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A technique for estimating a plasma drift velocity distribution in the ionosphere is presented. This technique is based
on a framework for representing a global vector field on a sphere by using a set of localized basis functions which

is newly derived as a variant of the spherical elementary current system (SECS). A vector field on a sphere can be
divided into its divergence-free (DF) component and curl-free (CF) component. The DF and CF components can
then be represented by weighted sums of the DF and CF vector-valued basis functions, respectively. While the SECS
basis functions have a singular point, the new basis functions do not diverge over a sphere. This property of the new
basis function allows us to achieve robust prediction of the drift velocity at any point in the ionosphere. Assuming
that the ionospheric plasma drift velocity has no divergence, its distribution can be represented by a weighted sum
of the DF basis functions. The proposed technique estimates the ionospheric plasma drift velocity distribution from
the SuperDARN data by using the DF basis functions. Since there are some wide gaps in the spatial coverage of the
SuperDARN, an empirical convection model is combined with the framework based on the new basis functions. It

is demonstrated that the proposed technique is useful for the estimation and modeling of the ionospheric plasma

Keywords: SuperDARN, Plasma drift velocity, lonospheric convection, Spherical elementary current system, Radial

Introduction

The global ionospheric convection pattern is a funda-
mental property of the ionosphere and the magneto-
sphere, and many studies have conducted modeling of
the global convection pattern. One notable empirical
model was provided by Heppner and Maynard (1987),
which improves on the earlier model of Heppner (1977)
by using electric field measurements from Dynamic
Explorer 2 (DE2). Weimer (2001) presented an improved
electric field model based on the DE2 data as a function
of solar wind parameters and geomagnetic conditions.
Ruohoniemi and Greenwald (1996) derived empirical
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convection maps based on Goose Bay HF radar obser-
vations. However, since the ionospheric convection field
varies greatly according to geomagnetic disturbances,
these empirical models are not always guaranteed to well
represent variations of the convection pattern.

In order to monitor the variations of the ionospheric
convection pattern, global observation networks have
been constructed over the last couple of decades. The
Super Dual Auroral Radar Network (SuperDARN) (e.g.,
Greenwald et al. 1995; Nishitani et al. 2019) is one such
global network, consisting of HF radars covering high
latitudes, and recently it covers even the middle latitudes.
Each radar of this network observes the backscatter from
field-aligned irregularities of electron density in the ion-
osphere and obtains the line-of-sight component of the
electron drift motion, which follows the E x B drift in
the F-region ionosphere. The radar beam typically scans
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in 16 directions over a 52° sector every 1 or 2 min. The
SuperDARN provides global information on the iono-
spheric plasma drift velocity distribution which is associ-
ated with the electric field distribution in the ionosphere.
However, there are some wide gaps in the spatial cover-
age of the SuperDARN. In addition, each radar gives only
the line-of-sight component of the drift velocity and data
are frequently missing. Thus, it is not necessarily easy to
retrieve a global convection pattern from the SuperD-
ARN data.

There have been proposed several techniques for
obtaining the variations of the global convection pattern.
Richmond and Kamide (1988) proposed a method to
estimate the variations of the global ionospheric potential
distribution by combining various observations including
HF radar observations and geomagnetic observations.
Although their method is not necessarily for analyzing
the SuperDARN data, it is applicable to obtain the ion-
ospheric potential from the SuperDARN data. Ruoho-
niemi and Baker (1998) presented a method for obtaining
the global convection pattern, which is specialized to
use the SuperDARN data. The method for SuperDARN
data was further improved by employing a set of empiri-
cal convection models based on data from the polar cap
through the mid-latitudes (Thomas and Shepherd 2018).
These methods basically use spherical harmonic func-
tions as basis functions to represent the global potential
distribution. However, since each spherical harmonic
function represents some global pattern, spurious struc-
tures can be produced in the data gap region as a result
of unevenly distributed data. In addition, it would be dif-
ficult to consider relatively small-scale local structures
which could be resolved by the SuperDARN. Cousins
et al. (2013b) used empirical orthogonal functions based
on spherical harmonic functions (Matsuo et al. 2002;
Cousins et al. 2013a), and Gjerloev et al. (2018) employed
a similar method to obtain the global convection map.
Although these approaches would improve an estimate in
the data gap region by using empirical orthogonal func-
tions, they may still suffer from the problems due to the
use of global basis functions.

Amm (1997) proposed another approach based on
a different set of basis functions called spherical ele-
mentary current systems (SECS), which was originally
introduced for representing ionospheric electric cur-
rents. Each SECS basis function is symmetric with
respect to its source point, and its value decreases as
the distance from its source point increases. The prob-
lems of spurious structures in the data gap due to the
use of spherical harmonic functions could be avoided
by using the SECS basis functions. Amm et al. (2010)
demonstrated SECS basis functions are useful for
obtaining a regional velocity field from the SuperDARN
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data. Reistad et al. (2019a, b) performed a statisti-
cal analysis of ionospheric convection sources using
SECS functions. However, an original SECS basis func-
tion has a singular point at which the value of the basis
function diverges. This problem is unfavorable when
using the analysis results as a reference to compare with
other observations such as spacecraft observations. For
example, if the footprint of a spacecraft comes to the
neighborhood of a singular point by chance, the data
from spacecraft observation cannot be compared with
an SECS analysis result. Thus, in many applications of
the SECS functions, it was essential to appropriately
treat the singularities as discussed by Vanhaméki and
Juusola (2020).

