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Abstract 

Topographic relief in arc-trench systems is thought to be formed by plate subduction; however, few quantitative 
investigations have so far been reported, with respect to the related mountain building process. This study applies 
apatite and zircon (U–Th)/He thermochronometry (AHe, ZHe, respectively) to Cretaceous granite rocks in the north 
part of the northeast (NE) Japan Arc to reveal its cooling/denudation history. Weighted mean AHe ages ranging from 
88.6 to 0.9 Ma and ZHe ages from 83.9 to 7.4 Ma were determined for 10 rock samples. Using the AHe data, denuda-
tion rates were obtained for each sample. On the fore-arc side, denudation rates of < 0.05 mm/year were calculated, 
indicating a slow denudation process since the Paleogene. However, in the Ou Backbone Range and on the back-arc 
side, denudation rates at > 0.1–1.0 mm/year were computed, probably reflecting a recent uplift event since ~ 3–2 Ma. 
These data indicate a clear contrast in thermal and denudation histories between the tectonic units in this study area, 
similar to that previously reported from the southern part of NE Japan Arc. A comparison of the thermal/denudation 
histories between the N- and S- traverses, revealed the arc-parallel trend, the uplift model of the volcanic arc, and 
some minor variations of thermal/denudation histories in each tectonic unit. This study offers some further insights 
into the understanding of tectonic processes in an island-arc setting. 

Keywords: Low-temperature thermochronology, Arc-trench system, Northeast Japan Arc, (U–Th)/He 
thermochronometry, Thermal/denudation histories
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Introduction
Arc-trench systems, resulting from plate subduction pro-
cesses, form mobile belts, characterized by orogenesis, 
volcanism, and earthquakes. Early studies of arc-trench 
systems were largely based on geomorphology and struc-
tural geological studies (e.g., Dickinson and Seely 1979; 
Uyeda 1982, 1983).

Mountain building processes at collision zones, e.g., the 
European Alps and Himalayas, have been investigated 

quantitatively on the basis of thermochronologic meth-
ods (e.g., Wagner et al. 1977; Vernon et al. 2008; Burbank 
et al. 1996; Blythe et al. 2007). However, similar studies in 
island-arc settings are somewhat limited (see compilation 
in Herman et al. 2013), because their inland topography 
is often too young and/or of too low relief to be inves-
tigated by these methods. As a result of recent devel-
opments in low-temperature thermochronology, such 
as improving thermal inverse modeling, based in part 
on apatite fission track (AFT) data (e.g., Ketcham 2005; 
Gallagher 2012) and the resurgence and modern under-
standing of the (U–Th)/He system (e.g., Reiners and 
Brandon 2006; Ault et  al. 2019), thermochronology has 
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been successfully applied to mountainous terrain even in 
island-arc settings (Sueoka et al. 2016).

We have previously attempted to reconstruct moun-
tain building processes in the northeast (NE) Japan Arc 
using low-temperature thermochronology (Sueoka et al. 
2017; Fukuda et al. 2019). Sueoka et al. (2017) conducted 
apatite and zircon (U–Th)/He (AHe and ZHe, respec-
tively) thermochronology study across the southern NE 
Japan Arc, Abukuma Mountains on the fore-arc, the Ou 
Backbone Range (OBR) and the Iide and Asahi Moun-
tains on the back-arc (hereinafter, the S-traverse). Fukuda 
et  al. (2019) conducted thermal inverse modeling based 
on the AFT method using the same samples of Sueoka 
et al. (2017). These studies showed contrasting ages and 
denudation rates between the fore-arc side, volcanic 
front, and back-arc side in the S-traverse (Fig. 1). Namely, 
older ages and slower denudation rates on the fore-arc 
side, and younger ages and faster denudation rates in the 
OBR and on the back-arc side. This contrast probably 
reflects the spatial variation of uplift/denudation rates 
under the recent strong compressive stress field since the 
Quaternary.

In this paper, we investigate the thermal/denudation 
histories in the northern NE Japan Arc, i.e., Kitakami 
Mountains on the fore-arc side, the OBR, and Taihe and 
Shirakami Mountains on the back-arc side (hereinafter 
collectively referred to as the N-traverse see Fig. 1). Pre-
vious thermochronometric research reported from the 
S-traverse offered some geological insights; however, 
it left open the question as to whether the implications 
were relevant across the entire NE Japan Arc. Therefore, 
in this work, we report AHe and ZHe thermochrono-
metric data from across the N-traverse and compare the 
thermal/denudation histories derived with those from 
the S-traverse.

Geomorphology and geology
The basic components of an island arc have been 
described as comprising; a trench, fore-arc, volcanic 
front, and back-arc basin (e.g., Dickinson and Seely 
1979). As such, the NE Japan Arc can be classified as a 
typical island arc because with respect to the cross-arc 
direction, its inland topographies appear in such a geo-
morphic arrangement (e.g., Ota et  al. 2010) (see cross 
section in Fig. 1). In this paper, following the definition of 
Koike et al. (2005), we divide the NE Japan Arc into three 
tectonic units: the fore-arc side, the OBR, and the back-
arc side, with the OBR regarded as the volcanic front.

