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Abstract 

We report a chemical assessment of the explosive chamber in the projector system used during the sampling 
operation of the Hayabusa2 project at the surface of the C-type asteroid Ryugu. Although the explosion process 
was designed as a closed system, volatile combustion gases and semivolatile organics were produced together with 
quenched carbonaceous product. The chemical compositions of the gases, organics, and inorganics were inves-
tigated in the screening analysis. A solid-phase microextraction technique and thermal desorption coupled with 
gas chromatography/mass spectrometry analysis revealed that aliphatic (< C20 n-alkanes) and aromatic (< pyrene) 
hydrocarbons were produced in the closed chamber system. The aromatic ring compositions of the latter showed a 
semilogarithmic decrease: one ring > two rings > three rings > four rings, resulting in abiogenic molecular patterns. 
The most intense inorganic fingerprints were due to potassium (K+) and chloride (Cl–) ions derived from the initial KTB 
explosive and RK ignition charge. We discuss quality control and quality assurance issues applicable to future sample 
processes during the Hayabusa2 project.
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Introduction
Hayabusa2 is a sample-and-return mission to the 
C-type asteroid (162173) Ryugu to achieve a compre-
hensive understanding of the evolutionary history of 
the solar system (e.g., Tachibana et al. 2014). The Haya-
busa2 spacecraft found that Ryugu is a dark rubble pile 
body, and hydrated silicates are ubiquitous on its surface 
(Watanabe et  al. 2019; Kitazato et  al. 2019; Sugita et  al. 
2019). The spacecraft successfully performed two sam-
pling operations on the Ryugu surface materials, which 

will be returned to Earth in late 2020. The basic concept 
of the Hayabusa2 sampling system has been described 
previously (e.g., Tachibana et al. 2014; Sawada et al. 2017; 
Okazaki et al. 2017). To collect enough sample (~ 100 mg) 
from the Ryugu surface, each 5  g of tantalum (Ta) pro-
jectile was used at the time of touch-down during the 
sampling operation (Sawada et  al. 2017). The projectile 
shooting operation has three steps: (1) explosion in the 
explosive chamber; (2) acceleration of the projectile by 
the combustion gas within the closed sabot system; and 
(3) projectile shooting at ~ 300  m  s−1 after separation 
from the sabot using combustion gas stored in the explo-
sive chamber (Fig. 1). To date, the chemical properties of 
the explosive products, including deflagration and deto-
nation processes, have been investigated mainly in terms 
of the formation of solid materials, including amorphous 
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Fig. 1  a Photograph of the Hayabusa2 sampler horn (Tachibana et al. 2014) and projector system with a schematic diagram showing the structure 
of the barrel, projectile, sabot, and explosive chamber (Sawada et al. 2017). b Schematic representation of the shooting operation of the projector 
system showing (1) the explosion, (2) acceleration, and (3) shot of the projectile
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carbon composites, shocked graphite, and occasion-
ally diamond (e.g., Greiner et al. 1988; Titov et al. 1989; 
Kuznetsov et al. 1994; Chen et al. 2003; Mansurov 2005).

Here, we note that the explosion for projectile shoot-
ing occurs in the closed system inside the projector dur-
ing the nominal operation case (Sawada et al. 2017) and 
that the explosive products that we report in this study 
are not considered to be mixed with the returned sam-
ple except in the off-nominal case, where the leakage of 
explosive products occurs from the projector. We also 
note that we have previously studied the analytical path-
ways in Hayabusa based on an investigation of category 
3 carbonaceous particles, which indicated analogous 
potential contaminants that could be observed through-
out the sampling processes of Hayabusa2 (e.g., Ito et  al. 
2014; Yabuta et  al. 2014; Uesugi et  al. 2014; Naraoka 
et al. 2015; Kitajima et al. 2015). To exclude the potential 
artifact of any carbonaceous materials, categorizing the 
sample grain is one of rational ways in regard to quality 
control and quality assurance, likewise the procedure of 
Itokawa-returned sample in the Hayabusa mission (e.g., 
Uesugi et al. 2019).

The explosive products for projectile shooting are 
potential contaminants of Hayabusa2-returned Ryugu 
samples. However, the chemical compositions and func-
tional groups of the volatile and nonvolatile organic 
compounds preserved in the carbonaceous product are 
largely unknown, including those of labile organic com-
pounds. In this study, we assessed the projector system 
in terms of the chemical composition of the volatile gases 
and nonvolatile organic compounds in a laboratory-
based simulation experiment, which should provide 

useful information on contaminants for curation and 
analysis of the returned samples.