The present study introduces an alternative set of
localized basis functions as a variant of SECS basis
functions. The basis functions proposed in this study do
not have singular points in order to enable us to obtain
reliable estimates and predictions for ionospheric prop-
erties. We then propose a technique for estimating the
global drift velocity distribution from the SuperDARN
data based on the newly introduced basis functions.
The use of localized basis functions would make it dif-
ficult to effectively predict the drift velocity in the data
gap region. However, another existing model such as
an empirical convection pattern model can be incor-
porated into a model with localized functions in order
to fill in the data gap. There exists some other local-
ized approaches. Fiori et al. (2010) employed local-
ized spherical cap harmonic functions for analyzing
the SuperDARN data. Bristow et al. (2016) proposed
another localized approach which discretizes space into
cells and assumes local divergence-free for each cell.
On the other hand, our approach which is an extension
of the SECS method is easy to apply and it would allow
a flexible modeling of the ionosphere. Although a basic
idea on the proposed technique is briefly described in
the paper by Seki et al. (2018), the present paper pro-
vides a detailed explanation of the idea of the set of
basis functions and their application to estimating the
ionospheric drift velocity distribution from the Super-
DARN data.

Spherical elementary current systems

Amm (1997) proposed sets of SECS basis functions for
representing a vector field on a sphere. There are two
sets of SECS basis functions. One comprises curl-free
(CF) basis functions:
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and the other comprises divergence-free (DF) basis
functions:

14 A6
vi(r, 1) = egi— cot u, (2)
T

where r and r; are vectors pointing to positions on a
sphere with radius R (i.e, |[r| = |r;| = R), and A0 is the
angle between the vectors r and r;, that is,

ri

A = arccos rRz , (3)

and the vectors eg and e are defined as follows:

ri Xr

€l = R sin(AG) ()
epi X1
e, = WR . (5)

The vector es and ey correspond to unit vectors in the
azimuthal and polar-angle directions of the spherical
coordinate system where the pole is in the direction of
the vector r;. We hereinafter omit the constant factors in
Egs. (1) and (2) because they would not affect the follow-
ing discussions, that is,

|AG]

v¥i(r,r;) =ey,; cot — (6)
A6O
vi(r, r;) =es, cot |2—| (7)

Amm and Viljanen (1999) proposed an expansion
of a vector field on a sphere in a series of SECS basis
functions:

n

Ve =3 [wvto,r) + wifvi, ), ®)

i=1

where i is an index of a basis function, # is the number of
the basis functions used in this expansion, and r; is the
position of the center of the ith basis function. If basis
functions located at various positions are distributed over
the sphere, then various spherical vector fields can be
represented by tuning the weights {w } and {wdf} Equa-
tion (8) thus provides a flexible representation of a vec-
tor field on a sphere. However, this model is problematic
when it is used for practical data analysis. The SECS basis
functions v<{(r, ;) and v¥(r, r;) diverge to infinity when
approaching r;. Therefore, V (r) in Eq. (8) would diverge
to 0o or —oo at any r;. This singularity would deteriorate
the robustness of the analysis. The prediction using Eq.
(8) would thus be unreliable in the vicinity of r;.
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Extension of spherical elementary current systems
A vector field on a sphere can be decomposed into CF
and DF components. The basic idea of the SECS expan-
sion is to represent each of the vector field components
by a linear combination of CF and DF localized basis
functions. The CF SECS basis function was chosen so
that its divergence is constant on the sphere except at
r = r;, and the DF SECS basis function was chosen so
that its curl is constant except at r = r;. As described
above, however, the SECS basis functions diverge to
infinity at r = r;. This section explores a set of localized
basis functions which satisfy the CF or DF condition and
take only finite values over the sphere.

Before obtaining alternative set of basis functions, we
consider scalar functions W (r) and W4 (r) defined on a
sphere. From these scalar functions, the following two
kinds of spherical vector fields can be derived:

Ve = — vo we, )

Vir) = — e, x Vo U4, (10)

where Vg denotes the gradient operator on the sphere
and e, denotes the radial unit vector at r. The vector field
v satisfies the CF condition Vg x V< = 0, where ¥
gives its scalar potential. The vector field V¥ satisfies the
DF condition Vg - ydf — 0, where wdf gives its stream
function. We approximate each scalar function by a series
of radial basis functions as follows:

vl = wity S, r,

i=1

(11)

v (r) = Z w?fwdf(r, ri).

i=1

(12)

Each of these equations can be regarded as a radial basis
function network (e.g., Bishop, 2006). The radial basis
functions ¥f and ¥4 yield the following localized vec-
tor-valued basis functions satisfying CF and DF condi-
tions, respectively:

v, r) = — Vo yur,r), (13)

viir, r) = — e, x Vo ydir,r)). (14)

Equtions (9) and (10) can thus be rewritten in the forms

Vi) = chf A, r), (15)
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n
v = witvir, (16)
i=1

and thus a vector field V(r) can be decomposed as
follows:

n n
V(r) = Z wvl(r, r;) + Z witydl(r, ). (17)
i=1 i=1

Equtions (13) and (14) provide sufficient conditions of CF
and DF basis functions, respectively. If we choose

v =y =2log

BN
sSIin ——
2

) (18)

then we obtain the SECS CF and DF basis functions in
Egs. (6) and (7).

