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Abstract 

We present the geomagnetic field model COV-OBS.x2 that covers the period 1840–2020. It is primarily constrained 
by observatory series, satellite data, plus older surveys. Over the past two decades, we consider annual differences of 
4-monthly means at ground-based stations (since 1996), and virtual observatory series derived from magnetic data 
of the satellite missions CHAMP (over 2001–2010) and Swarm (since 2013). A priori information is needed to comple-
ment the constraints carried by geomagnetic records and solve the ill-posed geomagnetic inverse problem. We use 
for this purpose temporal cross-covariances associated with auto-regressive stochastic processes of order 2, whose 
parameters are chosen so as to mimic the temporal power spectral density observed in paleomagnetic and observa-
tory series. We aim this way to obtain as far as possible realistic posterior model uncertainties. These can be used to 
infer for instance the core dynamics through data assimilation algorithms, or an envelope for short-term magnetic 
field forecasts. We show that because of the projection onto splines, one needs to inflate the formal model error vari-
ances at the most recent epochs, in order to account for unmodeled high frequency core field changes. As a by-prod-
uct of the core field model, we co-estimate the external magnetospheric dipole evolution on periods longer than 2 
years. It is efficiently summarized as the sum of a damped oscillator (of period 10.5 years and decay rate 55 years), plus 
a short-memory (6 years) damped random walk.

Keywords:  Geomagnetic field, Secular variation, Stochastic equations, Model uncertainties

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

Introduction
Two crucial characteristic time-scales of the geodynamo 
are the Alfvén time ( τA ≈ 4 years based on the propa-
gation of torsional waves, see Gillet et al. 2010) and the 
turn-over time ( τU ≈ 200 years based on the amplitude 
of core flow motions, e.g., Finlay et  al. 2010). The ratio 
of these two (the Alfvén number A = τA/τU ≃ 10−2 ) is 
very difficult to reach with direct numerical simulations 
of the geodynamo (Schaeffer et al. 2017), due to the wide 
separation of length and time-scales in the Earth’s outer 
core. Standard simulations typically reach A = O(1) . 
This motivates the development of parameterizations 

for small-scale turbulent processes (Nataf and Schaef-
fer 2015), which makes it possible to numerically simu-
late the geodynamo at conditions closer to Earth-like 
(Aubert et  al. 2017), reducing the Alfvén number down 
to A ≈ 0.15 (Aubert and Finlay 2019).

In this context, there is a need for geomagnetic field 
models capable of covering both interannual and dec-
adal to centennial changes, while the era of almost con-
tinuous satellite records is only two decades long. There 
is also a need for uncertainty estimates on field model 
coefficients, if these are to be used as ‘observations’ in 
geomagnetic data assimilation algorithms (e.g., Fournier 
et  al. 2010; Gillet 2019). The COV-OBS.x2 model pre-
sented in this study has been derived in this spirit. It 
builds upon the earlier COV-OBS models (Gillet et  al. 
2013, 2015). In practice it is less severely tied to magnetic 
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observations than alternative models covering the recent 
era such as the comprehensive (Sabaka et al. 2004, 2015) 
or the CHAOS (Olsen et  al. 2014; Finlay et  al. 2016) 
model series. COV-OBS.x2 is a compromise constructed 
in order to fill a gap between models that focus on the 
satellite era, and models that cover longer periods such 
as the historical (Jackson et al. 2000) or archeomagnetic 
(e.g., Constable and Korte 2015) eras.

We first describe the data used to build the COV-OBS.
x2 model and the employed parameterization. We then 
present how we derive the stochastic a priori informa-
tion (temporal cross-covariances) used for the model 
construction, and some distinctions compared with pre-
vious generations of COV-OBS models concerning the 
field induced in the outer core by magnetospheric field 
changes. Next we show how the COV-OBS.x2 model 
uncertainties can be used to estimate the probability 
density function (PDF) of magnetic forecasts within the 
employed stochastic framework. The predictions for the 
main field (MF) and its secular variation (SV, the rate of 
change of the field) result from a best linear unbiased 
estimate (BLUE) on COV-OBS-x2 Gauss coefficient data.

The obtained model and its associated uncertainties are 
analyzed, with statistics of the residuals between obser-
vation and model predictions, and characteristics in the 
spectral domain (Lowes spectra and time evolution of 
Gauss coefficients). We estimate the relative importance 
of unmodeled core signals at high frequencies in the SV 
error budget, due to the projection on spline coefficients. 
We next propose PDFs for 5-year forecasts based on the 
employed stochastic properties. It is from this method 
that we derived ISTerre’s candidates models to IGRF-13 
(Alken et al. 2020). Finally, we propose a stochastic analy-
sis of external dipole field changes.

Methods
Geomagnetic data
We consider below the spherical coordinates (r, θ ,φ) . 
Apart from modern satellite data, our data selection pro-
cess follows closely the one used to construct the COV-
OBS.x1 field model. Full details can be found in Gillet 
et al. (2013, 2015). Here, we only briefly describe the new 
or updated aspects of the datasets. This only concerns 
satellite and observatory records over the past two dec-
ades or so:

•	 Satellite data are incorporated by means of virtual 
observatories (VO) built from the low Earth orbit-
ing CHAMP and Swarm missions. They consist in 
4-monthly means, and replace pointwise records 
from CHAMP and Swarm used in previous COV-
OBS models.

•	 Ground observatory (GO) data are considered 
through annual differences of 4-monthly revised 
means after June 1997 (instead of annual means in 
previous COV-OBS models). We do not consider 
such revised means at earlier epochs, because some 
external field corrections are not yet available outside 
the era of continuous satellite field models.

The choice of 4 months for the binning is motivated by 
our wish to use, for the inverse problem, an amount of 
data as much as possible constant through time over the 
recent era (and 4 months is already significantly less than 
the time resolution of COV-OBS internal field models). 
Using higher (e.g., monthly) sampling rates would gener-
ate epochs with a smaller number of available VO data, in 
relation with data selection criteria (see below).

Ground observatories data
Up to June 1996 (included), we use the same dataset of 
ground observatories data as that used in COV-OBS.x1 
(annual difference of annual means, with no ionospheric 
correction). For more recent epochs, we consider instead 
annual differences of 4-monthly means spanning August 
1997 to March 2019. These revised means are computed 
from hourly mean values provided by the BGS database 
(Macmillan and Olsen 2013), as described in Olsen et al. 
(2014). Being constructed upon data that sample all local 
times, the 4-monthly GO data are corrected for the ion-
ospheric field contribution (and its associated induced 
counterpart) using the CM4 model (Sabaka et al. 2004). 
They are not corrected for the magnetospheric contribu-
tion as this latter (and its induced counterpart) is co-esti-
mated within the COV-OBS framework throughout the 
model time-span [ts, te] = [1840, 2020] (see below).