Assessment procedure
Explosion experiments in the closed system
The Hayabusa (MUSES-C) impact sampling system 
(i.e., “sampler”) including the projector sub-system was 
originally designed and developed by Yano et al. (2002), 
Fujiwara and Yano (2005), and Yano et  al. (2006). The 
Hayabusa2’s sampling system added minor modification 
from the Hayabusa sampler while its projector sub-sys-
tem kept its original design, which was jointly developed 
by ISAS, Tohoku University and Nichiyu Giken, Co, Ltd.

To simulate the explosive chamber in the projector 
(Tachibana et  al. 2014), we performed an experiment 
using identical components (i.e., equivalent to the flight 
model; Sawada et al. 2017) for the KTB explosive (KClO4, 
69.5%; TiH2, 19.5%; B, 9.5%; and nitrocellulose, 1.5%) with 
an RK ignition charge [Pb(SCN)2, ~ 50%; KClO3, ~ 50%; 
and nitrocellulose, ≤ 1%; the chemical formula is shown 
in Fig.  2] under ambient temperature and low pressure 
(< 40 Pa, with Ar gas evacuated). Figure 3 shows the con-
figuration of the experimental explosion chamber at the 
Institute of Space and Astronautical Science (ISAS), Sag-
amihara, Japan.

The schematic illustration (Fig.  3f ) shows the projec-
tile chamber, explosive chamber, and sample port for 
gas cylinders. After the explosion in the closed cham-
ber, a gas sample was collected, together with quenched 
solid samples and relic materials (Fig. 4). We conducted 
the simulation with and without the sabot equipment 
for the purpose of nominal and off-nominal verifica-
tion. All glassware used in the assessment were cleaned 
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Fig. 2  Chemical structure of the nitrocellulose and lead(II) thiocyanate in the KTB and RK ignition charge explosives
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Fig. 3  Apparatus and configuration of the laboratory-based projector system at the Institute of Space and Astronautical Science (ISAS), Sagamihara, 
in March 2015; a upper part of the projectile chamber, b explosive chamber, c interior of the projectile chamber, d, e gas sample cylinders, and f 
schematic diagram of the entire simulation. The anomalous element profiles of metal (e.g., Aluminum) derived from the explosive chamber are 
potential indicators to trace the artifact if the sample has affected by off-nominal projectile operation
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beforehand by heating at 450 °C for 5 h in air to remove 
any artifact materials of organic contaminants.

Analysis of the volatile gas molecules by SPME‑GC/MS
The volatile organic compounds (VOCs) contained in the 
gas sample were analyzed by gas chromatography/mass 
spectrometry (GC/MS). The gas sample was injected into 
the GC/MS system using a gastight syringe following 
solid-phase microextraction (SPME) (Arthur and Pawl-
iszyn 1990), and these techniques have been successfully 
applied in a wide variety of fields (e.g., Ligor et al. 2007; 
Wang and Lu 2009; Szmigielski et al. 2012; Tuckey et al. 
2013; García et al. 2014). In brief, SPME was conducted 
with an 85-μm fiber coated with carboxen–polydimethyl-
siloxane (Carboxen™–PDMS StableFlex™; Supelco; PA, 
USA). The VOCs were extracted for 60 min at 60 °C, after 
which the fiber was transferred to the injection port of 
the GC–MS system (Agilent 5975C GC/MSD, Agilent 
Technologies, Inc.), which was maintained at 240  °C for 
5 min, and the sample was injected in splitless mode. A 
capillary column (CP-PoraBOND Q, 25 m × 0.32 mm i.d.; 
5 μm film thickness; Varian, CA, USA) was used for chro-
matographic separations. The GC oven was kept at 35 °C 
for 5 min and then ramped up at 15 °C min−1 to 120 °C 
for 10 min before ramping at 50  °C min−1 to 200  °C for 
6 min. The helium carrier gas flow rate was 1.5 mL min−1 
in constant flow mode. The quadrupole MS system was 
operated in electron ionization mode with a scan range 

of m/z = 10–500. To avoid memory effects, the SPME 
fiber was conditioned at 250  °C for 10  min before each 
measurement. Compounds were identified by compari-
son with data in the mass spectral library (Wiley Registry 
of Mass Spectral Data, 7th edition) included with MSD 
ChemStation software (Agilent Technologies, Inc.).