A different choice of ¥<f and ¢ df provides a different
set of basis functions. One practical choice would be a
spherical Gaussian function as follows:

v, ri) = v, ri) = exp [n(cos A6 — 1)]
r-r;
=exe [1( 7z -1}

where 7 is a scale parameter which gives the spread of the
spherical Gaussian function. As 7 is smaller, the spread
becomes larger. When Eq. (19) is used, Eqs. (11) and
(12) are regarded as Gaussian radial basis function net-
works bounded on a sphere for representing W< and w4,
In principle, the Gaussian radial basis function network
can represent any scalar function in a finite region with
arbitrary accuracy by tuning the scale parameter and
the number of basis functions (Park and Sandberg 1991,
1993). According to Eqgs. (13) and (14), the spherical

(19)
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Gaussian function in Eq. (19) yields the following CF and
DF basis functions:

vi(r,r)) = eg(nsin AD) exp [n(cos AO — 1)]

= ep(n sin AB) exp {77 (% - 1)}’ (20)
vi(r, 1) =(nri x r) exp [n(cos A — 1)]
=(nr; X r) exp [n(rj.zzri - 1)} (21)

Figure 1 shows the shape of basis stream functions and
the profile of the azimuthal component of DF basis func-
tions. In the left panel of Fig. 1, the dotted line indicates
the profile of a basis stream function for an original SECS
function in Eq. (18), and the solid line indicates that for
a proposed basis function in Eq. (19), where n = 131.4.
In the right panel, the dotted line indicates the profile of
the azimuthal component of a DF SECS basis function in
Eq. (7) and the solid line indicates a proposed DF basis
function in Eq. (21). While the SECS functions diverge
as A is approaching 0, the proposed basis functions take
finite values at any point. Accordingly, an expansion in
the form of Eq. (17) would take finite values at any point
on the sphere as far as all the weights {wff} and {w;if} are
finite.

Estimation of ionospheric plasma velocity field

As an application of the newly introduced basis functions
in Egs. (20) and (21), we estimate a temporal evolution
of the ionospheric plasma velocity field from the Super-
DARN data. The plasma velocity field in the ionosphere
can be reasonably assumed to have no divergence. We
can thus consider a stream function of the velocity field
at the time f; in the form of Eq. (12):

SECS -----

c Proposed —
Ke)
©
C
=
R
% 1
o
1S
©
o
(7]
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Fig. 1 The profile of the basis stream function with respect to A6 for the original SECS and the proposed basis function (left) and the profile of the
azimuthal component of the divergence-free SECS basis function and the proposed divergence-free basis function (right). The scale parameter  for
the proposed basis functions is set at 131.4. In each panel, the dotted line indicates the original SECS and the solid line indicates the proposed basis
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We(r) =Y wii (r,7),

i=1

(22)

where a spherical Gaussian function in Eq. (19) is cho-
sen as the stream function ¥ here. Since we consider a DF
situation where the CF component can be ignored, the
superscript df is omitted. The velocity field at ¢ can be
derived from the stream function in Eq. (22) as follows:

Vi) =Y wiv(r,r, (23)
i=1

where v(r,r;) is the DF basis function in Eq. (21). We
placed 2500 basis functions over the region of the north-
ern hemisphere at higher geomagnetic latitudes than 40°.
The poles of the basis functions {r;} are distributed uni-
formly but at random locations over this region. Since
the basis functions are distributed fairly uniformly, Eq.
(23) corresponds to a Monte Carlo approximation of the
following convolution integral (Heaton et al. 2014)

Vi(r) = /w(r’)v(r, rdr/,

N

(24)

where S indicates the region above 40° in geomagnetic
latitude. A spherical Gaussian function has a scale param-
eter n which gives its spread. As 7 is smaller, the spread
becomes larger. If the spread is taken to be too small,
each localized basis function could not fill the gaps with
its neighbors and erroneous artifacts would be produced
when the expansion of Eq. (23). Meanwhile, if the spread
is too small, the spatial resolution of Eq. (23) becomes
poor. Here we set n at 131.4, which is determined so that
the exponent of Eq. (19) becomes half of the peak value
at A@ = 5°. This means the typical spread of a localized
basis function in Egs. (20) and (21) is 57 R/180 in geo-
desic distance on the sphere. This spatial spread is large
enough to enable us to represent a spatially smooth solu-
tion with 2500 basis functions distributed in the region of
interest.

We want to obtain such weights {wy 1, ...} that Vi (r) will
fit to the observations from the SuperDARN. We denote
the jth record of the line-of-sight plasma velocity as yj;
and the location of that record as ry ;. A prediction for yy ;
based on Eq. (23) is given as

n

pred
Yej = ekj Vilrg)) = Z Wii€kj V(rr ri)s (25)
i=1

where ey ; denotes a unit vector in the line-of-sight direc-
tion of a radar beam providing a velocity measurement at
the point ry ;. Denoting the observation noise as ¢ ;, the
observed line-of-sight velocity yi ; can be written as
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n

Ykj = Z Wik - V(i) 1i) + &k .
i=1

(26)

Combining all the records of line-of-sight plasma drift
velocity at the time £ into one vector y;, Eq. (26) for all
the records can be written in the following form:

Vi = Hiwy + e, (27)

where wy is a vector consisting of all the weights con-
tained in Eq. (23), & is a vector consisting of & ; for all
Yk, and Hy is a matrix of which each element H; ; is
defined as

Hk,ji = ek,j . V(rk,j; l"i)- (28)

If the estimate of wy is obtained, then we can basically
predict the plasma drift velocity at an arbitrary point r by
using Eq. (23). However, there are some wide gaps in the
spatial coverage of the SuperDARN, and the radars could
miss velocity measurements even in the fields of view. It
is difficult to appropriately determine the weights for the
entire region in the hemisphere. In order to resolve the
problems of observation gaps and missing data, we use
an empirical model of the ionospheric electric potential
as additional information. We decompose the weight wy
into the background component ¢ and the disturbance
component f as follows:

wi =&+ By (29)

The background component ¢; can be obtained by
assuming that the plasma drift velocity is equal to the
E x B velocity which is given by the empirical model of
the electric potential distribution. In this study, the elec-
tric potential model by Weimer (2001) is used to obtain
. The OMNI hourly solar wind data were used as the
input of the Weimer model. The background potential
distribution at each minute is then obtained by linear
interpolation of the hourly distribution of the Weimer
model.
If ¢ is given, Eq. (27) can be rewritten as

Vi = Hilp +Hi By + &x. (30)

We then estimate the disturbance component f; by using
a Bayesian method, which is based on the posterior dis-
tribution given the observations y,. The posterior distri-
bution p(wy|y,) is obtained according to Bayes’ theorem:

_ P0u1BP(BD)

Py PO

(31)
In the following, a Gaussian distribution with mean
i and covariance matrix P is denoted as N (u,P). If
er in Eq. (30) obeys a Gaussian distribution N(0, Ry),
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pW|B) becomes the Gaussian distribution with mean
Hi & + Hi By and variance Ry, that is

POrIBr) = N(Hi&y + HiBi, Rpo).