In the northern NE Japan Arc, clear geological differ-
ences are observed between the fore-arc side and the 
back-arc side of the OBR. Cretaceous granitic rocks at 
approximately 120–100  Ma (e.g., Yokoyama et  al. 2016) 
are widely exposed only in the Kitakami Mountains on 

the fore-arc side. In contrast, green tuffaceous rocks and 
volcanic ejecta formed around and after the Miocene, 
cover most of the basement rocks in the OBR and on 
the back-arc side. More than 30 Quaternary volcanoes 
are distributed around the OBR and the back-arc side; 
whereas, no Quaternary volcanism has been reported 
from the fore-arc side (Fig. 1).

The tectonic history of NE Japan has been investi-
gated using various methods such as structural geology, 
stratigraphy, and volcanology (e.g., Sato 1994; Nakajima 
et  al. 2006; Nakajima 2013; Yoshida et  al. 2013). Prior 
to ~ 21  Ma, the NE Japan Arc was located at the edge 
of the Asian continent. Between ~ 21 and 13.5  Ma, the 
opening of the Sea of Japan occurred due to spreading of 
the back-arc basin (e.g., Otofuji et al. 1985; Jolivet et al. 
1994), forming the NE Japan Arc. Following its formation 
as an island arc, a compressional stress field developed 
and has been dominant in the NE Japan Arc since ~ 8 Ma 
(e.g., Nakajima 2013). From ~ 3 to 2  Ma to present, the 
inland topographic relief was formed (Yonekura et  al. 
2001) under an intense compressional stress field derived 
from subduction of the Pacific and Philippine Sea plates 
(Takahashi 2006, 2017). This E–W compressive stress 
regime reactivated ancient normal faults formed dur-
ing the opening of the Sea of Japan as reverse faults 
(Sato 1994; Okamura et al. 1995; Okada and Ikeda 2012). 
Therefore, major topographic structures (e.g., faults, 
mountains) are generally distributed in an N–S direction 
along the NE Japan Arc.

Samples and analytical methods
Samples
We collected 20 Cretaceous granite samples along an 
N-traverse to apply AHe and ZHe dating (Fig.  1), and 
obtained AHe/ZHe data for 10 samples. To avoid pos-
sible reheating from recent volcanisms, sample locali-
ties were located > 10 km away from Quaternary volcano 
centers and high-temperature zones. Geothermal gradi-
ents measured in boreholes generally drop to background 
levels at ~ 10–20  km from Quaternary volcanic centers 
in Japan (Umeda et al. 1999). Based on this evidence, any 
thermal effects on our data from Quaternary volcanoes 
are disregarded for discussion in this work.

(U–Th)/He thermochronometry
Low-temperature thermochronology is a powerful tool 
to reveal thermal history. In particular, AHe and ZHe 
thermochronology data, because of the range of their 
temperature sensitivity, are useful for reconstructing 
cooling and denudation histories in the shallow crust 
(e.g., Reiners and Brandon 2006). In general, the typical 
closure temperatures for AHe thermochronometer are 
in the range 50–100  °C (Ault et  al. 2019), and for ZHe 
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a

b

Fig. 1 a Index map of the study area of the N-traverse. Numbered localities are our sampling sites. (U–Th)/He ages obtained in this study are also 
shown. Quaternary volcanoes: Committee for Catalog of Quaternary Volcanoes in Japan (1999); Active fault traces: Nakata and Imaizumi (2002); Hot 
Fingers: Tamura et al. (2002); Geothermal gradients: Tanaka et al. (2004); FT age: ages without sample codes indicating data from previous studies: 
Ganzawa (1987) on the back-arc side, and Goto (2001) on the fore-arc side; Boundaries: the lines showing the eastern and western limits of the 
OBR, defined by Koike et al. (2005). b Geomorphic cross section of study area. The cross sections were drawn along the 5 light blue lines in Figure 
(a). These figures were drawn using Generic Mapping Tools (GMT; Wessel and Smith 1991) and 50-m mesh digital elevation model (DEM) of the 
Geospatial Information Authority of Japan (GSI)
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is 100–200  °C (Guenthner et  al. 2013; Ault et  al. 2019); 
therefore, thermal histories from depths of ~ 2–7 km can 
be reconstructed under common geothermal gradients 
(~ 30 °C/km). However, He diffusivity may vary as a result 
of various factors, such as, the grain size and the cooling 
rate (e.g., Reiners and Brandon 2006; Ault et  al. 2019), 
and also the degree of α-radiation damage (e.g., Shuster 
et  al. 2006; Guenthner et  al. 2013; Cherniak 2019). The 
variation of He diffusivity in individual grain impacts 
on the nominal closure temperature and thus their ages, 
which introduces complexities in the interpretation of 
such ages for reconstructing thermal histories. Hence, an 
evaluation of the reproducibility of grain ages is essential 
for interpreting He thermochronometric data.

