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Abstract 

We have submitted a secular variation (SV) candidate model for the thirteenth generation of International Geomag-
netic Reference Field model (IGRF-13) using a data assimilation scheme and a magnetohydrodynamic (MHD) dynamo 
simulation code. This is the first contribution to the IGRF community from research groups in Japan. A geomagnetic 
field model derived from magnetic observatory hourly means, and CHAMP and Swarm-A satellite data, has been used 
as input data to the assimilation scheme. We adopt an ensemble-based assimilation scheme, called four-dimensional 
ensemble-based variational method (4DEnVar), which linearizes outputs of MHD dynamo simulation with respect to 
the deviation from a dynamo state vector at an initial condition. The data vector for the assimilation consists of the 
poloidal scalar potential of the geomagnetic field at the core surface and flow velocity field slightly below the core 
surface. Dimensionless time of numerical geodynamo is adjusted to the actual time by comparison of secular varia-
tion time scales. For SV prediction, we first generate an ensemble of dynamo simulation results from a free dynamo 
run. We then assimilate the ensemble to the data with a 10-year assimilation window through iterations, and finally 
forecast future SV by the weighted sum of the future extension parts of the ensemble members. Hindcast of the 
method for the assimilation window from 2004.50 to 2014.25 confirms that the linear approximation holds for 10-year 
assimilation window with our iterative ensemble renewal method. We demonstrate that the forecast performance 
of our data assimilation and forecast scheme is comparable with that of IGRF-12 by comparing data misfits 4.5 years 
after the release epoch. For estimation of our IGRF-13SV candidate model, we set assimilation window from 2009.50 
to 2019.50. We generate our final SV candidate model by linear fitting for the weighted sum of the ensemble MHD 
dynamo simulation members from 2019.50 to 2025.00. We derive errors of our SV candidate model by one standard 
deviation of SV histograms based on all the ensemble members.
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Introduction
The secular variation (SV) of the geomagnetic field is 
caused by a highly nonlinear process in the outer core 
of the Earth. International Association of Geomagne-
tism and Aeronomy (IAGA) releases a set of geomag-
netic main field model and linear prediction of SV field 

as International Geomagnetic Reference Field (IGRF) 
model every 5 years, to keep the model’s deviation from 
the actual field small. The previous generation, the 12th 
generation of IGRF, was released in 2015 (Thébault et al. 
2015a). Each generation of IGRF has been produced by 
the IAGA Working Group V-MOD by integrating inde-
pendent contributions from research groups all over 
the world, and consists of three types of models: the 
Definitive IGRF (DGRF) field 5  years before the release 
epoch, the geomagnetic main field for the release epoch, 
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and the SV model valid for the 5 years on and after the 
release epoch. The truncation of spherical harmonics 
for IGRF and DGRF is now LMF = 13 , while for SV is 
LSV = 8 . Evaluations of all the submitted candidate mod-
els are unveiled altogether with the release of IGRF (e.g., 
Thébault et al. 2015b).

Research groups in Japan have never contributed to any 
IGRF models so far, although there have been important 
contributions of highly quality-controlled observatory 
data, e.g., Kakioka, operated by Japan Meteorological 
Agency. Since both established techniques and expertise 
for the fields of magnetohydrodynamic (MHD) dynamo 
simulation and data assimilation are present in Japan, 
we decided to contribute to the IGRF community by an 
SV candidate model first. This was actually enabled by a 
bilateral collaboration between Japan and the geomag-
netic group in Institut de Physique du Globe de Paris 
(IPGP), France; this group brought to the project the 
required expertise to build, from raw data, a geomagnetic 
field model, which, in turn, has been used as input data to 
our assimilation scheme.