In addition, we assume that the prior distribution p(8y)
is Gaussian as follows:

PBr) =NBpPrio)

The posterior distribution p(Bily;) then becomes a
Gaussian distribution, where its mean vector B; and
covariance matrix P are

(32)

(33)

Bi =Byx + (P ; + H{RH™!

Hi R 0 = Hi i — HiByio), (34)

'sk Z(Pl:,ll + HZR;lHk)_l. (35)
The mean of the posterior in Eq. (34) can be regarded as
an estimate of the disturbance, and it provides an esti-
mate of the weight wy as follows:

Wy = ¢ + By (36)

Once wy is obtained, the stream function can be esti-
mated by Eq. (22), and the plasma velocity field Vi (r)
can be estimated by Eq. (23). The covariance matrix of
the posterior in Eq. (35) represents the uncertainty of the
estimate of B;. The uncertainty of Wy (r) can be evaluated
by introducing the following vector:

Y(r,ry)
Y(r,rp)
a(r) = : (37)
lp(r’ r}’l)
Using the vector a4, the variance of Wy (r) becomes
o,y = a(r) Pra(r). (38)

This can be used as a proxy of the uncertainty of W (r).
The uncertainty of each component of the plasma veloc-
ity V¢ (r) can also be evaluated in a similar manner.

The prior distribution of the disturbance p(f;) can
be determined in various ways. One effective way is to
determine p(f;) based on the observations in the pre-
vious time intervals. This means that the conditional
distribution p(Bj|y;.x_1) is used as a prior distribution,
where y,.,;_; denotes the sequence of the observations
{91,995 - --»¥k_1}. We then obtain

P(J’k|/3k)l7(/3k|y1:k—1)'
p(ykb’l:kfl)

PBrlyix) = (39)
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The conditional distribution p(B;|y;.x_;) can be obtained
from p(Bi_11¥1.4_1), which corresponds to the distribu-
tion of Eq. (39) for the previous time interval. We assume
the distribution p(Bx_1|y,.4_1) is Gaussian as follows:

PBr-11y1.6-1) = NBr—_1jx-1, Pk—1jk=1)- (40)

In addition, the probability distribution of B; given
the disturbance for the previous time interval, 8;_;, is
assumed to be a Gaussian distribution

PBilBi_1) = N(aBr_1,Q).

We then obtain a predictive distribution of B as a Gauss-
ian distribution:

PBilyri—1) = NBri—1, Prik=1),

(41)

(42)

where the mean vector Bj_; and covariance matrix
Piix—1are given as

Biik—1 =oBi_1jk—1> (43)

Pric—1 =o*Pr_1p—1 + Q. (44)

Similarly to Egs. (34) and (35), the posterior mean B x
becomes

Buik = Bij—1 + Py + H{RH) ™!

HER; ' % — Hit o — HeBrix—1)» (45)

and the posterior covariance matrix Py is

Pk|k = (Pl:\i—l + H/Z"RIZIH/()_I. (46)
Applying Eqgs. (43)—(46) recursively, B; for each time
interval can be estimated. This is the Kalman filter
algorithm for estimating B; based on the sequence of
observations y,,...,y;. The estimate of §; provides the
estimate of wy according to Eq. (29). The posterior distri-
bution of wy is thus given as
pwily) = N Wi Pui), (47)

where wy = &i + Byjx- The stream function is esti-
mated according to Eq. (22):

Vi () = Wi (r, 1),

i=1

(48)

where wyx,; denotes the ith element of the vector wy .
The plasma drift velocity distribution is also estimated
according to Eq. (23):
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n
Vi(r) = Z Wik, iV, 1)),
=1

(49)

As done in Eq. (38), the variance of the W given y;.;, can
be obtained as follows:
04 = A Prra(), (50)
and the variance of V given y;., can also be obtained
using a similar equation.
In the beginning of the Kalman filter algorithm, B and
Pojo were set as follows:

Boo =0, Pojo =400Q. (51)

Although the initial variance P|q is very large, it becomes
a reasonable value after several steps. In order to esti-
mate a sequence of B, the parameter « in Eq. (41) and
the covariance matrices Q and Rg must also be given in
advance. In order to ensure spatial smoothness among
the elements of 8, the matrix Q is set as follows:

CQ(rlr r}’l)
CQ(rZIrVI)

Co(r1,r1) Co(ry,ra) -
Cq(ra,r1) Co(ra,ra)

=09

’

Co(ru,r1) Co(ru,r2) -+ Coru,ryn)
(52)
where Cq(r;, 7)) is a correlation function between r; and
rj. We assume Cq(r;, r;) is a spherical Gaussian function:

Colriry) = prarpexp [ (L —1)], (53)

where we assume k = 14.7 so that the exponent becomes
half of the peak at A6 = 15°. The function p in Eq. (53)
forces the stream function Wi (r) at the boundary (40°
geomagnetic latitude) to be near zero. We define p as
follows:

(sin 4; — sin 40°)(sin 4; — sin 40°)
(1 — sin 40°)2 '

p(ri,rj) = (54)