To solve the geomagnetic inverse problem, we need 
to assess uncertainty estimates on 4-monthly GO data. 
We consider as ‘observation’ errors ( σ obs

GO ) the uncertain-
ties provided with the three components of GO dataset. 
For each site, they are estimated as the magnitude of the 
residuals between GO SV time series and the CHAOS-6 
internal plus external predictions (Finlay et  al. 2016). 
Since neither CHAOS-6 nor COV-OBS.x2 parameter-
ize ionospheric sources, we consider here the variance of 
residuals to GO SV series cleaned for ionospheric contri-
butions. Errors σ obs

GO , shown in Fig. 1, are typically of the 
order of a few nT/year (ranging from a fraction of nT/
year to above 10 nT/year). Note that ‘observation’ errors 
constructed this way partly account for our current ina-
bility to model all magnetic sources. We still inflate these 
errors by an extra modeling error of variance σmod

GO

2
= (2 

nT/year)2 , in order to account for 
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	 i.	 The inability of COV-OBS.x2 to fit SV changes at 
periods shorter than 2–3 years (see Pick et al. 2019) 
due to the projection in time onto cubic B-splines 
with 2 years knot spacing;

	 ii.	 The imperfect correction and/or parameteriza-
tion of external sources. These could lead to biases, 
especially at high latitudes where slow external 
changes are difficult to accurately determine. Alter-
native models could be used as for instance the 
AMPS model by Laundal et  al. (2018), but this is 
out of the scope of the present work.

Considering that modeling and observation errors 
are independent, the resulting error budget is then 
σGO

2 = σmod
GO

2
+ σ obs

GO

2.

Virtual observatories satellite data
Instead of the pointwise dataset used for COV-OBS.x1, 
we use No = 300 VOs derived from the CHAMP and 
Swarm measurements. VOs consist of processed MF vec-
tor data distributed on an equal area grid at the altitude 
of 370 km for CHAMP and 490 km for Swarm. These are 
estimated every 4 months from March 2001 to Novem-
ber 2010 for CHAMP, and from November 2013 to July 
2019 for Swarm. They are built from selected data (Sun 
at maximum 10◦ below the horizon and geomagneti-
cally quiet conditions, see details in Barrois et  al. 2018; 
Hammer 2018). In constructing the VO estimates we use 
the magnetic data in the (r, θ ,φ) frame, rotated from the 
magnetometer frame using the Euler angles estimates 
provided by the CHAOS field model (version 6x9), which 
takes into account star camera attitude errors within its 
data error budget. Note that each VO datum is derived 
from hundreds of satellite data within 4 month bins.

These data are cleaned from the lithospheric field con-
tribution, as estimated with the LCS model (Olsen et al. 
2017), and from the ionospheric contributions as esti-
mated from the CM4 model (Sabaka et al. 2004). As for 
GO data, and contrary to what was done in Barrois et al. 
(2018), they are not corrected for the magnetospheric 
contribution. Furthermore, in order to reduce the poten-
tial impact of field aligned currents, we transform the 
three-component data ( Br ,Bθ and Bφ ) at dipole latitudes 
higher than 55◦ into intensity data F =

√

B2
r + B2

θ + B2
φ  . 

As for GO data, we consider two sources of VO data 
error: 

	(i)	 ‘Observation’ uncertainties, of variance σ obs
VO

2 . 
These are estimated for each VO time series 
separately, based on the variance of the residu-
als between each series and the predictions of the 
CHAOS field model after detrending as described 
in Barrois et al. (2018). In practice σ obs

VO are gener-

ally less than 2 nT for CHAMP, and slightly less for 
Swarm, as illustrated in Fig. 1.

	(ii)	 An extra error budget that covers unmodeled error 
sources, of variance fixed to σmod

VO

2
= (2 nT)2.

Considering these two error sources as independent, 
data error variances associated with VO data are thus 
σVO

2 = σ obs
VO

2
+ σmod

VO

2 . At each VO of dipole latitude 
higher than 55◦ , errors on F data are deduced from the 
propagation of errors on ( Br ,Bθ ,Bφ ) as

We finally acknowledge the fact that unmodeled error 
sources certainly arise from spatially coherent structures, 
but accounting for spatial cross-covariances in unmod-
eled external field sources is out of the scope of the pre-
sent study.

Parameterization of the COV‑OBS.x2 model
The construction of the COV-OBS.x2 field model 
is largely based on the procedure described in Gil-
let et  al. (2013). We recall here the main common 
points. In the absence of electrical currents between 
observation points and the sources (here the Earth’s 
outer core, of radius c = 3485 km, and the magneto-
sphere), the MF derives from a magnetic potential, 
i.e., B = −∇(Vi + Ve) , with Vi and Ve , respectively, the 
internal and external potentials.

The internal potential Vi is expanded on a spherical 
harmonic basis up to degree Ni = 14,

with ( gmn , hmn  ) the internal Gauss coefficients of degree n 
and order m, Pm

n  the Schmidt semi-normalized Legendre 
polynomials, and a = 6371.2 km the Earth’s radius. Gauss 
coefficients are used to define the MF and SV Lowes 
spectra:

The external potential Ve accounts for an external axial 
dipole field in dipole coordinates (plus its induced coun-
ter part):

(1)σVOF =
|Br |

F
σVOr +

|Bθ |

F
σVOθ +

|Bφ |

F
σVOφ .

(2)
Vi(r, θ ,φ, t) = a

Ni
∑

n=1

(a

r

)n+1 n
∑

m=0

(

gmn (t) cos(mφ)

+ hmn (t) sin(mφ)
)

Pm
n (cos θ),

(3)























R(n, t) = (n+ 1)

n
�

m=0

gmn (t)2 + hmn (t)
2

S(n, t) = (n+ 1)

n
�

m=0

ġmn (t)2 + ḣmn (t)
2

.
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We use the notations

with the external ( qmn , smn  ) and induced ( gm†
n , hm†

n  ) Gauss 
coefficients, and

A single coefficient, q01d(t) , which describes the external 
axial dipole in the internal dipole coordinates, is thus 
used to describe the evolution of the external field. At 
each iteration k of the algorithm (see below), the deriv-
atives involving the forward operator in Eq.  (6) are lin-
earized around internal coefficients gm1  of the previous 
step k − 1 : we neglect the nonlinearities associated with 
m(t) when calculating the gradient and Hessian opera-
tors (for details, see Gillet et al. 2013). The relation link-
ing ( gm†

n , hm†
n  ) to ( qmn , smn  ) is detailed below.