Experimental procedures for He content measurement
The mineral separation of apatite and zircon was carried 
out at Kyoto Fission-Track Co., Ltd., using conventional 
methods. Samples were crushed into small pieces manu-
ally with a stainless mortar and pestle, and also using a 
rod mill. This was followed by magnetic separation, per-
formed using a neodymium magnet (NEOMAX) for 
removing magnetic minerals. The target minerals were 
concentrated by density separation using sodium phos-
phate tungstate (SPT: 3.07  g/cm3: Danhara et  al. 1992) 
and diiodomethane  (CH2I2: 3.33  g/cm3) as the heavy 
liquid.

(U–Th)/He analyses were conducted at the University 
of Melbourne. Three or four suitable grains were hand-
picked under a binocular microscope using the follow-
ing criteria: grain width of 75 up to 200 µm, transparent 
and authigenic shapes, and no visible inclusions. Grain 
geometries were recorded using ImageJ software 
because these parameters are used to calculate the  FT 
correction (Farley et al. 1996) for calibrating the alpha-
ejection in each crystal. After measuring grain sizes, 
one or a few grains of apatite and a single grain of zir-
con were put into small acid-treated platinum capsules.

Experimental protocols of He content measure-
ment were based on House et  al. (2000) using a laser 
extraction system. Single grains were outgassed for 
4He under vacuum using a laser set on a wavelength of 
820 nm with fiber-optic coupling to the sample cham-
ber. Conditions of laser ablation heating were ~ 900  °C 
for 5  min for apatite, and for ~ 1300  °C for 20  min for 
zircon. A hot blank measurement was also conducted 
to ensure total degassing of 4He after each gas extrac-
tion. He concentrations were determined using isotope 
dilution against a pure 3He spike, calibrated against an 
independent 4He standard. In cases where 4He content 
of a single grain was too low, aliquots of multiple grains 
were analyzed for accumulating a detectable content.

Second, dissolving the degassed grains and analyz-
ing parent isotopes were performed after all Pt packets 
were removed from the sample stage. For dissolving 
apatite grains, whole Pt capsules were immersed into 
 HNO3 to measure 238U, 235U, 232Th, and 147Sm con-
centrations using solution ICP-MS. While in zircon, 
degassed grains were removed from their Pt capsules 
and transferred to where they were spiked with 233U 
and 229Th and digested in small volumes (0.3–0.5  ml) 
at 240  °C for 40  h in HF. Standard solutions contain-
ing the same spike amounts as samples were treated 
identically, as were a series of unspiked reagent blanks. 
A second bombing in HCl for 24  h at 200  °C ensured 
dissolution of fluoride salts. Zircon solutions were then 
dried down, dissolved in  HNO3 and diluted in  H2O to 
5% acidity for analysis of 238U, 235U and 232Th by solu-
tion ICP-Mass Spectrometry. For checking analytical 
accuracy, we simultaneously measured age standard 
samples as unknown samples. In this case, we used 
Durango apatite (McDowell et al. 2005) and Fish Can-
yon Tuff zircon (Gleadow et al. 2015) as standards.

Dating results
AHe and ZHe dating results are shown in Tables  1 and 
2, respectively. All He dating results are also displayed 
in Fig.  1a. Moreover, as mentioned previously, we also 
measured Durango apatite and Fish Canyon Tuff zircon 
as secondary standards, which yielded ages of 32.3–
30.0  Ma, and 29.9–28.1  Ma, respectively (Tables  1 and 
2). These results are consistent with reference ages within 
the ± 2σ uncertainty level (Durango: 32.1 ± 1.7 (1σ) Ma: 
McDowell et al. 2005; FCT: 28.01 ± 0.04 (1σ) Ma: Phillips 
and Matchan 2013), which verified the accuracy of meas-
urements in this study.

Reproducibility of grain ages
To calculate the weighted mean age of samples, more 
than three intra-sample analyses were used, employing 
IsoplotR (Vermeesch 2018). We verified whether grain 
ages within the error range of ± 3σ were consistent or 
not with a weighted mean age ranging within ± 95% con-
fidence interval. When single grain ages did not over-
lap within the weighted mean age of a sample, the grain 
ages were rejected as outliers and the weighted mean age 
without such outliers was recalculated.