The matrix Ry is set as follows:
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Fig. 2 The latitudinal profile of the azimuthal drift velocity at 3h
MLT obtained by fitting to the Weimer's empirical model. The red
line indicates the reconstruction with the proposed basis functions,
the blue line indicates the reconstruction with the original SECS
functions, and the green line indicates the Weimer’s model

b; and g; denote the beam number and the range gate of
the ith element of the observation y. The beam number
indicates the direction of a radar beam and the range
gate is associated with the distance from a radar site. We
assume Cg(g;, g/) can be written in the following form:

(gi_gj)2‘|'

5 (57)

Cr(gi,gj) = exp l—

Equation (55) means the correlations within the same
beam are considered while the correlations between dif-
ferent beams are ignored. The parameters o, og, and «
are determined by maximizing the marginal likelihood:

pOrlo 0w = [ [ p0x180 pBilog.on e dB
L

(58)

(e.g., Morris 1983; Casella 1985). As a result, we chose
0Q = 100, og = 400, and o = 0.9.

In order to evaluate how the proposed basis functions

works, we performed fitting to the drift velocity distri-

bution obtained from an empirical model by Weimer

8,6, Cr(€1,81)  8p,b,Cr(g1,£2)

5| Sb261CR(82:81) 86,0, CR(E2 82)
Rk = UR .

Sblbm CR (gl;gm)
by, CR(G25 &)

(55)

’

8b,,by CR(Gm>&1) 80,60 CR(Gm»82) ** Sbyby CR(Gms &m)

where m is the dimension of y, 8;; is the Kronecker delta:

(i =),

1
B = {0 i #)), (56)

(2001). The red line in Fig. 2 shows the latitudinal profile
of the azimuthal velocity at 3h MLT which was recon-
structed by the proposed functions. For reference, the
reconstruction with the original SECS functions is over-
plotted with the blue line, and the drift velocity profile
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directly derived from the Weimer’s model is overplotted
with the green line. In this fitting, we did not consider the
temporal evolution; that is, the estimation was performed
with Eq. (34), where P, ; was taken to be as large as Pgjo
in Eq. (51). While the Weimer’s model gives a smooth
latitudinal profile, the original SECS functions produce a
little serrated profile due to their singularities. This prob-
lem would be inconvenient when compared with other
observations such as spacecraft observations. In com-
parison with high-resolution data such as total electron
content (TEC) data from Global Navigation Satellite Sys-
tem (GNSS) satellites, it would be almost impossible to
expect all the data points are apart from a center of any
basis functions. The singularities could be eliminated by
modifying the original SECS functions in the neighbor-
hood of their source points as discussed by Vanhamaiki
and Juusola (2020). The proposed basis functions provide
another practical way which enables us to obtain a rea-
sonable estimate as smooth as the Weimer’s model.

Application

We estimated the temporal evolution of the ionospheric
plasma drift velocity distribution during the magnetic
storm on March 17, 2015 by using the method described
in the previous section. In advance of applying the
above method, the records of line-of-sight velocity of
which the absolute values were less than 100 m/s were
excluded because they might be ground scatter echoes.
The records of the absolute values that were larger than
2000 m/s were also excluded as outliers. We used the
data from 16 radar sites (Adak Island East, Adak Island
West, Christmas Valley East, Christmas Valley West,
Fort Hays East, Fort Hays West, Hankasalmi, Hokkaido
East, Hokkaido West, Inuvik, Kapuskasing, King Salmon,
Prince George, Pykkvibaer, Rankin Inlet, Saskatoon) in
operation during this event.

Figure 3 shows the estimated plasma drift velocity dis-
tribution and some related quantities at 08:30 UT, when
the data coverage on the nightside was relatively good.
The upper-left panel indicates the stream function esti-
mated according to Eq. (48), and the upper-right panel
indicates the uncertainty of the stream function value as
estimated by the variance of the posterior distribution
of the stream function, which can be obtained using Eq.
(50). The lower-left panel shows the estimated plasma
drift velocity distribution with white arrows. The uncer-
tainty of the plasma drift velocity is superposed with a
color code in this panel. The lower-right panel shows the
number of the available SuperDARN data for past 10 min
for each bin, where white indicates no data points being
available for that bin. As shown in the lower-right panel,
the SuperDARN data points were not evenly distrib-
uted, but rather most of the data were obtained on the
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duskside or the nightside at this time. Accordingly, the
uncertainty of the estimate tends to be small on the dusk-
side and the nightside, while it tends to be large on the
dawnside and the dayside as indicated in the upper-right
panel and the lower-left panels. The uncertainty near the
outer boundary is also small because we assume W (r) at
the boundary to be zero.

Figure 4 shows geomagnetic indices (the SYM-H and
AE indices) and the southward component of the inter-
planetary magnetic field observed by the ACE space-
craft from 00:00 to 12:00 UT for reference. At 08:30
UT, a magnetic storm was in progress, and the empiri-
cal model by Weimer (2001) predicted that the two-cell
convection structure was well developed, which is shown
in the upper-left panel of Fig. 3. In order to determine
the impact of the SuperDARN data, the drift velocity
distribution is decomposed into two components: the
background Weimer model component ¢ and the dis-
turbance component Si. As described above, the distur-
bance fy is estimated so as to fit the SuperDARN data.
Thus, the disturbance component reflects the impact of
the SuperDARN data. The left and right panels in Fig. 5
show the background and the disturbance components,
respectively. In the polar cap region, the disturbance
component shows a flow toward the dayside, which is
opposite to the normal two-cell convection as seen in the
empirical model. This would suggest that the flow speed
in the dayside polar cap region was overestimated by the
empirical model and that it was estimated to be smaller
by considering the SuperDARN data. On the nightside,
the disturbance component was small, which means the
empirical model predicted the flow distribution with
high accuracy.