All internal and external coefficients are expanded 
in time using order 4 cubic B-splines, with knots every 
2 years, spanning the period 1838–2022. A L2 measure 
of the data misfit is employed, together with a 3σ data 

(4)

Ve(r, θ ,φ, t) =r

1
∑

m=0

(

q̂m1 (t) cos(mφ)+ ŝm1 (t) sin(mφ)
)

Pm
1 (cos θ) .

(5)











q̂m1 (t) = qm1 (t)+
�a

r

�3
gm†
1 (t)

ŝm1 (t) = sm1 (t)+
�a

r

�3
hm†
1 (t)

,

(6)





q01
q11
s11



 (t) = q01d(t)m(t) , with m =
1

�

g01
2
+ g11

2
+ h11

2





g01
g11
h11



 .

rejection criterion. As a priori information in the inverse 
problem, we use temporal cross-covariances associ-
ated with auto-regressive processes of order 2 (AR-2), 
as detailed below. Since historical datasets contain some 
nonlinear data, and because of the relation (6), the model 
must be sought iteratively. This is done through a New-
ton–Raphson algorithm, with explicit estimation of 
the Hessian matrix, starting from the background axial 
dipole model (see below).

Nevertheless, the parameterization of the COV-OBS.x2 
model differs from that of its predecessors:

•	 We consider an alternative AR-2 type prior for the 
axial dipole.

•	 We remove the contribution from the 20  nT back-
ground external dipole when estimating the field 
induced in the core.

•	 Finally, the prediction over the period 2020–2025, 
where no data are available, is performed using a 
BLUE (Best Linear Unbiased Estimate), consider-
ing as data sampled realizations of the COV-OBS.x2 
Gauss coefficients.

We now further discuss these differences and their 
motivations.

Stochastic prior for the axial dipole
In previous COV-OBS models, all internal field Gauss 
coefficients are considered as realizations of AR-2 

Fig. 1  Histogram of observation errors σ obs
GO  and σ obs

VO  for GO and VO datasets, separated by spatial components. The dashed line represents the 
value of modeling error σmod

VO  (see text for details). The observation errors for F were derived from these observation errors (see text)
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processes ϕ governed by a stochastic differential equation 
of the form (e.g., Yaglom 1962):

with ζ a Wiener process. Such two-parameter processes 
are characterized by auto-covariance functions of the 
form

with σ 2 = E
(

(ϕ − ϕ)2
)

 the variance, ϕ = E(ϕ) the statis-
tical expectation, and ω2 = E

(

(∂tϕ)
2
)

/σ 2 . We consider 
that all Gauss coefficients apart from the axial dipole (see 
below) result from zero-mean AR-2 processes (i.e., their 
background value is 0).

For the sake of simplicity, we consider a variance of 
Gauss coefficients, σ 2

n = E
(

gmn
2
)

 , and a parameter 
ω2
n = E

(

(∂t g
m
n )2

)

/σ 2
n  that depend only on the degree n. 

We use here this formalism for all coefficients of 
degrees n ≥ 2 : for these we set parameters σ 2

n  and ω2
n to 

the same values as in previous COV-OBS models (esti-
mated from the MF and SV Lowes spectra obtained for 
a satellite field model in 2005, see Gillet et  al. 2013). 
This description was found convenient as it is consist-
ent with the −4 slope of the power spectral density 
obtained for observatory series at periods from 5 to 70 
years (De Santis et  al. 2003), a feature confirmed later 
for Gauss coefficient series down to annual periods 
(Lesur et  al. 2017). Indeed, the frequency spectrum of 
processes defined by Eq. (7),

shows f 0 dependence for low frequencies and f −4 
dependence for frequencies f ≫ ω/(2π) . This concise 
description, based on only two parameters per harmonic 
degree, was validated by the analysis of geodynamo simu-
lations for all coefficients but the axial dipole g01 (Bouli-
gand et al. 2016).

Investigations on the frequency spectrum of this lat-
ter coefficient instead show a f −2 dependence for inter-
mediate frequencies from about 10−5 to 10−2 years−1 . 
This was observed from both paleomagnetic records 
(Constable and Johnson 2005; Panovska et  al. 2013) 
and dynamo calculations (Olson et al. 2012; Buffett and 
Matsui 2015; Bouligand et al. 2016). To account for this 
effect, we modify the AR-2 prior for the axial dipole g01 
in COV-OBS.x2, in comparison with previous COV-
OBS models.

Following Hellio and Gillet (2018), we consider that 
the fluctuations of g01  (that is g̃01 (t) = g01 (t)− ḡ01  with ḡ01 

(7)d
dϕ

dt
+ 2ωdϕ + ω2ϕdt = dζ(t) ,

(8)C(τ ) = σ 2(1+ ω|τ |) exp (−ω|τ |) ,

(9)P(f ) =
4ω3σ 2

[

ω2 + (2π f )2
]2

,

the background axial dipole value) are governed by a 
more general AR-2 process that obeys a three-parame-
ter stochastic equation of the form

where χ and ω are positive frequencies ( ω ≤ χ ). The auto-
covariance function for such a process is

with ξ2 = χ2 − ω2 . The associated frequency spectrum, 
given by

indeed shows a f −2 dependence for frequencies in the 
range (Bouligand et al. 2016)

The f 0 and f −4 dependencies at, respectively, low 
( f ≪ fs ) and high ( f ≫ ff  ) frequencies are still present. 
In the limit ω ≪ χ , the transition periods between the 
spectrum ranges showing f −4 , f −2 and f 0 trends are 
then (Hellio and Gillet 2018):

Our choice for the values of the three parameters that 
enter Eq. (11) slightly departs from that made by Hellio 
and Gillet (2018) for the construction of the archeomag-
netic field models COV-ARCH and COV-LAKE (see 
Table  1). The background value ḡ01 = −24, 000 nT and 
the r.m.s. σg01 = 7700 nT are estimated from the average 
and standard deviation of the axial dipole moment over 
the past 2 Myr, as estimated with the SINT2000 model 
(Valet et  al. 2005). As described in Additional file  1, 
alternative estimates are possible (see also Buffett et al. 
2013), and our choice of parameters for the axial dipole, 
relatively conservative, is a compromise between ensur-
ing stability for the axial dipole model and under-esti-
mating rapid dipole changes. We fix σ 2

ġ01
= E

(

(

∂t g
0
1

)2
)

= 
(10 nT/year)2 , which associated with the above choice 
for σg01 comes down to ω−1

g01
= 770 years. As in Hellio and 

Gillet (2018) we consider Ts = 100 kyr ( τs = 16 kyr), 
which fixes the remaining parameter for the axial dipole 

(10)d
dϕ

dt
+ 2χdϕ + ω2ϕdt = dζ(t) ,

(11)

C(τ ) =
σ 2

2ξ

(

(χ + ξ)e−(χ−ξ)|τ | − (χ − ξ)e−(χ+ξ)|τ |
)

,

(12)P(f ) =
4χω2σ 2

[

ω2 − (2π f )2
]2

+ (4πχ f )2
,

(13)
[

fs, ff
]

=
1

2π

[

1

τs
,
1

τf

]

=
ω2

2π

[

1

χ + ξ
,

1

χ − ξ

]

.