The accumulation of α-radiation damage and other 
parameters can impact strongly on 4He retention in 
apatite and zircon; thus, such effects should be taken 
into account for interpretation of thermochronologic 
data (see also a review in Ault et al. 2019). Recent stud-
ies concerning the effects of radiation damage have also 
been investigated in the AHe system (e.g., Shuster et al. 
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2006; Flowers et al. 2009; Gautheron et al. 2009; Shuster 
and Farley 2009; Willett et al. 2017; Recanati et al. 2017), 
and the ZHe system (e.g., Guenthner et al. 2013; Ander-
son et  al. 2017; Johnson et  al. 2017; Ginster et  al. 2019; 
Cherniak 2019). However, our samples were expected to 
have been less affected by radiation damage, because they 
are Cretaceous granites which yield younger He ages and 
lower uranium and thorium content than found in similar 
rock types in most major orogens world-wide. If the radi-
ation damage effect is negligible, then the age obtained 
can be interpreted as a cooling ages reflecting a thermal 
history. For verifying the reproducibility of (U–Th)/He 
grain ages and the effect of possible radiation damage, 
plots of age versus effective uranium (eU) ppm (a proxy 
for radiation damage) (Shuster et al. 2006; Flowers et al. 
2009) were constructed for each locality (Figs. 2 and 3). If 
the plot showed a positive or negative correlation within 
3σ, the sample was considered to have a dispersed age, 
owing to radiation damage, or possibly some other fac-
tors (e.g., see Table  3 in Wildman et  al. 2016). If grain 
ages were over-dispersed and did not correlate with eU, 
we calculated the arithmetic mean ages from all grains 
including possible outliers even for such poor age repro-
ducibility samples. As an overview of radiation dam-
age accumulation in our samples, eU in apatite reaches 
100 ppm at most (Fig. 2), and that in zircon ranges below 
900  ppm (Fig.  3). This observation leads us to the con-
clusion that radiation damage in our samples is unlikely 
to have had a major effect on ages and/or  Tc, consider-
ing from He diffusion changing for slow cooling samples 
in Fig. 3 in Ault et al. (2019). Regarding AHe ages (Fig. 2, 
Table 1), most of the samples reproduced well; whereas, 
FST04 had the wide age dispersions. While, in ZHe ages 
(Fig. 3, Table 2), the grain ages for samples FST06 and 10 
were grouped into two clusters. Age dispersion of AHe 
of FST04 within the error range of ± 3σ in such localities 
has no correlation with eU, suggesting the little influence 
of radiation damage on these grain ages. On the other 
hand, only ZHe grain ages in FST10 appear to show a 
negative correlation within ± 3σ against the eU values 
(Fig.  3). However, these samples indicate improbable 
effects to cause age dispersion or clustering from radia-
tion damage, inferring age dispersion arises from other 
possible factors, such as zonation of parent nuclides (e.g., 
Meesters and Dunai 2002), implantation from neighbor 
minerals (e.g., Spiegel et al. 2009), and fluid inclusions of 
radiometric He traps (Danišík et al. 2017). Thus, we did 
not employ weighted mean ages for these three samples.

Results of weighted mean ages
Weighted mean ages for AHe data at nine localities and 
for ZHe data at five localities were obtained (Table  3). 
The weighted mean ages that we adopted for AHe range 

from 88.6 to 0.9 Ma (Tables 1 and 3, Fig. 4c); while those 
for ZHe ages range from 83.9 to 9.9 Ma (Tables 2 and 3, 
Fig.  4c). Fitzgerald et  al. (2006) suggested that the true 
ages should be between weighted mean ages and mini-
mum ages. We plotted the minimum ages for poorly 
reproduced samples together with the arithmetic mean 
ages (Fig. 4). In this figure, the mean AHe age of FST04, 
and ZHe ages of FST06 and 10 were displayed in gray 
color just for reference, although they have less reliable 
data than the others.

AHe ages are younger than or comparable to the cor-
responding ZHe ages considering the uncertainty of 95% 
confidence intervals. These results are consistent because 
of an expected age relationship resulting from the range 
of closure temperatures between the two systems. More-
over, two thermochronologic studies were previously 
conducted in this study area; AFT ages of 100.0–82.4 Ma 
and zircon FT (ZFT) ages of 93.4–90.1 Ma (Goto 2001) 
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on the fore-arc side, and ZFT ages of 53.4–21.8 Ma (Gan-
zawa 1987) on the back-arc side (Fig. 1a). Results of our 
He dating show reasonable age relationships compared to 
these data.

As to the AHe ages in Fig.  4c, older ages range from 
88.6 to 43.7  Ma on the fore-arc side (FST07, 08, 09), 
while younger ages range from 6.2 to 0.9 Ma in the OBR 
(FST06, 10, 11, 12) and between 4.9 and 3.2  Ma on the 
back-arc side (FST03, 05) These results indicate a strong 
age contrast between the fore-arc side and west of the 
OBR.

Geological implications
Calculation and interpretation of denudation rates
Little radiation damage effects were observed in our sam-
ples; thus, we interpret AHe ages as cooling ages reflect-
ing thermal histories. The AHe closure temperature at 
every locality is applicable to interpret such thermal his-
tories, except for one over-dispersed age sample (FST04) 
(Table 3). Thus, we computed the individual closure tem-
peratures of the AHe system for each sample, based on 
the Dodson (1973) method for calculating denudation 
rates. The closure temperature, Tc, varies depending on 
the cooling rate, dT/dt, in addition to the dimension of 

the diffusion domain (the mean half width of each sample 
was adopted in this study; Table 1), a;

where Ea is the activation energy (= 151.46  kJ/mol), R 
is the gas constant (= 8.314  J/K  mol), A is the geomet-
ric factor (= 55 for sphere), τ is the time constant, D0 is 
the diffusivity at infinite temperature (= 50 cm2/s), Ts is 
the surface temperature (= 10  °C, every locality), tAHe 
is the AHe age of the sample. The calculation of closure 
temperatures was performed by repeatedly substituting 
dT/dt, τ, and Tc until a stable value of closure temperature 
was obtained (up to ten times). Errors of Tc were propa-
gated from those of AHe ages and grain sizes. The results 
of the calculation of closure temperatures are shown in 
Table  3. On the fore-arc side, lower temperatures at ca. 
50–55  °C (FST07, 08, 09) were calculated. On the other 
hand, higher temperatures at ca. 60–80  °C were calcu-
lated at the OBR (FST06, 10, 11, 12) and on the back-arc 
side (FST03, 05). The obtained closure temperatures were 
used to estimate mean denudation rates through geologic 
timescale by the following equation:

where dD/dt indicates the mean denudation rate since 
tAHe, G denotes the geothermal gradient.