Figure 6 shows the temporal evolution of the estimated
plasma drift velocity distribution from 06:00 to 08:30 UT,
and Fig. 7 shows the corresponding evolution of the dis-
turbance component. The estimation result shows the
ionospheric convection was weak at 06:00 UT. At 06:30
UT, the ionospheric convection was estimated to be
enhanced, which was in accord with the southward turn-
ing of the solar wind magnetic field around 06:00 UT as
shown in Fig. 4. The disturbance component at 06:30 UT
was in the opposite sense to the estimated plasma veloc-
ity shown in Fig. 7 especially in the polar cap region,
which suggests the empirical model overestimated the
plasma velocity there. The disturbance component grad-
ually decayed until 07:30 UT on the dayside. In the post-
midnight region, the westward disturbance component
is maintained from 50° to 60° geomagnetic latitude. In
the pre-midnight region, the disturbance component is
oriented northward. At 08:30 UT, the disturbance com-
ponent in the sunlit polar cap was visible again. Fig-
ure 8 shows a histogram of the deviation of the observed
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Fig. 3 The result of the estimation at 08:30 UT on March 17, 2015 for the northern hemisphere. The upper-left panel shows the estimated stream
function, the upper-right panel shows the uncertainty of the stream function, the lower-left panel shows the estimated plasma drift velocity
distribution (arrows) and its uncertainty (color code), and the lower-right panel shows the cumulative number of data points for each bin for the
past 10 minutes. In each panel, the center is the north pole and the outer boundary is the line of 40° geomagnetic latitude. The unit of the stream

08:30

18

100

18 0

line-of-sight velocity from the estimate obtained with the
proposed method with a red line. The deviation of the
observation from the prediction with the background
Weimer’s model is also shown with blue shade. Large
residuals still remain after the fitting probably because we
assumed temporal smoothness as in Eq. (41) and spatial
smoothness as in Eq. (52) to obtain robust results. How-
ever, the residuals certainly became smaller than the pre-
diction with the Weimer’s model. The global observation
such as the SuperDARN provides vital information for

improving a prediction with an empirical model for each
event. The proposed technique is helpful for making use
of the global measurement in order to obtain a reliable
prediction.

Discussion and concluding remarks

We have proposed a technique for estimating the spa-
tial distribution of ionospheric plasma drift velocity.
In this technique, the ionospheric plasma velocity dis-
tribution is represented by a sum of the background
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Fig. 4 Overview of geomagnetic conditions from 00:00 to 12:00 UT on March 17, 2015. The upper panel shows the SYM-H index, the middle panel
shows the AU and AL indices, and the bottom panel shows the zcomponent of the interplanetary magnetic field in GSM coordinates measured by
the ACE spacecraft. The interplanetary magnetic field is plotted by assuming the time delay from ACE to the Earth was 45 min

18

08:30

— 500 m/s
Fig.5 The background Weimer model (left panel) and the disturbance component of the estimation (right panel) at the same time as Fig. 3

component and the perturbation component. While
the background component is obtained from an empiri-
cal convection model, the perturbation component
is written by a weighted sum of DF localized basis
functions. In modeling of the global ionospheric drift

velocity distribution, global basis functions such as
spherical harmonic functions were usually used (e.g.,
Ruohoniemi and Baker 1998; Thomas and Shepherd
2018). However, such global basis functions may cause
spurious artifacts in the data gap region when using the
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Fig. 6 The sequence of estimated plasma drift velocity distribution (arrows) and its uncertainty (color code) from 6:00 UT to 8:30 UT on March 17,

SuperDARN data. The use of localized basis functions
would be an effective way to avoid such artifacts.

The basis functions introduced in this study can be
regarded as a variant of the SECS proposed by Amm
(1997). However, the original SECS basis functions
have a singular point. This problem would be serious
especially when analyzing measurement data with high
spatial resolution such as the SuperDARN data. If high-
resolution data are used, it would be difficult to place all
singular points apart from any observation points. This
means that some observation points would be in the
vicinity of singular points. In such a situation, analysis
with the SECS functions would be strongly constrained
by the data obtained in the vicinity of singularities, and
representation of large-scale features could be poor.

In contrast, the basis functions employed in this
paper have been derived from spherical Gaussian func-
tions, and they do not have a singular point. The pro-
posed framework would enable us to obtain a natural
smooth solution in analysis of high spatial resolution
data. Moreover, it enables us to obtain a reliable esti-
mate of the plasma drift velocity at an arbitrary point
of the ionosphere. This allows us to use analysis results

as a reference for comparison with other observations
such as spacecraft observations. Nowadays a variety
of ionospheric and geomagnetic measurements attain
high spatial resolution. The proposed framework would
also be helpful for comparing such data with high spa-
tial resolution.

This study focused on the estimation of the global
plasma velocity in the ionosphere. However, the basis
functions introduced in this study can be applied for a
variety of purposes as the original SECS functions are
used for many studies. For example, since the proposed
framework employs local basis functions, we can apply
this framework for estimating a regional pattern of the
plasma velocity distribution as done by Hori et al. (2018).
Modeling of the ionospheric electric current would also
be a potentially useful application. The original work by
Amm (1997) proposed the SECS functions for represent-
ing ionospheric currents and analyzing ground magnetic
disturbances due to the ionospheric currents. Many stud-
ies have employed the SECS functions for this purpose.
Such analyses of ionospheric currents could be improved
with the proposed smooth basis functions.
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Fig. 7 The sequence of the estimated perturbation component for plasma drift velocity distribution from 6:00 UT to 8:30 UT on March 17,2015
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Fig. 8 Histogram of the deviation of the observed line-of-sight

velocity from the prediction with the proposed method (red line)

and the deviation of the observation from the prediction with the

background Weimer's model (blue shade).