(14)

{

Ts = f −1
s = 2πτs ≃ 4πχ/ω2

Tf = f −1
f = 2πτf ≃ π/χ

.
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prior to χ−1

g01
= 4π/(Tsω

2) ≃ 75 years, or Tf ≃ 235 years. 
We thus satisfy the condition ω ≪ χ . For the two 
parameters that define the equatorial dipole statistics, 
governed by Eq.  (7), we choose σ1 = 4500 nT, a value 
consistent with equatorial dipole series in archeomag-
netic field models (e.g., Hellio and Gillet 2018, Fig.  6), 
and σ 2

ġ11
= E

(

(

∂t g
1
1

)2
)

= (10 nT/year)2 (with similar val-
ues for h11 ), so that ω−1

1 = 450 years. Our choice σġ11 simi-
lar to σġ01 is in agreement with what is observed in the 
low viscosity geodynamo simulation by Aubert et  al. 
(2017) or Schaeffer et al. (2017).

In contrast with previous editions of the COV-OBS 
model, the prior variance and characteristic time for the 
equatorial dipole now depart from those used for the axial 
dipole parameters (see Table 1). In this more realistic con-
figuration, the a priori power authorized for axial dipole 
fluctuations at decadal and shorter periods is larger than 
that used for COV-OBS.x1, but weaker than that consid-
ered for the construction of the COV-ARCH and COV-
LAKE models (see Fig.  2). This is the consequence of 
decreasing σ 2

ġ01
 (and increasing σ 2

g01
 ), as from Eqs. (12) and 

(14) one has P(f ) ∝ Tsσ
4
ġ01
/(σ 2

g01
f 4) towards high frequen-

cies. We discuss further these issues in Additional file 1.

Parameterization of the induced field
The induced field is anchored to the external field. We 
consider the core as a perfect conductor, an approxi-
mation reasonable since we model only field changes at 
periods longer than ≈ 2 years (see Fig. 1 in Olsen et al. 
2005). In this framework, the induced field is simply 
computed by considering that the radial component 
of the induced field cancels that of the time-dependent 
inducing field at r = c . By differentiating Eq.  (4) with 
respect to r, we obtain from Eq. (5)

(15)





g0†1
g1†1
h1†1



 (t) = Q0





q̃01
q̃11
q̃11



 (t) = Q0q̃
0
1dm(t) ,

with Q0 =
1

2

( c

a

)3
≃ 0.082 . q̃01d = q01d(t)− q01d is the 

external field perturbation to the background value 
q01d = 20 nT. This latter approximately corresponds to the 
sum of Geocentric Solar Magnetospheric (GSM) and 
Solar Magnetic (SM) average contributions to the mag-
netospheric dipole (see Maus and Lühr 2005; Lühr and 
Maus 2010; Olsen et al. 2014).

The above parameterization slightly differs from that 
of previous COV-OBS models, where in Eq.  (15) q̃01d 
was replaced by q01d (i.e., the inducing field contained 
the entire external dipole, even the stationary back-
ground). By reducing the core response to only the 
transient magnetospheric field, we shift in particu-
lar the induced axial dipole g0†1  by ≈ Q0q

0
1d ≃ 1.6 nT 

(considering a dominant axial with respect to equato-
rial dipole), and consequently the core dipole g01  by the 
opposite value.

Table 1  Parameters used for  the  AR-2 processes describing the  statistics of  axial and  equatorial dipoles 
in  the  construction of  COV-OBS.x2, compared with  those used for  the  COV-ARCH model of  Hellio and  Gillet (2018), 
and the earlier editions COV-OBS.x1 (Gillet et al. 2015)

In italic font the three (resp. two) free parameters for the axial (resp. equatorial) dipole prior. We use the same parameters for h1
1
 and g1

1

Field model σg0
1

 (nT) σġ0
1

 (nT/year) ω−1

g0
1

 (year) χ−1

g0
1

 (year) Ts (year) Tf  (year) σ1 (nT) σġ1
1

 (nT/year) ω−1

1
(year)

COV-ARCH 6000 15 400 20 100,000 63 3800 19 200

COV-OBS.x2 7700 10 770 75 100,000 235 4500 10 450

COV-OBS.x1 17300 17 1014 1014 6370 6370 17300 17 1014

Fig. 2  PSD associated with the stochastic processes that define the 
a priori information used for the construction of COV-OBS.x2 for the 
axial dipole (blue) and the equatorial dipole (orange) coefficients. 
Comparison with the corresponding PSD for the axial dipole in 
COV-ARCH ( Hellio and Gillet 2018, dashed black), and for all dipole 
coefficients in previous COV-OBS models (Gillet et al. 2013, 2015, 
dashed green)
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A shift of ≈ 4 nT was observed between g01 in COV-
OBS.x1 and most other IGRF candidates (Thébault et al. 
2015a, b). The above change to the parameterization of 
induced fields for the present model COV-OBS.x2 should 
reduce this shift down to ≈ 2.4 nT. Our investigations sug-
gest that the remaining difference is most likely associated 
with the data selection embedded with the satellite data 
in the COV-OBS framework. In models like CHAOS-6 
(Finlay et  al. 2016), the SM external field is anchored to 
indices (such as the Ring Current index RC, see Olsen 
et al. 2014) that include both calm and disturbed magnetic 
conditions. The induced field is related to the external 
field through complex Q-factors (that depend on a mantle 
conductivity profile). It is thus estimated in the frequency 
domain before it is transformed back to the time-domain 
(Maus and Weidelt 2004; Olsen et al. 2005). Constructed 
as such, it has a zero mean when averaged over all epochs 
(as it should be if the external signal has stationary proper-
ties, but see Velímskỳ and Finlay 2011). Our present exter-
nal model being computed only from data selected over 
quiet periods, the above 2.4 nT shift cannot be reduced 
within the COV-OBS framework.