Analysis of the semivolatile molecules by TD‑GC/MS
The semivolatile compounds were analyzed by online 
thermal desorption (TD)-GC/MS using a multipurpose 
sampling and thermal desorption system (MSTD-258M; 
GL Science Inc.) and a purge and trap device (P&T; 
Gestel TDS A2, Gestel Inc.) coupled to a GC/MS sys-
tem (Agilent 6890N and 5973 MSD; Agilent Technolo-
gies Inc.). The MSTD sampling chamber was a quartz 
vessel 90  mm in diameter and 40  mm in height. The 
thermal desorption program was as follows. The cham-
ber was purged with N2 at 340 mL min−1 for 1 min at 
280  °C. The trapping time was 30 min with an N2 flow 
rate of 150 mL min−1. The out-gas cold trap was main-
tained at temperatures below − 100 °C in the TDS unit. 
A DB-5MS capillary column (30 m × 0.25 mm i.d.; 0.52 
μm film thickness; Agilent Technologies Inc.) was used 
for chromatographic separations, and MS compound 
detection was achieved in electron impact mode. The 
GC oven temperature was programmed as follows: ini-
tial temperature of 40  °C for 3 min; ramped up at 9  °C 

f

Fig. 3  continued
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min−1 to 220 °C, then at 10 °C min−1 to 280 °C where it 
was maintained for 5 min. The He carrier gas flow rate 
was 1.5 mL min−1.

Analysis of the inorganic ions and elements in solid 
carbonaceous product
The analyses of inorganic water-soluble cations and 
anions involved ion chromatography (IC; DX-120 for 
cations; DX-500 for anions; Dionex Inc.) with Ion Pac 
CS10 and Ion Pac AS17 columns for cations and ani-
ons, respectively (Dionex Inc.). Gradient elution was 
conducted with three solvents: 25 mM methanesulfonic 
acid, 1.2  M methanol, and 0.95  M acetonitrile at a flow 
rate of 1.0 mL min−1 for cations and H2O, 5 mM NaOH, 
and 100  mM NaOH at a flow rate of 1.5  mL  min−1 for 
anions. For metal elemental analyses, inductively cou-
pled plasma-mass spectrometry (ICP-MS; 7500 s, Agilent 

Technologies. Inc) was used for environmental assess-
ment. For further profiling of the solid product, we also 
performed qualitative micro-X-ray fluorescence analy-
sis (μXRF) of the carbonaceous product using an XGT-
5000S system (Horiba Ltd.) with a resolution of 10 μm for 
surface imaging.

Fourier transform infrared spectroscopy
As a nondestructive spectroscopic technique, we per-
formed Fourier transform infrared (FT-IR) spectros-
copy following the procedure described in Kebukawa 
et  al. (2020). Infrared absorption spectra were collected 
from a small amount of sample pressed onto a KBr 
plate (~ 5 × 5 × 1  mm3) using a micro-FT-IR instrument 
(JASCO FT/IR-6100 + IRT-5200) equipped with a ceramic 
IR light source, a germanium-coated KBr beam splitter, a 
mercury–cadmium–telluride (MCT) detector, and × 16 

Fig. 4  a, b Carbonaceous product after the explosion simulation. c Volatile gas sample cylinder
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Cassegrainian mirrors. A total of 128 scans of the IR trans-
mission were accumulated with a wavenumber resolution 
of 8  cm−1 in the wavenumber range of 4000–700  cm−1 
and with a 50 × 50 μm2 aperture for each spectrum. Back-
ground spectra were acquired from the blank areas of the 
KBr plate adjacent to the samples.

Raman spectroscopy
A sample was directly analyzed by an established method 
(after Kiryu et  al. 2019) using a Raman spectrometer 
(Nanophoton RAMAN touch). In brief, a 532-nm laser 
was used, and the laser beam was focused through a ×20 
objective. The spot size was ~ 1  μm (×20 objective with 
a numerical aperture of 0.45), and the laser power at the 
sample surface was ~ 700  μW. The spectral range was 
100–2600 cm−1, and a grating of 600 grooves mm−1 was 
used. The exposure time for each spectrum was 20  s, 
and two accumulations were obtained for each analyti-
cal spot to correct for cosmic rays. The Raman shift was 
calibrated using a silicon wafer prior to the analytical 
procedure.