In the NE Japan Arc, geothermal gradients vary dras-
tically with locality and the values used were extracted 
from Tanaka et  al. (2004) and GSJ (2009) as shown in 
Table 3. In this study, thermal gradients were assumed to 
be constant temporally because it is difficult to evaluate 
their temporal and spatial variations over one–ten mil-
lion years. Values of geothermal gradients were adopted 
at 20–40 °C/km on the fore-arc side, and 40–60 °C/km at 
the OBR and on the back-arc side based on the database 
of Tanaka et  al. (2004). Alternatively, geothermal gradi-
ents at every locality were read on the iso-geothermal 
gradient map drawn at intervals of 10  °C/km published 
by GSJ (2009). In this calculation, we adopted aver-
ages between the upper and lower limits of contours 
from sampling localities were included. Their uncer-
tainties were assigned by the contour interval. Errors of 
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a

b

c

d

Fig. 4 Comparison of thermal/denudation histories between the S-traverse and N-traverse. Vertical blue lines in the graphs show the boundary 
between the fore-arc side and the OBR/back-arc side. Numbers on the map denote the sample localities in the N- and S-traverse corresponding 
to the sample codes in the graphs (a, c). Pink lines show hot fingers (Tamura et al. 2002). The map was drawn using GMT (Wessel and Smith 1991) 
and 30 arc-second grid of the General Bathymetric Chart of the Oceans (GEBCO). Active fault traces in red lines are cited from Nakata and Imaizumi 
(2002). a AHe/ZHe ages and denudation rates plot along the S-traverse. Weighted mean ages and minimum ages within ± 95% confidence intervals 
were plotted using data from Sueoka et al. (2017) after Fitzgerald et al. (2006). Gray data for ZHe show less reliable because their grain ages are 
over-dispersed. b Mean denudation rates and their uncertainties along the S-traverse. These rates were reported from Sueoka et al. (2017) using 
geothermal gradients of Tanaka et al. (2004). Data calculated using the database of GSJ (2009) were computed in this study. c AHe/ZHe ages 
and denudation rates plot along the N-traverse. Weighted mean ages and minimum ages within ± 95% confidence intervals were plotted after 
Fitzgerald et al. (2006). Gray data are less reliable because their grain ages are over-dispersed. d Mean denudation rates and their errors along the 
N-traverse. These rates were calculated using geothermal gradients from Tanaka et al. (2004) and GSJ (2009). FST04 was not calculated because its 
weighted mean age was not adopted
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denudation rates were propagated from those of the ages, 
geothermal gradients, and grain sizes.

The computed denudation rates are shown in 
Table  3 and Fig.  4d. On the fore-arc side, slower rates 
at < 0.05 mm/year were calculated because of older AHe 
ages (FST07, 08, 09). Hence, AHe thermochronometers 
on the fore-arc side should indicate the mean denudation 
rates from Cretaceous, before the uplift of mountains. 
On the other hand, faster rates at > 0.1–1.5 mm/year were 
detected at the OBR and on the back-arc side. Such high 
denudation rates should be derived by a faster cooling 
rate calculated from closure temperatures (60–80 °C) and 
younger AHe ages (6–1 Ma). Consequently, a clear con-
trast in denudation rates is identified between the fore-
arc side and the west of the OBR. In particular, younger 
AHe ages at ~ 3–1 Ma (FST03, 10, 12) should have been 
affected by the strong E–W compression since 3–2 Ma. 
AHe ages ~ 6–5 Ma (FST05, 06, 11) have also affected but 
only partial age resetting is considered to have occurred 
under such compression since ~ 3–2 Ma. As to other pos-
sibilities for explaining the young ages, Quaternary vol-
canisms or recent local heating was also considered to 
explain the younger AHe ages. Although we managed to 
eliminate thermal disturbances from major Quaternary 
volcanism as possibilities for age resetting, it is difficult 
to reject these possibilities completely because the NE 
Japan Arc has a complex tectonic history. However, we 
consider that AHe ages at ~ 6–5 Ma and their calculated 
denudation rates should be adopted as the upper limit of 
denudation rates.

In calculating the denudation rates, we assumed the 
linear and horizontal isotherms. However, isotherms 
should be perturbed by some factors during mountain 
building process, for instance, the amplitude of surface 
topography, the faster uplift/denudation, the ancientry 
of mountain, and so on (Stüwe et al. 1994). These factors 
can potentially cause an erroneous calculation of denuda-
tion rates. We did not consider these effects because (a) 
the mountains in the study area generally have moder-
ate widths of ca. 40–80 km and lower elevations ranging 
from a few hundred to ~ 1500 m, (b) we obtained slower 
denudation rates of 0.01–1.5 mm/year, and (c) the onset 
of uplift of mountains has initiated since the last few Ma. 
We, thus, regarded them as negligible effects on isotherm 
advection according to these backgrounds in this study.