Abbreviations
DF: Divergence free; CF: Curl free; DE2: Dynamic Explorer 2; SuperDARN: Super
Dual Auroral Radar Network; SECS: Spherical Elementary Current System.

Acknowledgements

SuperDARN is a collection of radars funded by national scientific funding
agencies of Australia, Canada, China, France, Italy, Japan, Norway, South Africa,
United Kingdom, and the United States. The authors would like to thank the
World Data Center for Geomagnetism, Kyoto University, for providing the
SYM-H and AE indices. The authors would also like to thank N. Ness and the
ACE Science Center for providing the ACE data. This study was carried out on
Supercomputer System for Statistical Science at ISM under the ISM Coopera-
tive Research Program (2018-ISMCRP-2009).

Authors’ contributions

SN developed the technique and conducted the data analysis. TH and NN
processed and organized the SuperDARN data. KS built scientific foundations
and ideas of this research. All authors read and approved the final manuscript.

Funding

The work of SN was in part supported by JSPS KAKENHI Grant Number
JP17H01704. The work of TH was done at ERG-SC and was in part supported
by JSPS KAKENHI grant number JP19K03949.

Availability of data and materials

The SuperDARN data were obtained in the form of common time fitacf CDF
via ERG Science Center (ERG-SC) data repository (Hori et al. 2015). The SYM-H
and AE indices were obtained via the World Data Center for Geomagnetism,




Nakano et al. Earth, Planets and Space (2020) 72:46

Kyoto University. The ACE data were obtained through the Coordinated Data
Analysis Web (CDAWeb) of NASA/GSFC.

Competing interests
The authors declare that they have no competing interests.

Author details

! The Institute of Statistical Mathematics, Tachikawa 190-8562, Japan. 2 Center
for Data Assimilation Research and Applications, Joint Support Center for Data
Science Research, Tachikawa, Japan. > Institute for Space-Earth Environmental
Research, Nagoya University, Nagoya, Japan. “ The University of Tokyo, Tokyo,
Japan.

Received: 25 November 2019 Accepted: 19 March 2020
Published online: 07 April 2020

References

Amm O (1997) lonospheric elementary current systems in spherical coordi-
nates and their application. Earth Planets Space 49:947-955

Amm O, Viljanen A (1999) lonospheric disturbance magnetic field continu-
ation from the ground to the ionosphere using spherical elementary
current systems. Earth Planets Space 51:431-440

Amm O, Grocott A, Lester M, Yeoman TK (2010) Local determination of
jonospheric plasma convection from coherent scatter radar data
using the SECS technique. J Geophys Res 115:A03304. https://doi.
0rg/10.1029/2009JA014832

Bishop CM (2006) Pattern recognition and machine learning. Springer, New
York

Bristow WA, Hampton DL, Otto A (2016) High-spatial-resolution veloc-
ity measurements derived using local divergence-free fitting of
SuperDARN observations. J Geophys Res 121:1340-1361. https://doi.
org/10.1002/2015JA021862

Casella G (1985) An introduction to empirical Bayes data analysis. Amer Stat
39:83-87

Cousins EDP, Matsuo T, Richmond AD (2013a) Mesoscale and large-scale vari-
ability in high-latitude ionospheric convection: Dominant modes and
spatial/temporal coherence. J Geophys Res 118:7895-7904. https://doi.
org/10.1002/2013JA019319

Cousins EDP, Matsuo T, Richmond AD (2013b) SuperDARN assimilative map-
ping. J Geophys Res 118:7954-7962. https://doi.org/10.1002/2013JA0193
21

Fiori RAD, Boteler DH, Koustov AV, Haines GV, Ruohoniemi JM (2010) Spherical
cap harmonic analysis of Super Dual Auroral Radar Network (SuperDARN)
observations for generating maps. J Geophys Res 115:A07307. https://doi.
org/10.1029/2009JA015055

Gjerloev JW, Waters CL, Barnes RJ (2018) Deriving global convection maps
from SuperDARN measurements. J Geophys Res 123:2902-2915. https://
doi.org/10.1002/2017JA024543

Greenwald RA, Baker KB, Dudeney JR, Pinnock M, Jones TB, Thomas EC, Vil-
lain J-P. Cerisier J-C, Senior C, Hanuise C, Hunsucker RD, Sofko G, Koehler
J, Nielsen E, Pellinen R, Walker ADM, Sato N, Yamagishi H (1995) DARN/
SuperDARN: a global view of the dynamics of high-latitude convection.
Space Sci Rev 71:761-796

Heaton MJ, Katzfuss M, Berrett C, Nychka DW (2014) Constructing valid spatial
processes on the sphere using kernel convolutions. Environmetrics
25:2-15. https://doi.org/10.1002/env.2251

Heppner JP (1977) Empirical models of high-latitude electric fields. J Geophys
Res 82:1115-1125

Heppner JP, Maynard NC (1987) Empirical high-latitude electric field models. J
Geophys Res 92:4467-4489

Hori T, Miyashita Y, Miyoshi Y, Seki K, Segawa T, Tanaka Y-M, Keika K, Shoji M,
Shinohara |, Shiokawa K, Otsuka Y, Abe S, Yoshikawa A, Yumoto K, ObanaY,
Nishitani N, Yukimatu AS, Nagatsuma T, Kunitake M, Hosokawa K, Ogawa
Y, Murata KT, Nosé M, Kawano H, Sakanoi T (2015) CDF data archive and
integrated data analysis platform for ERG-related ground data devel-
oped by ERG Science Center (ERG-SC), JAXA Research and Development
Report. J Space Sci Inf Jpn 4:75-89. https://repository.exst,jaxa.jp/dspace/
handle/a-is/326251