Results and discussion
Volatile and semivolatile molecules from the explosion
The VOCs detected in the projectile chamber included 
CH4 [19.8  μmol carbon (μmol C) L−1], C2H4 (0.9  μmol 
C L−1), C2H6 (0.6 μmol C L−1), and benzene (0.4 μmol C 
L−1) (Fig. 5). The methane/ethane ratio (C1/C2) was 33.0, 
which is unlike the value of 1.04 found for the Murchison 
meteorite (methane, 8.9 nmol g−1; ethane, 8.5 nmol g−1; 
data from Yuen et  al. 1984). The low-molecular-weight 
carboxylic acids (including acetic acid) and various other 
organic molecules detected by total ion chromatogram 
(TIC) on the TD-GC/MS are shown in Fig.  6a. A wide 
range of aliphatic hydrocarbons, including straight chain 
alkanes (< n-C20H42), were detected in the extracted ion 
chromatogram (EIC, m/z = 57).

A number of polycyclic aromatic hydrocarbons (PAHs) 
and heterocyclic hydrocarbons were identified (Fig. 6b–
d), with the most abundant being benzene (m/z = 78) and 
toluene (m/z = 91 and 92 with benzyl cation isomerism; 
Appendix), which is consistent with the results of volatile 
gas analysis by GC/MS. C2-Alkylbenzenes (m/z = 106), 
including ethyl benzene and xylene (o-, m-, and p-), 
were also observed. Naphthalene (m/z = 128) was the 

Time (min)
Fig. 5  GC/MS chromatograms showing the volatile gases (methane, carbon dioxide, ethene, ethane, hydrogen sulfide, propane, benzene, and 
toluene) from the quenched carbonaceous product (w/o sabot). TIC total ion chromatogram
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Fig. 6  TD-GC/MS chromatograms of a the aliphatic molecules (n-alkanes); b–e aromatic molecules (e.g., monocyclic species: benzene, toluene, ethyl 
benzene, xylene, and phenol; bicyclic species: naphthalene, methyl naphthalene, dimethyl-naphthalene, and biphenyl; tricyclic species: phenanthrene, 
anthracene, methyl phenanthrene; and tetracyclic species: fluoranthene and pyrene); f heterocyclic molecules (e.g., dibenzofuran) from the quenched 
carbonaceous product without the sabot system (w/o sabot). Please see also Fig. 7 for a comparison of PAH profiles from the systems w/ or w/o the sabot
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most abundant bicyclic species among the isomers 
of methyl- and dimethyl-naphthalene (m/z = 142 and 
156, respectively). The experimentally derived ratios of 
methyl naphthalene isomers (2-methyl (β-configured) to 
1-methyl (α-configured) naphthalene) (Radke et al. 1982) 
obtained with and without the sabot device were 1.50 and 
1.27, respectively, which are similar to the ranges reported 
for carbonaceous meteorites (Yamato-790112, ~ 2.02; 
Murchison, ~ 1.86; Renazzo, ~ 1.44; Pearson et  al. 2006) 
and products of impact shock experiments of benzene 
(Mimura, 1995). Biphenyl (m/z = 154), acenaphthene 
(m/z = 154), fluorene (m/z = 166), and phenanthrene/
anthracene (m/z = 178) are also known as abiogenic 
bicyclic and tricyclic aromatics. The detection of tri- and 
tetracyclic aromatics and heterocyclic methyl phenan-
threne (m/z = 192), fluoranthene/pyrene (m/z = 202), and 
dibenzofuran (m/z = 168) indicates that aromatic cycli-
zation processes occurred in the explosion and quench-
ing processes. The relative abundance of the aromatic 
compounds and their isomers decreases semilogarith-
mically with increasing chain length, i.e., 1 ring (ben-
zene) > 2 rings (naphthalene) > 3 rings (phenanthrene) > 4 
rings (pyrene), in experiments both with and without the 
sabot device (Fig. 7). The semilogarithmic linear relations 
between PAHs (Xn: number of rings) and their relative 
abundance % (Y; benzene as 100) are expressed as

Fig. 7  The relationship between the number of rings of the PAHs 
and their relative abundance normalized to benzene at 100. The 
abundance profiles were from benzene (monocyclic), naphthalene 
(bicyclic), phenanthrene (tricyclic), and pyrene (tetracyclic), where the 
concentrations of alkyl-PAHs were not included in the determination 
of each relative abundance. For further description of carbonaceous 
products, the detailed analysis of soluble organic matter using polar 
and apolar solvents will have to be performed by high-resolution 
mass spectrometry with appropriate wet-chemical treatments (e.g., 
Orbitrap mass spectrometry by Oba et al. 2019; Isotope ratio mass 
spectrometry by Takano et al. 2015)