SV candidate models for IGRF have been commonly 
presented as linear or polynomial extrapolation of 
known latest SVs. The GFZ Potsdam team, Germany, for 
example, generated an SV candidate model for IGRF-
12, namely SV from 2015.0 to 2020.0, by averaging the 
SV of their parent model from 2013.5 to 2014.5 (Lesur 
et  al. 2015). Abrupt change in SV, such as geomagnetic 
jerks, however, may deteriorate the prediction of short-
time SVs. This suggests necessity of prediction reflecting 
dynamic process in the Earth’s outer core, e.g., through 
numerical geodynamo models. There have been limited 
attempts to use geodynamo models for contributions to 
the SV models of IGRF. Kuang et al. (2010) was the first 
to contribute to IGRF-SV models using a geodynamo-
based data assimilation scheme. They adopted a Kalman 
filter approach and used over 7000-year data with a pre-
diction–correction algorithm to reduce the systematic 
error of the geodynamo model. In addition to the full 
MHD prediction, the number of attempts to use con-
trolled dynamic processes has been increasing. Fournier 
et al. (2015) provided an SV model for IGRF-12, using a 
geodynamo model (Aubert et al. 2013) with a steady fluid 
velocity in the outer core.

Variational data assimilation approaches also have 
a high possibility for providing good forecasts of the 
geomagnetic field, although there has been a very lim-
ited number of their applications to the geomagnetic 
field. The variational approaches simultaneously adjust 
a dynamic model to all the observations available in the 
assimilation window, while the sequential methods, such 
as the Kalman filter approach, update (or correct) the 
model output with given observations at each time step 

(see Talagrand (1997) or Fournier et al. (2010) for intro-
duction to both). One of big advantages of the variational 
approaches is that the resulting trajectory of the state vec-
tor keeps the dynamic consistency of the system over the 
assimilation window. Fournier et al. (2007) show a possi-
bility that the variational approach can improve historical 
geomagnetic data with the recent dense satellite magnetic 
data, from experiments using a one-dimensional MHD 
dynamo toy model. Li et al. (2011; 2014) have developed 
variational assimilation schemes for more realistic three-
dimensional MHD systems. In particular, Li et al. (2014) 
performed experiments of variational data assimilation 
using an inertia-free MHD dynamo model with synthetic 
data sets, which shows a potential to handle actual mag-
netic observations in the variational assimilation scheme. 
For their application to real magnetic data, however, diffi-
culties arise from the requirement of an adjoint model of 
a fully nonlinear MHD dynamo model and from compu-
tational cost for construction of the derivative of the cost 
function with respect to an initial state, i.e., for backward 
propagation of the error information (e.g., Fournier et al. 
2010).

In this study, we adopt an iterative ensemble-based var-
iational scheme based on the four-dimensional ensem-
ble-based variational method (4DEnVar; Liu et al. 2008) 
with a fully nonlinear three-dimensional MHD dynamo 
model (Takahashi 2012, 2014) to predict SV in the com-
ing 5  years from 2020.0. A noticeable feature of 4DEn-
Var is that it linearizes the dynamo output variables at 
a given time comparable to observations with respect 
to the deviation of the state vector from a mean state at 
the initial time, assuming weak nonlinearity of the model 
over the assimilation window. The 4DEnVar approach, 
thereby, does not need an adjoint model of the forward 
model and numerical cost for the backward propagation 
of the error information, even though it is named “vari-
ational method”. This strategy seems reasonable when 
both assimilation window and forecast period are shorter 
than the timescale of nonlinearity of the system. We illus-
trate that this approach is feasible with our iterative algo-
rithm based on 4DEnVar (Nakano 2020) for generation of 
a candidate SV model for IGRF, with numerical experi-
ments using the real geomagnetic data from 2004.50 
to 2014.25 and with comparison of the forecast perfor-
mances with that of IGRF-12.

The remainder of this paper is organized as follows: we 
first explain our assimilation method (“Method” section). 
Secondly, we report results of numerical experiments 
using the past datasets (“Numerical experiments” sec-
tion), and then describe details of estimation of our can-
didate model for IGRF-13 SV (“The SV candidate model 
for IGRF-13” section). After the explanation of our error 
estimation (“Error estimation of the candidate SV model” 
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section), we summarize this study (“Discussion and con-
clusions” section).