Comparison of shorter-term denudation/uplift rates 
along the N-traverse
For creating current topographic landforms, the surface 
materials are subjected to vertical movements. As geo-
morphic fundamental, the relationships between uplift 
and denudation can simply be expressed as the following 
equation (England and Molnar 1990);

Bedrock uplift is caused by tectonic and isostatic dis-
placement/deformation, while exhumation (denudation) 
occurs as a result of tectonic denudation (e.g., normal 
faulting, crustal thinning), as well as erosion and weath-
ering. Hence, bedrock uplift and denudation are inde-
pendent processes even though they can interact with 
each other. In perspective, denudation should become 
faster as bedrock uplift increases, because topographic 
reliefs and slopes grow accompanied by bedrock uplift. 
However, bedrock uplift and denudation reach steady 
state, and then topographic reliefs do not change through 
time, a situation termed dynamic equilibrium (e.g., Ohm-
ori 1985).

Shorter-term (< ~ 105 year) denudation rates have been 
obtained in the N-traverse based on geomorphic and 
geologic approaches. As an overall trend, uplift and den-
udation rates on the shorter-term along the N-traverse 
range from ~ 0.1 to 1.0 mm/year. A comparison between 
short- and long-term denudation/uplift rates is discussed 
separately in the three tectonic units described below. 
Furthermore, geodynamic modeling were concerned 
using a finite element method based on rheology for the 
entire NE Japan Arc (e.g., Shibazaki et  al. 2008, 2016). 
Shibazaki et al. (2016), provide an estimate of long-term 
uplift rates assuming some boundary conditions and geo-
physical parameters. We also compared our denudation 
rates from thermochronometric data with those mod-
eling results.

Fore‑arc side
Denudation rates of ~ 0.3–0.4  mm/year over ~ 101  year 
were calculated based on the amount of sedimentary 
loads in catchments (Fujiwara et  al. 1999). Uplift rates 
were estimated at ~ 0.2 to  ~ 0.4 mm/year over ~ 105 year 
based on the elevations and emergent ages of the fluvial/
marine terraces (e.g., Tajikara and Ikeda 2005; Okuno 
et  al. 2014). Moreover, geodynamic modeling, using the 
finite element method (Shibazaki et  al. 2016), provided 
uplift rates up to 0.4 mm/year on a  106 years timescale. 
Denudation rates at < 0.05 mm/year were obtained based 
on our thermochronometric data, indicating one order of 
magnitude discrepancy in rates between short- and long 
term (described later).

Ou Backbone range
Denudation rates of 0.3–0.4 mm/year over ~ 101 year were 
calculated based on the amount of sedimentary loads in 
catchments (Fujiwara et al. 1999). Uplift rates at < 0.6 mm/
year were obtained over ~ 105 year based on the elevations 
and emergent ages of the fluvial/marine terraces (e.g., 
Tajikara and Ikeda 2005), and uplift rates of ~ 0.5–0.7 mm/

Surface uplift = Bedrock uplift − exhumation (denudation).
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year from displacements across the eastern margin faults 
of Kitakami lowland and the western margin faults of 
Yokote basin on  105−6 years timescales (Awata 1988; Ikeda 
et al. 2002; Doke et al. 2012). Geodynamic modeling using 
the finite element method (Shibazaki et al. 2016) offered 
uplift rates of ~ 0.4–1.0  mm/year on a  106 years time-
scale. Our denudation rates in this study were estimated 
at ~ 0.2–1.4 mm/year, which are consistent with the inde-
pendently derived short-term rates outlined above.

Back‑arc side
Denudation rates at ~ 0.4–0.5  mm/year over ~ 101  year 
were calculated based on the amount of sedimentary 
loads in catchments (Fujiwara et  al. 1999). Uplift rates 
at < 0.6 mm/year were estimated over ~ 105 year based on 
the elevations and emergent ages of the fluvial/marine 
terraces (e.g., Tajikara and Ikeda 2005; Okuno et  al. 
2014), and uplift rates at ~ 1 mm/year from displacements 
across Kitayuri faults at  105−6 years timescales (Awata 
1988; Doke et al. 2012). Uplift rates of ~ 0.4–0.6 mm/year 
were based on geodynamic modeling using the finite ele-
ment method on a  106-year timescale (Shibazaki et  al. 
2016). Denudation rates at 0.1–0.4 were obtained based 
on thermochronometric data, which are consistent with 
other methods for the short term.

On the fore-arc side, the data between  106−7 years from 
thermochronometry and < 105  year from other methods 
have one order of discrepancy. This disagreement can be 
explained by considering the small amount of uplift/den-
udation compared to the closure temperature depth of 
the AHe system (typically ca. > 1–2 km), even though the 
uplift of the fore-arc side has accelerated since the Qua-
ternary (Ota et al. 2010). Hence, higher denudation/uplift 
rates should be detected in shorter-term (< 105  year) 
methods. Besides, the total amount of denudation since 
the Quaternary is thought to be smaller than the closure 
depth of AHe system. This scenario is also supported by 
geomorphic evidence; the Kitakami Mountains have low-
relief erosional surfaces regarded as remnants of uplifted 
peneplains (Nakamura 1963). Namely, following the 
onset of uplift, the Kitakami Mountains have experienced 
such a relatively small degree of denudation that the ero-
sional surfaces formed pre-uplift are still preserved. For 
verifying this explanation, the application of lower-tem-
perature thermochronometers and terrestrial cosmo-
genic nuclides (TCN) method is desirable.