Spline‑free stochastic forecast of the geomagnetic field
The stochastic 5-year forecast from COV-OBS.x1, candi-
date model to IGRF-12, was performed by expanding the 
model time-span (and the support B-spline functions) 
up to 2020, that is 5 years after the last available data at 
that time. We see several drawbacks to this procedure. 
First, there exists a potential for instabilities close to end-
points, associated with the use of splines together with 
an uneven data coverage (e.g., Gillet et  al. 2010). Sec-
ond, it involves generating a new continuous model for 
each 5-year prediction. This would imply a rather large 
computational load when validating our predictions over 
past periods where the behavior of the field is (to some 
extent) known. Third, it likely leads to under-estimate 
the SV error budget, associated with the unmodeled core 
evolution on short periods, filtered out by the projection 
onto splines, as discussed in the Results section. We pro-
ceed differently, by calculating the BLUE and using

•	 As data the Gauss coefficients of the COV-OBS.x2 
model sampled at a set of epochs,

•	 As data errors the posterior uncertainties as pro-
vided with this model (see Gillet et al. 2013, for the 
method),

•	 As prior information, cross-covariances associated 
with the stochastic processes of each Gauss coeffi-
cient.

The prior information in the COV-OBS framework is 
independent from one coefficient to the other. For the 

sake of simplicity, we neglect spatial cross-covariances 
between Gauss coefficient data errors, and predictions 
are thus operated separately for all Gauss coefficients. 
In detail, the procedure is the following. For each (n, m) 
we generate from the COV-OBS.x2 spline model coef-
ficients a vector yo that contains gmn  values at No epochs 
toj  spanning [tos , toe ] every �to . Observation error vari-
ances σ o2

gmn
(toj ) for each coefficient are extracted from the 

COV-OBS.x2 posterior covariance matrix, and stored 
into a diagonal matrix Ryy.

We wish to estimate a vector x that contains analyzed 
Gauss coefficients gma

n  at Na epochs taj  spanning [tas , tae ] 
every �ta = 1 years (so that Na = (tae − tas )/�ta + 1 ), 
together with its associated uncertainties. To this pur-
pose, we construct cross-covariance matrices Cxy , Cxx 
and Cyy , of sizes, respectively, Na × No , Na × Na and 
No × No , whose elements are

In the above definitions, the background value, denoted 
by overlines, is non-zero for the axial dipole g01 only.

The model x thus results from the BLUE as

where Kxy is the Kalman gain matrix, and x̄ (resp. ȳ ) is 
a vector of size Na (resp. No ) filled with the background 
value ḡmn  . Cross-covariances of the uncertainties on the 
analyzed vector x are then given by the posterior covari-
ance matrix

For details about the above estimation procedure (also 
known as kriging method, Optimal Interpolation, Gauss-
ian interpolation, or Least-Squares Collocation) we refer 
for instance to Rasmussen and Williams (2006). To sam-
ple the dispersion of x , an ensemble of k realizations is 
generated from the Cholesky decomposition of Rxx (see 
Gillet et  al. 2013). The ISTerre candidate models for 
IGRF-13, together with their associated uncertainties, 
have been derived based on the methodology described 
above

Results and discussion
The COV‑OBS.x2 field model
Statistics on prediction errors
We provide in Table  2 some statistics concerning the 
COV-OBS.x2 misfits and biases to the new (GO and VO) 

(16)



















Cxy(i, j) = E
�

�

gmn (tai )− ḡmn
�

�

gmn (toj )− ḡmn

��

Cxx(i, j) = E
�

�

gmn (tai )− ḡmn
�

�

gmn (taj )− ḡmn

��

Cyy(i, j) = E
�

�

gmn (toi )− ḡmn
�

�

gmn (toj )− ḡmn

��

.

(17)
x = x̄ + Cxy(Cyy + Ryy)

−1(yo − ȳ) = x̄ + Kxy(y
o − ȳ) ,

(18)Rxx = Cxx − KxyCxy
T .
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data sets, separately for all three components. Our algo-
rithm rejects only a small part of the dataset ( ≈ 5% in 
average). We consider the normalized L2 data misfit and 
bias,

for e∗k the normalized prediction error for the kth datum 
(we also consider the dimensional L2 data misfit M 
and bias µ ). For all three datasets and all components, 
no significant bias is found, as all normalized biases µ∗ 
remain close to zero. Normalized L2 misfits are reason-
ably close to unity (in average slightly weaker on Y for 
GO and Swarm data, and bit larger on X for all three data 
sources). Dimensional misfits, typically a few nT (or nT/
year) on all three components, are a bit larger on X (and 
on Z for GO). Dimensional averaged biases are for all 

(19)M∗ =

√

1

No

∑

k

e∗k
2 and µ∗ =

1

No

∑

k

e∗k ,

components of all datasets less than ≈ 0.3 nT. We present 
in Fig. 3 the distribution of the normalized residuals (VO 
and GO) for all three components. These are reason-
ably close to Gaussian, although sometimes slightly more 
peaked (see for instance on Y for the GO SV data). We 
also notice some slight asymmetry in the shape of some 
residuals distributions (e.g., the X component on Swarm 
and GO data). In this context where normalized misfits 
(resp. biases) are close to 1 (resp. 0) and where the PDF 
of normalized residuals is close to a N (0, 1) Gaussian dis-
tribution, we consider that the obtained posterior model 
uncertainties (based upon the inverse Hessian matrix, see 
Gillet et al. 2013) constitute reasonable errors estimates. 
In order to further illustrate the fit to GO and VO series, 
we give in Fig. 4 two examples of our average model SV 
predictions on ground, and MF predictions at Swarm’s 
altitude.

Table 2  Errors statistics for  the  GO and VO (CHAMP and  Swarm) datasets integrated in  COV-OBS.x2: accepted number 
of data No , fraction of rejected data ( N∗

o , in %), dimensionless L2 data misfit M∗ and bias µ∗ , and dimensional L2 data 
misfit M and bias µ

Dimensional misfits and biases are in units of nT for VOs, and nT/year for GO

Dataset No N∗
o (%) M∗ µ∗ M µ

X Y Z F X Y Z F X Y Z F X Y Z F

GO 21056 5.57 1.27 0.79 1.11 − −0.01 0.00 −0.04 − 4.55 2.87 4.22 − −0.01 −0.01 −0.15 −

CHAMP 17525 5.17 1.28 1.02 1.04 0.99 0.01 0.04 0.10 0.05 3.42 2.59 2.57 3.04 0.04 0.11 0.28 0.15

Swarm 13354 3.77 1.31 0.85 0.94 0.92 0.10 −0.04 0.11 0.08 3.14 2.11 2.10 2.69 0.28 −0.05 0.25 0.23

Total 51935 4.98 1.29 0.89 1.04 0.96 0.02 0.01 0.04 0.06 3.88 2.61 3.28 2.89 0.08 0.02 0.09 0.19