Method
Our intent is to forecast SV by performing the 4DEnVar 
data assimilation using a numerical geodynamo code and 
existing data with respect to the poloidal scalar potential 
of the geomagnetic field at the core–mantle boundary 
(CMB) and the toroidal and poloidal components of the 
core surface flow. From the variational data assimilation 
experiments with an inertia-free MHD dynamo model, Li 
et al. (2014) found that the magnetic field below the CMB 
is hard to reconstruct only from the magnetic data taken 
outside the core due to the diffusion-dominant Ekman 
boundary layer. In agreement with their proposal, we 
use the preliminary estimated core surface flow as part 
of observation vectors in our data assimilation as well as 
the geomagnetic data. Inclusion of the core surface flow 
in data vectors results in indirect inclusion of SV data in 
the data assimilation.

In this section, we first describe the assimilation theory 
(“Data assimilation theory” section) and details of our 
dynamo model and how to adjust dimensionless time 
to the actual time (“Geodynamo simulation: parameters 
and scaling of time” section). We then briefly discuss 
the nonlinearity of our dynamo model (“Nonlinearity of 
the numerical geodynamo: error growth e-folding time” 
section). Next, we explain details of preparation of the 
observational data and how to convert dimensionless 
simulation outputs to variables comparable to real data 
(“Data 1: poloidal scalar potential at the CMB obtained 
from the MCM model” section and “Data 2: core surface 
flow” section) and finally describe the way of practical 
implementation of the data assimilation (“Implementa-
tion of assimilation” section).

Data assimilation theory
We consider the minimization of the following cost 
function:

where xk is the state vector of a dynamo model at time 
tk , yk denotes the observation vector, Rk is the covari-
ance matrix of observation noise, and hk is an obser-
vation operator which converts a state vector xk to 
observable variables for the comparison with yk . Given 
the dynamo model, xk is uniquely determined from the 
initial state x0 . This allows us to represent xk as a func-
tion of x0 , that is, xk = f k(x0) . Defining a function gk as 

(1)

V (x0) =
1

2

K
∑

k=1

[

yk − hk(xk)
]T
R
−1
k

[

yk − hk(xk)
]

,

gk(x0) = hk
(

f k(x0)
)

 , the cost function in Eq. (1) can be 
rewritten as follows:

The minimization of this cost function is achieved by 
an iterative algorithm based on the 4DEnVar method (Liu 
et al. 2008). At the m th iteration, we approximate the cost 
function by using an ensemble of the simulation outputs 
{

x
(1)
0:K ,m . . . , x

(N )
0:K ,m

}

 , where N  is the size of ensemble and 
x
(n)
0:K ,m, n ∈ {1, . . . ,N } is the sequence of vectors 

x
(n)
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(n)
1,m, . . . , x

(n)
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dynamo simulations from the initial conditions 
{
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(1)
0,m, . . . , x

(N )
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}

 , which are prepared so that the ensem-
ble mean, 

(

ΣN
n=1x

(n)
0,m

)

/N  , is equal to the m th estimate 
x̄0,m . At the m th iteration, we seek x0 that minimizes 
Eq. (2), which turns out to be x̄0,m+1 , with given x̄0,m and 
{

x
(1)
0:K ,m, . . . , x

(N )
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}

 . As an important first step of the 
4DEnVar, we express gk(x0) in terms of the first-order 
Taylor expansion,

where Gk is the Jacobian of gk at x̄0,m . We then approxi-
mate x0 as a weighted sum of the ensemble members. 
Now we define the following matrices 

⌣

X0,m and Γ̂k ,m for 
convenience:

This allows us to write x0 = x̄0,m +
⌣

X0,mw , where w 
consists of weight for each ensemble member. x̄0,m is the 
mean of x(n)0,m(n = 1, . . . ,N ) . Using Eqs.  (4) and (5), the 
function gk(x0) in Eq. (3) can then be expressed:

Note here that the Jacobian Gk disappears in the 
expression of gk(x0) with the aid of the relationship 
derived from Eq.  (3), gk
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Equation (6) allows us to circumvent direct calculation of 
the Jacobian Gk . On the other hand, the linear 
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approximation Eq. (3) (and resulting Eq. (6)) imposes us 
on two requirements:

	(I)	 the assimilation window indexed by k = 1, . . . ,K  is 
so short that nonlinearity of gk(x0) is negligible (or 
weak);

	(II)	 the deviations, x
(n)
0,m − x̄0,m ( n = 1, . . . ,N ) in 

Eq. (4), are small enough.