In contrast, denudation rates from thermochronome-
ters on the  106 years timescale are consistent with on the 
shorter-term (< 105 years) denudation/uplift rates for the 
OBR and on the back-arc side. This observation implies 
that the regional denudation/uplift rates have been main-
tained under the E–W compression stress field since the 
Quaternary.

By comparing our thermochronometric data with 
geodynamic modeling results, the measured and mod-
eled data indicated are consistent with each other on 
geologic timescales. Shibazaki et  al. (2016) suggested 
such high uplift rates along the OBR, particularly in the 
regions of hot fingers, correspond to high-temperature 
zones, implying that heterogeneous thermal structures 
strongly control uplift of the OBR under a compressional 
stress field. Based on our thermochronology results, we 
obtained faster denudation rates; however, it is noted 
that we did not collect samples from within these high-
temperature zones (Fig. 4). Hence, the uplift mechanism 
cannot necessarily be attributed to heterogeneous tem-
perature distributions. Further, thermochronometric 
investigations or parameter tunings are required to eluci-
date the uplift mechanism.

Comparison of thermal and denudation histories 
between the N- and S-traverses
Our thermochronometric results indicate an obvious 
contrast in thermal/denudation histories between each 
tectonic unit along the N-traverse. A similar contrast 
was also reported along the S-traverse (Sueoka et  al. 
2017; Fukuda et al. 2019). Integrating the results of both 
traverses, arc-parallel mountains in the NE Japan Arc 
indicate that they generally share a common thermal/
denudation history (Fig. 4). If the formation of topogra-
phy in an island-arc setting is mainly caused by the sub-
duction of an oceanic plate, then it would be possible for 
thermal histories of arc-parallel topographies to share 
common geologic features. This study has demonstrated 
that from two across-arc traverses, there are common 
thermal/denudation histories in an arc-parallel direction. 
Thermal/denudation histories in each tectonic unit are 
now compared and discussed.

Fore‑arc side
Denudation rates are approximately in the same range; 
these rates along with the N-traverse were estimated 
at ~ 0.01–0.03  mm/year (Fig.  4d), and data for the 
S-traverse were ~ 0.02–0.03  mm/year (Fig.  4b). How-
ever, the elevation of mountains and the formation age 
of granites are different; the Kitakami Mountains com-
prise 120–110 Ma granites > 1200 m in elevation in the 
N-traverse; while the Abukuma Mountains consist of 
110–100 Ma granites with elevations of < 600 m in the 
S-traverse. Differences in the geomorphic and geologic 
features between two traverses cannot be explained 
from thermochronologic data, as inferred total denuda-
tion and uplift since the Quaternary should be low as 
discussed in “Comparison of shorter-term denudation/
uplift rates along the N-traverse” section.
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Ou backbone range
Denudation rates in the N-traverse are slightly higher 
(0.2–1.5 mm/year: Fig. 4d) than those in the S-traverse 
(0.1–1.0 mm/year: Fig. 4b). The elevation and distribu-
tion of faults are provided as examples of topographic 
differences between both traverses. The mean eleva-
tion of the OBR along the N-traverse (Fig. 1b) is a little 
lower than the S-traverse (see Fig.  1b in Sueoka et  al. 
2017). Moreover, the northern OBR has clear reverse 
faults along the foot of the mountains, whilst fault 
traces in the southern OBR are indeterminable near our 
sampling sites in both traverses. Considering the dis-
tribution of the last cooling episodes and denudation 
rates determined by AFT thermochronology along the 
S-traverse, Fukuda et  al. (2019) implied that an uplift 
model for the OBR is probably by doming (Hasegawa 
et  al. 2005) and not a tilted pop-up style by reverse 
faults (Nakajima 2013). Sueoka et  al. (2015, 2016) 
showed that numerical modeling of slope development 
can also provide the pattern of denudation rate using 
the advection diffusion equation (e.g., Hirano 1972). 
Modeling results illustrated that the denudation pattern 
of doming model should increase towards the summit, 
but on the other hand, the tilted pop-up model should 
increase towards the foot of a mountain. Despite the 
OBR of N-traverse having obvious reverse faults, denu-
dation rates from our AHe data (from FST06 to 11, and 
10) indicate faster rates toward the summit of the OBR 
(Fig.  4c), thus supporting the doming uplift model. 
Although FST12 is here also included in the classifica-
tion as the OBR, its denudation shows a little higher 
rate than for FST06. The locality of FST12 is around 
or on the boundary between the OBR and the back-arc 
side, and was, thus, perhaps also affected by the tecton-
ics of the back-arc side, the Hinotodake mountains.