Fig. 8  μXRF surface imaging for representative elements (Fe, red; K, green; Al, blue; and Cl, light blue) for the carbonaceous products (the explosion 
experiment with the sabot). The white scale bar represents 2 mm
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Therefore, these linear relations imply a stepwise 
cyclization in which larger PAHs are formed from their 
smaller homologues (e.g., following the pathways for the 

(1)
ln Y = −1.78 Xn + 6.15

(

R
2
= 0.99

)

; with sabot,

(2)
lnY = −1.49 Xn + 5.60

(

R
2
= 0.99

)

; without sabot.

pyrene series and the fluoranthene series proposed by 
Naraoka et al. 2000).

Inorganic ions and elements extracted from solid 
carbonaceous product
The most abundant inorganic ions from the water-
extractable fractions were Cl– and K+ derived from the 
KTB explosive and RK ignition charge components 
(Additional file  1: Figure  S1). The other significant ions 
were shown to be nitrates (NO2

−, NO3
−), halogens 

b

a

Fig. 9  a Optical microscopy image of the carbonaceous sample from the quenched product. b IR spectral signatures obtained from the red 
squares (#24, 26–28 are from white materials and #25 is from black material). Possible peak assignments with references (Socrates 2004) are shown 
in Table 1
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(Br−, F−), organic acids (acetic acid, formic acid), sulfate 
(SO4

2−), phosphate (PO4
3−) and ammonium (NH4

+) by 
ion chromatography (IC). Sodium (Na), aluminum (Al), 
magnesium (Mg), titanium (Ti) and other elements were 
also observed in the solid carbonaceous product by ICP-
MS. Figure 8 presents the surface imaging analysis of the 
solid carbonaceous product observed by μXRF, implying 
heterogeneous precipitation of solid products after the 
reaction of the KTB and RK explosives and the subse-
quent quenching effect.

IR and Raman spectra
The IR spectra were obtained at > 10 different positions on 
the carbonaceous product sample. Figure 9a shows repre-
sentative IR spectra from several spots in the region of 
interest (Fig. 9b). Although the peak positions are mostly 
common, the peak intensity ratios vary substantially. 
Three peaks are commonly observed at ~ 1640, ~ 1515, 
and ~ 1415 cm−1. There are fine peaks at 1100, 1000, 940, 
and 860  cm−1. The possible peak assignments based on 

Socrates (2004) are shown in Table  1. The spectra from 
some spots show a peak at 3417  cm−1 due to N–H, in 
addition to a broad O–H band at ~ 3400 cm−1, which is 
mostly due to adsorbed water, indicating that the sample 
is hydrophilic.

Mapping analysis in a 1350 μm × 400 μm region shows 
heterogeneity at the ~ 100  μm scale—there are two 
groups of IR absorptions (Fig.  10). One is distributed 
mainly in the right area and includes bands at 860, 1000, 
1100, and 1830  cm−1. The other is distributed in three 
regions: left, middle, and right, and includes the bands 
at 940, 1410, 1520, and 1640 cm−1. The black and white 
materials are indicated by the optical microscopic image 
(Fig. 9a). The black materials show less-intense IR signals 
compared to the white materials (Figs. 9b and 10). For the 
interpretation of the 1640 cm−1 band implying absorbed 
water, we note that the amount of “hydrophilic chemical 
species” was detected as shown in Additional file 1: Fig-
ure S1.

The Raman spectra obtained from the carbonaceous 
product sample are characterized by an intense peak at 
1095  cm−1 with weaker peaks mostly below ~ 750  cm−1 
(Fig.  11, Table  1). The Raman features from the black 
materials are mostly common with those of the white 
materials—although some peaks were slightly shifted 
and weaker than the corresponding peaks from the white 
materials. Considering that the IR features from the black 
materials are also weaker than those of white materials, 
the black materials could be IR and Raman inactive.

