
velocity profile provided in Fig.  5b is also worth study-
ing. Supersonic ion velocities are observed outside of the 
shock region, while inside the shock region, the veloc-
ity profile is governed by gravity. The gravitational force 
acts down on both sides of the equator, with zero velocity 
being obtained at the equator. As a result, the plasmas-
phere refills behind the shock front, and as refilling con-
tinues, there could be outflowing from the boundary at 

Fig. 4 a Hydrogen ion concentration profile after 10 min. The 
concentration normalized to the concentration at the base altitude 
is imposed on the guard cells. The drift velocity normalized to the 
hydrogen thermal velocity is imposed on the guard cells. The domain 
length is normalized to the length of the flux tube. b Hydrogen ion 
velocity profile after 10 min. The concentration normalized to the 
concentration at the base altitude is imposed on the guard cells. The 
drift velocity normalized to the hydrogen thermal velocity is imposed 
on the guard cells. The domain length is normalized to the length of 
the flux tube

Fig. 5 a Same as Fig. 4a after 30 min. b Same as Fig. 4b after 30 min
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certain points of time. The inflowing or outflowing nature 
of the profile can be ascertained from the drift velocity 
values at the domain boundaries. As mentioned before, 
the shock front moves away from the equator, and the 
plasmasphere refills behind the shock front. The results 
after 1 h are shown in Fig. 6a, b.

The ion velocities inside the “shock region” are grav-
ity dominated and close to zero near the equator, with 
supersonic velocities produced outside of the shock 
region. The shock front reaches the end-points of the flux 
tube in approximately 2 h (Fig. 7a, b). We again note that 
the normalized concentration of unity is imposed on the 
guard cell and as a result, the concentration at the base 
altitude is higher than that at all points on the flux tube. 
Also seen in the concentration profiles are regions of ele-
vated concentrations and regions of depletions, consist-
ent with the refilling from “behind the shock front.”

The shock fronts described above get reflected at the 
boundaries and travels back and forth along the flux 

tube. As refilling continues, the drift velocity transitions 
from supersonic to subsonic. At 15 h (Fig. 8a, b), the drift 
velocities at the boundaries are slightly negative, indicat-
ing that at certain points of times there could be some 
transport of ions from the plasmasphere to the iono-
sphere consistent with refilling occurring “behind the 
shock front.” However, the net transport of ions over the 
entire refilling period is overwhelmingly from the iono-
sphere to the plasmasphere, as is expected.

Finally, as can be seen from Fig. 9a, b, respectively, in 
approximately 20  h, the concentration profile matches 
the steady-state concentration profile, while the ion 
velocities stay at values approximately two orders of mag-
nitude below the thermal velocity. This refilling time is 
consistent with the 22-h refilling time reported in Singh 
et  al. (1986) for the one-stream model using the FCT 
method. It should also be borne in mind that the model 
itself is simplistic because of the assumed linear nature of 

Fig. 6 a Same as Fig. 4a after 1 h. b Same as Fig. 4b after 1 h
Fig. 7 a Same as Fig. 4a after 2 h. b Same as Fig. 4b after 2 h



Page 8 of 9Chatterjee and Schunk  Earth, Planets and Space           (2020) 72:26 

the field line as opposed to its dipolar geometry, the con-
stant magnitude of the gravitational force term assumed 
as opposed to its spatially varying nature, and the lack of 
a diurnal variation of the ion concentration and velocities 
at the ionosphere–plasmasphere boundary.

Conclusion and future work
Summarizing, a FCT-based plasma transport model 
has been developed and validated against exact, ana-
lytical benchmarks. These benchmarks are simplified 
versions of the plasmasphere refilling problem, but cor-
rectly predict high supersonic velocities at the onset 
of refilling and refilling times consistent with the lit-
erature (Singh et  al. 1986), along with correct analyti-
cal solution for the concentration and drift velocity in 
the steady-state. The model has been subsequently 
applied to the multi-ion refilling problem in Chatterjee 
(2018) and Chatterjee and Schunk (2019). The ultimate 

objective of this research is the development of a 3D 
multi-ion model for ionosphere–magnetosphere cou-
pling problems in open and closed magnetic field line 
geometries. In addition, efforts are currently underway 
to adapt the model to exoplanetary ionosphere–magne-
tosphere systems.
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