Back‑arc side
There are two differences between both traverses; (a) 
maximum denudation rates in the N-traverse (0.1–
0.4 mm/year: Fig. 4d) are higher than for the S-traverse 
(0.1–0.25  mm/year: Fig.  4b), and (b) ZHe ages ranging 
over 80–10 Ma were obtained in the N-traverse (Fig. 4c), 
while those in the S-traverse ranged over 30–10  Ma 
(Fig. 4a). One of the fundamental causes of (a) is due to 
temporal variations in the initiation of uplift on the back-
arc side. Mountains in the Dewa hills have been uplifted 
non-simultaneously from ~ 5 to 3  Ma (Moriya et  al. 
2008). Another cause is differences in elevation; the Iide 
and Asahi Mountains in the S-traverse have high eleva-
tions at > 2000 m, while the Shirakami and Taihe Moun-
tains are at an elevation < 1500 m. These observations can 
be explained as follows: denudation rates for these moun-
tains were almost in the same range, but the timing of 

initiation of uplift was not simultaneous as suggested by 
Moriya et al. (2008). The Iide/Asahi and Shirakami/Taihe 
Mountains, thus, have different present-day elevations. 
Although the long-term uplift rates or the timing of initi-
ation of uplift on the back-arc side are poorly understood, 
AHe ages and denudation rates reflect recent tectonics 
after a few Ma. In the S-traverse, Fukuda et  al. (2019) 
suggested that denudation rates on the back-arc side 
indicated different values between thermal inverse mode-
ling of AFT method and previous AHe data (Sueoka et al. 
2017). Modeling results offered more precise and faster 
denudation rates of > 1  mm/year (Fukuda et  al. 2019), 
while such rates based on apparent AHe data indicated 
0.1–0.3 mm/year (Fig. 4b). Similar approaches employing 
thermal inverse modeling based on AFT data are desira-
ble for also the N-profile. Next, moving on to (b), the tim-
ing of formation of granites is different; all granites in the 
N-traverse were formed in the Cretaceous around 120–
100 Ma, whilst some granites on the back-arc side of the 
S-traverse are Cretaceous–Paleogene (100–60 Ma) (e.g., 
Yokoyama et al. 2016). Another possible explaination for 
the different ZHe ages between the two traverses is that 
the amount of subsidence in both traverses should be dif-
ferent during the time of the Sea of Japan opening. Okada 
and Ikeda (2012) suggested that based on seismic reflec-
tion data, the amount of extension and contraction since 
the Miocene varied from ~ 10 to 60 km even in the back-
arc side. This variation of subsidence during the opening 
of the Japan Sea probably affects the different ZHe ages 
between two traverses.

In summary, the back-arc side has wide tectonic, geo-
logic and topographic variation even within a single arc. 
These observations imply that arc-along tectonics are 
probably dominant, such as concentration of deforma-
tion around the high-temperature zones, namely hot fin-
gers (Tamura et al. 2002). E–W mountain building on the 
back-arc side should have, thus, occurred under an N–S 
component of compressive stress (Fukahata 2016). Mean-
while, across-arc tectonics, such as the E–W compres-
sion derived from the oceanic plate subduction, does not 
prevail on the back-arc side, unlike in the OBR.

Conclusions
Apatite and zircon (U–Th)/He thermochronometric 
mapping across the northern NE Japan Arc, provides 
new insights into the tectonic history and the process 
of mountain building. Moreover, we compared thermo-
chronometric data for the N-traverse produced in this 
study and that previously published for the S-traverse to 
evaluate the trends in the thermal/denudation histories 
across an island arc. Consequently, we verified the con-
trast of thermal/denudation histories in the N-traverse as 
well as the previous studies of S-traverse, which implied 
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these findings indicate universal features along the NE 
Japan Arc. In contrast, some minor differences such as 
ages and denudation rates between both traverses were 
detected. These observations probably reflect the differ-
ent geological and topographic backgrounds, and also 
tectonics before and after the opening of the Sea of Japan.

1. On the fore-arc side, slower denudation rates 
at < 0.05  mm/year were obtained, from which it is 
inferred that near-stable denudation has been domi-
nant through Paleogene at the N-traverse. Accelera-
tion of uplift/denudation after the late Quaternary 
was also deduced by comparison of shorter- and 
longer-term trends. Similar thermal/denudation his-
tories can be found between both traverses.

2. At the OBR, faster denudation rates at ~ 0.2–1.5 mm/
year were obtained, probably reflecting rapid cooling 
derived from recent uplift events since the Quater-
nary. The style of uplift of the OBR is probably most 
compatible with a doming uplift model and this is 
supported by thermochronometric data from the N- 
and S-traverses. Further research, i.e., denser ther-
mochronometric mapping, is required to constrain 
the uplift model of mountains more precisely.

3. On the back-arc side, denudation rates at ~ 0.1–
0.4  mm/year were estimated along the N-traverse, 
indicating faster rates than determined from the 
S-traverse (0.1–0.25  mm/year). A comparison 
between both traverses probably suggests that the 
thermal/denudation histories of the back-arc side 
have wide variation reflecting their different tectonic, 
geologic and topographic histories. In addition, on 
the back-arc side, arc-long tectonics is possibly domi-
nant rather than across-arc tectonics.
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