Fig. 3  Histograms of the normalized data misfit e∗ for the GO and VO datasets (separated all three components). In black is the normalized 
Gaussian curve N (µ, σ) with µ the mean and σ the standard deviation of the normalized misfits (see Table 2)
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COV‑OBS.x2 over the satellite era
We illustrate in Fig. 5 the time evolution of MF and SV 
Gauss coefficients for COV-OBS.x2 over the era covered 
by VOs. As observed by Gillet et  al. (2015) with COV-
OBS.x1, their evolutions are overall coherent with that 

of the CHAOS-7 model (Finlay et al. 2020), put aside an 
≈ 2 nT shift on g01 in link with the differences of induced 
model. However, we notice that 

Fig. 4  Predictions from COV-OBS.x2 for the three geocentric components. Left: SV at the Niemegk (NGK, top) and Honolulu (HON, bottom) 
observatories. Right: MF at two examples of Swarm VO in the Northern (top) and Southern (bottom) hemispheres
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	 i.	 We do not capture some of the rapid changes (of 
period less than ≈ 2 years) for the larger length-
scales, due to the use of 2 years knot spacing for the 
splines basis;

	 ii.	 Consequence of the employed stochastic prior, 
our solutions tend to be less smooth towards small 
length-scales.

The COV-OBS.x2 uncertainty estimates most often 
encompass the difference with CHAOS-7 towards small 
length-scales (except towards the beginning of the time-
span covered by CHAOS-7).

Unmodeled rapid field changes
We have seen that the use of a cubic B-splines basis 
with knots separated by 2 years does not permit the 
capture of short time-scales features. As a consequence, 
COV-OBS.x2 uncertainties only represent errors on 
Gauss coefficients low-pass filtered (at periods longer 
than ≈ 2 years). If used for comparison with instanta-
neous pictures of the core dynamics, these should be 
complemented by an error estimate that accounts for 
unmodeled rapid field changes. This latter will supple-
ment COV-OBS.x2 formal errors, especially at the larg-
est length-scales.

To illustrate this issue, we estimate the magnitude 
of signals unable to be represented by the B-splines 
basis. To do so, we generate a set of synthetic Gauss 
coefficient series with spectral properties defined by 
the AR-2 stochastic prior considered in this study. We 
then fit cubic B-splines, with knots 2 years apart, to 
each of these coefficient series, and consider the residu-
als between the original synthetics and the fitted series 
as the unmodeled high frequency signal. We show in 
Fig.  6 the time average MF and SV Lowes spectra for 
these residuals, compared with COV-OBS.x2 formal 
uncertainties derived from the spline coefficients pos-
terior covariance matrix. The contribution of unmod-
eled rapid field changes appears negligible towards high 
harmonic degrees. At large length-scales however, its 
power is larger than that of the COV-OBS.x2 formal 
errors, in particular during the satellite era. It is for 
instance of the order of 1  nT/year for SV dipole coef-
ficients, comparable to the differences observed on ∂t g01 
between CHAOS-7 and COV-OBS.x2 in Fig. 5.

Fig. 5  MF (left) and SV (right) time series of g01 (top), g47 (middle) and g412 (bottom) for COV-OBS.x2 (black), compared with CHAOS-7 (orange) 
between 1998 and 2020. The gray-shaded areas represent the ±σ dispersion within the ensemble of COV-OBS.x2 models
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Extracting IGRF candidate models from COV‑OBS.x2 and its 
uncertainties
Validation of 5‑year forecast from the BLUE
We now apply our stochastic approach (the BLUE, see 
Methods) to the generation of 5-year predictions. We 
first test the effect of the observation period [tos , toe ] on the 
Gauss coefficient forecast over [tas , tae ] = [2015, 2025] , by 
varying tos − toe  from 6 to 75 years, with �to = 1 years and 
toe = 2019.5 . The SV forecast is obtained by first differen-
tiating MF prediction series. We give in Fig. 7 the MF and 
SV forecasts of g01 and g47  , together with their associated 
dispersion. Our investigations show that the length of 
the observation period has a relative little impact on the 
resulting forecast and its associated spread. This is cer-
tainly due to the nature of the employed AR-2 stochas-
tic processes: discrete AR-2 processes have memory over 
only two successive dates: the correlation functions that 
enter matrices Cxy and Cyy play a major role on the dis-
persion within the ensemble of MF forecasts, which then 
evolves ∝ (t − toe )

2.
To assess the ability of the forecast spread to encap-

sulate the ‘true’ model trajectory, we test it over ancient 
periods covered by COV-OBS.x2 datasets, and perform 
5-year forecasts. Drawing upon the above conclusion, 
No = 17 observation epochs are used, sampled every 
�to = 1 year. We show in Fig. 8 the obtained MF and SV 
predictions for Gauss coefficients g01 and g47  , and for three 
observation periods ending at toe = tas = 2000, 1931 and 
1913, periods characterized by different behaviors in par-
ticular of the axial dipole (in all three cases tae = tas + 5 

year). Again, the SV forecast is obtained by first differ-
entiating MF prediction series. For all Gauss coefficients 
but the axial dipole, MF and SV COV-OBS.x2 average 
model stay within ±σ of the forecast spread whatever 
the observation period chosen. For g01 the forecast spread 
must sometimes be extended to about ±2σ , especially at 
epochs showing intense and monotonous trends in the 
dipole SV (see also Additional file 1). We overall consider 
that the stochastic forecasts are consistent with the COV-
OBS.x2 past evolution, which validates the prediction 
using the BLUE method.

Application to field model predictions over 2015–2020
We now apply the spline-free BLUE (see Methods) for 
the production of IGRF-13 candidate models, using 
[tas , t

a
e ] = [2015, 2025] . We present in Fig.  9 the MF and 

SV Lowes spectra obtained at the three epochs 2015, 
2020, and 2025 of interest for the IGRF and DGRF model 
candidates. The MF dispersion spectrum is weaker in 
2015 than in 2020 (at this latter epoch, data constraints 
are only from past epochs). It significantly increases for 
the prediction after 5 years without observations, to 
reach values only slightly above those documented for the 
IGRF-12 candidate model based on COV-OBS.x1 (Gillet 
et al. 2015). The MF spectrum is noticeably less in 2025 
for the highest degrees: after the last available observa-
tion, the AR-2 stochastic prior brings the ensemble aver-
age MF estimate back to the background, in a time-scale 
faster for shorter wave-lengths – as expected given the 

Fig. 6  In black: MF (left) and SV (right) Lowes spectra (Eq. (3)) of our estimate of the unmodeled internal field at high frequencies due to the 
projection onto splines 2 years apart. It is constructed from the residuals to a spline fit to synthetic AR-2 series (see text for details). In color (dotted 
lines) are shown the spectra for the COV-OBS.x2 formal posterior uncertainty at epochs 1855, 1895, 1935, 1975, and 2015. These latter are obtained 
from the ±σ spread within an ensemble of COV-OBS.x2 realizations (i.e., projected onto splines)
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shorter cut-off frequencies ωn for large harmonic degrees 
n, see Eq. (8) and Gillet et al. (2013).