For the first requirement, we discuss the nonlinearity 
of our dynamo model using the error growth rate (Hulot 
et  al. 2010) in “Nonlinearity of the numerical geody-
namo” section later, while we see that ensembles shrink-
ing through iterations meet the second requirement in 
“Numerical experiments” section. From Eqs. (2) and (6), 
we introduce the following objective function;

where σm is a parameter, which is fixed to σm = 1 in this 
study, while we decrease elements of Rk at each step. This 
cost function is minimized provided that:

The (m+ 1) th estimate x̄0,m+1 is then obtained as

and we proceed to the next iteration. The first term of the 
right-hand side in Eq. (7) is added to ensure robustness. 
This iterative application of Eq. (8), which is similar to the 
iterative ensemble Kalman smoother algorithm (Gu and 
Oliver 2007; Bocquet and Sakov 2013), minimizes Eq. (2) 
in the subspace spanned by the ensemble members 
(Nakano 2020). After obtaining x̄0,m+1 it is necessary to 
perform MHD dynamo simulations with a set of initial 
conditions 

{

x
(1)
0,m+1, . . . , x

(N )
0,m+1

}

 to renew the ensemble 
members for the ( m+ 1)th iteration. See Appendix A for 
how to prepare the set of initial conditions from x̄0,m+1 , 
⌣

X0,m and ŵm.
At the final (5th is chosen in this study) iteration, we 

also estimate the bias and trend components which cor-
respond to model error in the dynamo model, by mini-
mizing the following function:
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(9)x̄0,m+1 = x̄0,m +
⌣

X0,mŵm,

where b denotes the bias component, while a is the coef-
ficient for the trend component. The bias and trend terms 
correspond to the offset and the linear departure in time 
between the observation and the model, respectively. 
Here, we assume that the observation is mostly explained 
by the dynamo model output and that the bias and trend 
components are minor. We thus select Pa and Pb as:

Large norms of P−1
b  and P−1

a  suppress intensities of b 
and a while minimizing Eq.  (10). w, b,a that minimize 
Ĵm(w, b,a) in Eq. (10) can be obtained in a similar manner 
to Eq. (8) (see Appendix B for details). The minimization of 
Eq.  (10) gives the approximate minimum of the following 
cost function:

The final estimate and prediction are obtained by the fol-
lowing equation:

where M indicates the final step, i.e., M = 5 , and ŵM , b̂ 
and â are solutions to Eq.  (10). Then we can obtain the 
final estimate of Eq.  (13) by the sum of a single MHD 
simulation starting from x̄0,M , the weighted sum of the 
Mth ensemble members, and the trend and bias terms. 
Note that we can use Eq. (13) not only for the final esti-
mate within the assimilation window, but also for the 
estimate in the forecast period outside the assimilation 
window when the future extensions of gk

(

x̄0,M
)

 and 
gk

(

x
(n)
0,M

)

 , (K < k) , are available, which requires only 
additional dynamo runs for gk

(

x̄0,M
)

 and all the ensem-
ble members. Figure  1 shows how to prepare an SV 
model for IGRF-13 by our assimilation scheme and 
Eq.  (13), where the future extensions of the ensemble 
members (the gray area after “Release of IGRF”) generate 
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Rk .

(12)

V (x0) =
1

2

K
∑

k=1

[

yk − gk(x0)− b − ka
]T

R
−1

k

[

yk − gk(x0)− b − ka
]

.
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a future prediction (the blue line after “Release of IGRF”) 
by the weighted sum of the ensemble members via 
Eq. (13).