Considering the IR and Raman characteristics, the car-
bonaceous product sample (the white materials) likely 
contains nitrates, ammonium/amine salts, carbonates, 
and sulfur oxyanions. Aromatic compounds, amides and 
halides might also be present. Notably, these characteris-
tics are not definitive, and further analyses are required 
to identify these compounds. To obtain the accurate 
evaluation of the sample profile, we need multi-techni-
cal approach including the nondestructive analysis (e.g., 
IR and Raman), destructive analysis (e.g., GC/MS), and 
comprehensive working flow (e.g., Uesugi et  al. 2014, 
2019).

Summary and perspectives

1.	 An energetic reaction involving a physicochemical 
explosive shock will vigorously activate of chemi-
cal substances, resulting in the abiotic synthesis of 
various gases and solid materials after the eventual 
quenching process. The KTB- and RK-based explo-
sives produce carbonaceous debris containing vari-
ous labile and refractory organic materials that do 
not undergo thermal degradation, and the retrieved 

Table 1  Tentative peak assignments for the IR and Raman 
spectra based on Socrates (2004)

The IR peaks with * are distributed in the right area, and the peaks with ** are 
distributed in the IR map (Fig. 10). Since IR spectroscopy is bulk analysis and 
it does not detect trace components. Although aliphatic C–H peaks were not 
detected by IR, aromatic species may exist (1640 and 1520–10 cm−1 could be 
aromatic C=C)

Wavenumber/cm−1 Functional groups

IR

 ~3400 O–H, N–H

 1830* NOX (X = halogen), carbonate

 1640** H2O, C=C, C=O (amide I)

 1520-10** C=C, NH3
+, N–H (amide II)

 1420-10** CO2
−, NH4

+, NO3
−, C–N (amide III), CO3

2− (car-
bonate)

 1100* C–O, S=O

 1000* S=O

 940** N–O

 860* NO3
−, carbonate

Raman

 123 Unknown

 157–167 Carbonate

 202 Carbonate

 235 Unknown

 278 C–Cl, aromatic, carbonate

 553–573 C–Cl, aromatic, amide, C=O, C–S

 726 C–Cl, aromatic, amide, C–S, carbonate

 1095 NO3
−, aromatic, C–O, C–N, S=O, carbonate

 1475–1490 NH3
+, aromatic, pyrrole, carbonate

 1729 C=O
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sample quality is guaranteed by the closed explosion 
system (Sawada et al. 2017).

2.	 Practically, we are expecting the nominal scenario 
(i.e., substantial pristine grain samples from Ryugu 
without contamination: Tachibana et  al. 2014) and 
also preparing the case for off-nominal scenario (i.e., 
minimum pristine grain samples with potential arti-
fact materials). We reported a chemical assessment 
prior to the real sample process after the arrival of 
Hayabusa2 spacecraft and a feedback to future sam-
ple return missions (Chan et al. 2020).

3.	 Quality control for the sample process, including in 
ground-based procedures, is an important issue for 
sample return missions. The ESCuC (the Extrater-
restrial Sample Curation Center) in the ISAS/JAXA 
facility (Yada et  al. 2014; Uesugi et  al. 2019) was 
assessed by an interlaboratory evaluation, and Suga-
hara et al. (2018) reported an assessment of the clean 
room at ISAS/JAXA, which is intended to be used in 
the processing Hayabusa2 samples (cf. assessment on 
the OSIRIS-REx mission; Dworkin et al. 2017).

Fig. 10  IR peak intensity maps at a 860 cm−1 with baseline between 780 and 1060 cm−1, b ~ 1000 cm−1 with baseline between 780 and 
1060 cm−1, c 1100 cm−1 with baseline between 1060 and 1140 cm−1, d 1830 cm−1 with baseline between 1780 and 1860 cm−1, e 940 cm−1 with 
baseline between 780 and 1060 cm−1, f ~ 1410 cm−1 with baseline between 1250 and 1750 cm−1, g ~ 1520 cm−1 with baseline between 1250 and 
1750 cm−1, and h ~ 1640 cm−1 with baseline between 1250 and 1750 cm−1. IR imaging on Fig. 10 is corresponding to the region of interest in Fig. 9
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	 Along with those quality controls above, the ana-
lytical flow of pristine samples (e.g., element profiles, 
chemical composition, mineralogy, isotopic signa-
tures, organic molecules, and physical properties) 
definitely requires a seamless process to obtain pre-
cise and native information for the asteroid Ryugu.
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Fig. 11  Raman spectra of the carbonaceous sample from the 
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black materials, and “white” indicates the spectra obtained from the 
white materials
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Appendix

Toluene to benzyl cation isomerism via m/z = 91 and 
m/z = 92.
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