The SV spectrum for the ensemble average fore-
cast decreases over time when no data is available. This 
reflects the fact that on average the stochastic prior drives 
the model back to the prior expectation (the ensemble 
average SV coefficients decay exponentially, over time-
scales governed by the stochastic process parameters). 
The spectrum of the SV spread gradually increases over 
time from the last observation date toe  (it behaves on 
short period as that of a random walk, i.e., ∝

√

t − toe  ). 
Our present estimate of SV uncertainties is significantly 
larger than that documented in Gillet et  al. (2015), in 

particular during the period with observations. This is 
primarily related with the spline-free estimate in the pre-
sent study, which avoids under-estimating the effect of 
high-frequency SV changes (see also above the discus-
sion of Fig. 6). Indeed we have checked that the inflation 
of data errors (see ‘Geomagnetic data’ section) only has a 
minor impact on the posterior model uncertainties. After 
5 years without observations, the magnitude of spread 
within the ensemble of models is similar to that of the 
average model for degrees n ≥ 4 , illustrating the inability 
of the stochastic model (by construction) to deterministi-
cally predict the magnetic field evolution.

Fig. 7  5-years forecasts using and �to = 1 year, for different observation periods, compared with COV-OBS.x2 in black (with in gray-shaded area the 
associated ±σ uncertainties), for the MF (top) and the associated SV (bottom) of Gauss coefficients g01 (left) and g47 (right). Errorbars represent the 
dispersion ( ±σ ) with the ensemble of forecasts
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Fig. 8  5-years forecasts using �to = 1 year, for different observation periods, compared with COV-OBS.x2 in black (and in shaded gray its ±σ 
dispersion), for the MF (top panels) and the associated SV (bottom panels) of Gauss coefficients g01 (left) and g47 (right). Errorbars represent the 
dispersion ( ±σ ) within the ensemble of forecasts
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Long‑period variations in the external dipole field
We now analyze the time evolution of the co-estimated 
parameter q01d , the external axial dipole coefficient in 
internal dipole coordinates. As shown in Fig.  10 (top 
left), it agrees well with the CHAOS-7 estimate over the 

past two decades. We consider here low-pass filtered 
CHAOS-7 series, selecting only quiet geomagnetic times 
based on Kp ≤ 30 and |dRC/dt| ≤ 2.1 nT/hr. As such, if 
our model for q01d(t) under-estimates slow changes in q01d 
when averaged over all magnetic conditions (Fig. 10, top 

Fig. 9  MF (left) and SV (right) Lowes spectra (Eq. (3)) at the Earth’s surface for epochs 2015, 2020 and 2025, estimated with the spline-free BLUE (see 
Methods). In dashed lines the respective spectra for the ±σ spread within the ensemble of models

Fig. 10  Time evolution of the external dipole field coefficient in dipole coordinates (top: q0
1d ) and induced dipole field coefficient in geocentric 

coordinates (bottom: g0†1  ) for COV-OBS.x2 (black), compared with the previous edition COV-OBS.x1 (dashed blue), superimposed with the 
corresponding estimate from CHAOS-7 (gray, selected over calm magnetic times on the left column (see text for details) and for all times in the 
right column) and its projection onto splines with knots 2-year apart (orange)
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right), it is representative of the calm magnetosphere at 
periods longer than ≈ 2 years. It is also very similar to the 
previous estimates from the COV-OBS.x1 model, despite 
a different processing of satellite observations (VO versus 
pointwise data in previous editions).

The associated induced field g0†1d in geocentric coordi-
nates presents a long period off-set in comparison with the 
corresponding coefficient for CHAOS-7, low-pass filtered 
and selected under quiet magnetic conditions (Fig. 10, bot-
tom left). This is because an aliasing effect comes with the 
selection of calm periods. Indeed, the induced perturbation 
in CHAOS-7 presents by construction a zero-mean once 
averaged over all times, as seen in Fig. 10 (bottom right). 
This is also the case in COV-OBS.x2: as a consequence, 
g0†1d is closer to the long-period induced field over all mag-
netic conditions (though with smaller fluctuations than 
in CHAOS-7). Contrary to what is done within the COV-
OBS.x2 set-up (see section Methods), the background 
external field q01d was accounted for when calculating the 
gm†
1  in COV-OBS.x1 (see Eq. (15)). This results in the shift 

observed for g0†1  between these two models. All in all, the 
set-up for the induced field used for constructing COV-
OBS.x2, even imperfect, reduces the shift to models dedi-
cated to satellite observations such as CHAOS-7.

We present in Fig.  11 the auto-correlation function 
Cq01d

(τ ) = E
(

q̃01d(t)q̃
0
1d(t + τ )

)

 . It shows obvious oscilla-
tions of period ≈ 11 years, in relation with the solar cycle. 

We fit (with the SciPy function curve_fit that uses a Leven-
berg–Marquardt method) Cq01d

(τ ) with the three-parame-
ter correlation function of a damped oscillator AR-2 
process (Yaglom 1962):

Within this formalism, 2π/β2 is the period of the oscilla-
tor, while 1/α2 corresponds to a damping time. We use as 
‘data’ annual values of Cq01d

(τ ) over the period 1910–2020 
(equivalent to ≈ 10 solar cycles). These are weighted as 
w(τ ) = γ (T − τ)/T  , in order to down-weight the ill-
constrained auto-correlations at long lags τ , with 
T = 110 year the maximum considered lag (a rather close 
fit is obtained using equal weights). We estimate 

w(0)−1 = γ−1 = E

(

σ 2
q01d

− E

(

σ 2
q01d

))

 from an ensemble 

of the COV-OBS.x2 realizations, in order to have the 
uncertainty on the ‘data’ Cq01d

(0) equal to the dispersion 
within the realizations of σ 2

q01d
= E

(

q̃01d(t)
2
)

.
The fit by C2 recovers well an oscillation of period 

2π/β2 ≃ 10.5 years, with a decay rate 1/α2 ≈ 40 years. 
However, it does not manage to capture the correlation 
observed at short lags (see Fig. 11, top for τ < 10 year). In 
particular, it underfits by a factor of about 2 the variance 

(20)

C2(τ ) = σ 2
2 exp (−α2|τ |)

(

cos(β2τ )+
α2

β2
sin(β2|τ |)

)

.