Page 13 of 13

Hori T, Nishitani N, Shepherd SG, Ruohoniemi JM, Connors M, Teramoto M,
Nakano S, Seki K, Takahashi N, Kasahara S, Yokota S, Mitani T, Higashio
N, Matsuoka A, Asamura K, Kazama Y, Wang S-Y, Tam SWY, Chang T-F,
Wang B-J, Miyoshi Y, Shinohara | (2018) Substorm-associated ionospheric
flow fluctuations during the 27, (March 2017) magnetic storm: SuperD-
ARN-Arase conjunction. Geophys Res Lett 45:9441-9449. https://doi.
org/10.1029/2018GL079777

Matsuo T, Richmond AD, Nychka DW (2002) Modes of high-latitude electric
field variability derived from DE-2 measurements: Empirical Orthogo-
nal Function (EOF) analysis. Geophys Res Lett 29:1107. https://doi.
org/10.1029/2002GL014077

Morris CM (1983) Parametric empirical Bayes inference: theory and applica-
tions. J Am Stat Assoc 78:47-55

Nishitani N, Ruohoniemi JM, Lester M, Baker JBH, Koustov AV, Shepherd SG,
Chisham G, Hori T, Thomas EG, Makarevich RA, Marchaudon A, Pon-
omarenko P, Wild JA, Milan SE, Bristow WA, Devlin J, Miller E, Greenwald
RA, Ogawa T, Kikuchi T (2019) Review of the accomplishments of mid-
latitude Super Dual Auroral Radar Network (SuperDARN) HF radars. Prog
Earth Plan Sci 6:27. https://doi.org/10.1186/540645-019-0270-5

Park J, Sandberg IW (1991) Universal approximation using radial-basis-function
networks. Neural Comput 3:246-257

Park J, Sandberg IW (1993) Approximation and radial-basis-function networks.
Neural Comput 5:305-316

Reistad JP, Laundal KM, @stgaard N, Ohma A, Haaland S, Oksavik K, Milan
SE (2019a) Separation and quantification of ionospheric convection
sources: 1. A new technique. J Geophys Res 124:6343-6357. https://doi.
0rg/10.1029/2019JA026634

Reistad JP, Laundal KM, @stgaard N, Ohma A, Thomas EG, Haaland S, Oksavik
K, Milan SE (2019b) Separation and quantification of ionospheric con-
vection sources: 2. The dipole tilt angle influence on reverse convection
cells during northward IMF. J Geophys Res 124:6182-6194. https://doi.
0rg/10.1029/2019JA026641

Richmond AD, Kamide Y (1988) Mapping electrodynamic features of the high-
latitude ionosphere from localized observations: technique. J Geophys
Res 93:5741-5759

Ruohoniemi JM, Baker KB (1998) Large-scale imaging of high-latitude convec-
tion with Super Dual Auroral Radar Network HF radar observations. J Geo-
phys Res 103:20797-20811

Ruohoniemi JM, Greenwald RA (1996) Statistical patterns of high-latitude con-
vection obtained from Goose Bay HF radar observations. J Geophys Res
101:21743-21763

Seki K, Miyoshi Y, Ebihara Y, Katoh Y, Amano T, Saito S, Shoji M, Nakamizo A,
Keika K, Hori T, Nakano S, Watanabe S, Kamiya K, Takahashi N, Omura Y,
Nose M, Fok M-C, Tanaka T, leda A, Yoshikawa A (2018) Theory, modeling,
and integrated studies in the Arase (ERG) project. Earth Planets Space
70:17. https://doi.org/10.1186/540623-018-0785-9

Thomas EG, Shepherd SG (2018) Statistical pattern of ionospheric convec-
tion derived from mid-latitude, high-latitude, and polar SuperDARN
HF radar observations. J Geophys Res 123:3196-3216. https://doi.
org/10.1002/2018JA025280

Vanhamaki H, Juusola L (2020) Introduction to spherical elementary current
systems. In: Dunlop MW, Lihr H (eds) lonospheric multi-spacecraft analy-
sis tools. Springer, New York, pp 25-26

Weimer DR (2001) An improved model of ionospheric electric potentials
including substorm perturbations and application to the Geospace
Environment Modeling November 24, 1996 event. J Geophys Res
106:407-416

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


https://doi.org/10.1029/2009JA014832
https://doi.org/10.1029/2009JA014832
https://doi.org/10.1002/2015JA021862
https://doi.org/10.1002/2015JA021862
https://doi.org/10.1002/2013JA019319
https://doi.org/10.1002/2013JA019319
https://doi.org/10.1002/2013JA019321
https://doi.org/10.1002/2013JA019321
https://doi.org/10.1029/2009JA015055
https://doi.org/10.1029/2009JA015055
https://doi.org/10.1002/2017JA024543
https://doi.org/10.1002/2017JA024543
https://doi.org/10.1002/env.2251
https://repository.exst.jaxa.jp/dspace/handle/a-is/326251
https://repository.exst.jaxa.jp/dspace/handle/a-is/326251
https://doi.org/10.1029/2018GL079777
https://doi.org/10.1029/2018GL079777
https://doi.org/10.1029/2002GL014077
https://doi.org/10.1029/2002GL014077
https://doi.org/10.1186/s40645-019-0270-5
https://doi.org/10.1029/2019JA026634
https://doi.org/10.1029/2019JA026634
https://doi.org/10.1029/2019JA026641
https://doi.org/10.1029/2019JA026641
https://doi.org/10.1186/s40623-018-0785-9
https://doi.org/10.1002/2018JA025280
https://doi.org/10.1002/2018JA025280

	A framework for estimating spherical vector fields using localized basis functions and its application to SuperDARN data processing
	Abstract 
	Introduction
	Spherical elementary current systems
	Extension of spherical elementary current systems
	Estimation of ionospheric plasma velocity field
	Application
	Discussion and concluding remarks
	Acknowledgements
	References