Fig. 11  Auto-correlation function for the external dipole field coefficient q0
1d in dipole coordinates, superimposed with the fit obtained with (top) 

the 3-parameter function C2(τ ) , and (bottom) a 5-parameter function C2(τ )+ C1(τ )
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σ 2
q01d

= Cq01d
(0) (see Fig. 11). In order to reduce this incon-

sistency, we now consider on top of the damped oscillator 
(described by C2 ) an independent auto-regressive process 
of order 1 (a damped random walk), whose two-parameter 
correlation function C1 is

and now fit Cq01d
(τ ) with C1(τ )+ C2(τ ) . 1/α1 corresponds 

here to the characteristic memory time of the random 
walk process. The addition of this independent process 
reduces the inconsistency at short lags (see Fig. 11, bot-
tom), by adding a Laplace correlation with decay time 
1/α1 ≈ 6  year. More quantitatively, it significantly 
reduces the misfit as measured by

and reported in Table  3 for C∗ = C2 or C2 + C1 . The 
fitted variance of q01d is approximately evenly shared 
between the above AR-1 and AR-2 processes (it is, 
respectively, ≈ 17 and 20 nT2 ). The damped oscillator 
period, 2π/β2 ≃ 10.5 year, is not affected by the addition 
of the AR-1 process. However, its decay time 1/α2 ≈ 55 
years is significantly larger than the value obtained with 
the AR-2 correlation function alone (see Table 3). In this 
latter case, 1/α2 was likely biased towards short value, 
because the damped oscillator model alone is designed 
to accommodate both the large covariance at short lags 
(but in practice fails) and the much smaller values at long 
lags. This inconsistency is relaxed when adding on top an 
AR-1 process, leading to a larger estimate of the damped 
oscillator decay time.

Such multi-decadal decorrelation may be attributed to 
the natural cycle to cycle variability in duration and 
amplitude (see the reviews by Petrovay 2010; Hathaway 
2015), also possibly involving longer period modulations 
(Usoskin et al. 2007). Interestingly, while double maxima 
appear in some solar cycle indices (as for instance the 
sunspot number, see Petrovay 2010, Fig.  8), and while 

(21)C1(τ ) = σ 2
1 exp (−α1|τ |),

(22)χ2
C =

∫ T

τ=0
w(τ )(Cq01d

(τ )− C∗(τ ))2dτ

∫ T

τ=0
w(τ )dτ

,

higher frequency oscillations show up in our q01d series 
(see Fig. 10), we do not recover any harmonic of the 10.5 
years cycle in the correlation function (and fitting Cq01d

 
with two AR-2 parameters performs less well than with 
the above function C2 + C1).

Conclusions
We produce the COV-OBS.x2 geomagnetic field model, 
which extends to 2020 previous generations of COV-OBS 
series of models. The primary data constraints used over 
recent epochs are annual differences of ground-based 
observatories’ series, and virtual observatories series 
from the CHAMP and Swarm satellite missions. The 
COV-OBS models not only propose the time evolution of 
Gauss coefficients, but as well an estimate of their uncer-
tainties, based on temporal cross-covariances associated 
with stochastic processes.

We show how the COV-OBS approach can be used to 
propose a PDF for predictions of the MF and its SV, and 
illustrate it with 5-year forecasts, in the context of the 
IGRF-13 model. Over past epochs, the ±σ spread over 
5 years encompasses the evolution of Gauss coefficients, 
except for the axial dipole. This coefficient is associated 
with a specific stochastic prior, characterized in the spec-
tral domain by a range of frequencies where the tempo-
ral PSD of g01 evolves as f −2 (based on statistics from 
paleomagnetic records and observatory series). We con-
sider in this study parameters that conservatively reduce 
this range, and thus limit the power at short periods (see 
Additional file 1). In currently available simulations, even 
in those proposed by Aubert et  al. (2017), this range is 
further reduced (Aubert 2018; Gillet et al. 2019). For this 
reason, a one-to-one comparison of interannual changes 
in computations and geophysical observations cannot 
yet be performed, in link with Alfvén numbers relatively 
larger in geodynamo simulations.

Our model generally agrees well, over the satellite 
era, with regularized models such as CHAOS-7. The 
dispersion within our ensemble of models most often 
encompasses the difference between this model and 
the ensemble average COV-OBS-x2, at least at periods 
longer than two years. The use in COV-OBS models of 

Table 3  Parameters of the correlation functions C2(τ) and C2(τ)+ C1(τ) fitted to Cq0
1d
(τ)

Parameter σ 2

2
 (nT2) 1/α2 (year) 2π/β2 (year) σ 2

1
 (nT2) 1/α1 (year) χC (nT2)

C2 23.3± 1.2 41± 4 10.51± 0.03 – – 4.93

C2 + C1 19.6± 0.8 56± 5 10.51± 0.02 16.7± 1.3 5.9± 0.7 3.08
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a basis of cubic B-splines with knots separated by 2 years 
indeed does not allow shorter periods features to be cap-
tured. At first sight, not accounting for the above rapid 
changes in formal MF errors does not look critical. It 
may nevertheless facilitate conditions for instabilities 
when considering MF Gauss coefficients in data assimi-
lation algorithms, such as the ones based on geodynamo 
equations by Sanchez et al. (2019). Considering explicitly 
the effect of unmodeled errors is also potentially impor-
tant when using as data SV Gauss coefficients, as done 
for instance by Aubert (2014) with decorrelated snap-
shot estimates, or by Bärenzung et  al. (2018) or Gillet 
et  al. (2019) with reduced stochastic core flow models. 
This modification will be implemented in the pygeo-
dyn assimilation tool by Huder et al. (2019). The fact that 
unmodeled errors are relatively larger for the SV than for 
the MF is due to the difference in their respective tem-
poral spectra that shows a −2 slope for the SV and a −4 
slope for the MF.

We then propose, as the COV-OBS.x2 instantaneous 
error estimate, the sum of (i) the formal error from spline 
coefficients (the one provided in previous versions of the 
COV-OBS model) and (ii) the uncertainty associated 
with the above estimate of unmodeled high-frequency 
signals. In the current work, we estimate the 5-year SV 
predictions from MF realizations obtained from a BLUE 
based on spline-free stochastic cross-covariances. We 
alleviate this way the under-estimation of SV uncer-
tainties (see Fig. 7). This constitutes an improvement in 
comparison with Gillet et al. (2015), who use the formal 
posterior covariance matrix on spline coefficients.
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