Note that the first-order approximation of the function 
f k allows us to approximate the state at an arbitrary time 
tk ′ ( 0 ≤ k ′ ≤ K  ) in a similar manner to Eq. (6):

where F k is the Jacobian of f k at x̄0,m and 
⌣

Xk ′,m is a 
matrix obtained by replacing 0 by k ′ in Eq. (4) as follows:

The state at tk ′ can be estimated from the following 
equation:

without any modification to ŵm in Eq.  (8), which is the 
same as used in Eq.  (9). To obtain x̄k ′,m+1 by Eq.  (16) 
means that we minimize the cost function Eq.  (2) (or 
(12)) using the first-order Taylor expansion of g�k(xk ′) at 
x̄k ′,m,

instead of Eq.  (3), where �k = k − k ′ , and g�k and G�k 
are associated with the  inverse function of f −�k when 
�k < 0 . This enables us to choose arbitrary time, tk ′ , at 
which we restart MHD dynamo simulation after the data 
assimilation, for the purpose of better accuracy of the 
linear approximation at times close to tk ′ . For the future 
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x̄0,m
)

+ F k ′
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x0 − x̄0,m
)

≈ x̄k ′,m +
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.
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(17)
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(
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,

forecast, single MHD or kinematic dynamo (KD; mean-
ing steady flow) simulation can also estimate future 
magnetic fields, running them from the initial condition 
optimized at arbitrary time tk ′ (Eq.  16) by data assimi-
lation. We discuss differences in forecasts by MHD 
and kinematic dynamo simulation from different t ′k in 
“Numerical experiments” section.

Geodynamo simulation: parameters and scaling of time
We adopt the geodynamo simulation code established 
by Takahashi (2012, 2014) for our data assimilation and 
forecast processes. In this code, the velocity and mag-
netic fields are decomposed into the poloidal and toroidal 
parts and spatially expanded in terms of spherical har-
monics in the tangential directions, while combined com-
pact finite differencing and the Crank–Nicolson scheme 
are adopted for discretization in the radial and time coor-
dinates, respectively. The temperature and composition 
are treated separately (Takahashi 2014). We select the 
following dimensionless parameters for the geodynamo 
simulation: the Ekman number is E = 3× 10−5 , the mag-
netic Prandtl number is Pm = 2.0 , the Prandtl number 
is 0.1, the compositional Prandtl (or Schmidt) number 
is 1.0, the modified thermal Rayleigh number is 500, and 
the modified compositional Rayleigh number is 2000. 
The magnetic Reynolds number ( Rm ) of this dynamo is 
181 with the standard deviation of 15, which is evaluated 
from the initial ensemble members for our data assimila-
tion (see “Numerical experiments” section for details of 
the ensemble).

Since all the parameters and variables are dimensionless 
in the numerical geodynamo model, the simulation out-
puts should be scaled for comparison with the actual data 

Fig. 1  A schematic figure of the 4DEnVar and prediction of the future geomagnetic field. The weighted sum of an ensemble of dynamo run (the 
thick blue line) is the final estimate after the assimilation corresponding to Eq. 13. The SV candidate model for IGRF-13SV (the red dashed line) is 
determined by line-fitting to the MHD expectation of the next 5 years. One can use geomagnetic data up to ~ 6 months before the release of IGRF 
for generation of candidate models because the deadline of their submissions is ~ 3 months before the release (October 1st for IGRF-13)
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of the geomagnetic main field and the core surface flow. 
A time scale of the geomagnetic secular variation, τSV , 
can be characterized by simple dependence of spherical 
harmonic degree, l (Lhuillier et  al. 2011a). Christensen 
and Tilgner (2004) obtained a value of τSV = 535years 
by fitting τSV/l ( l ≥ 2 ) to the time scale of secular vari-
ation for each spherical harmonic degree, τl (see Chris-
tensen and Tilgner 2004, for the definition). In the same 
manner, we estimate the secular variation time scale of 
our numerical geodynamo model to be τ ∗SV = 0.0411 , 
scaled by the viscous dissipation time; we first estimate 
the mean τl of our numerical geodynamo from a long-
time dynamo run (about one magnetic diffusion time, 
i.e., 26,000 years in actual time) and then evaluate τ ∗SV by 
fitting τ ∗SV/l to the estimated τl for l ≥ 2 . Figure 2 shows 
the estimated τl and the fitting result. Hence, we convert 
the dimensionless time of the numerical geodynamo into 
the actual time by using τν ≡ τSV/τ

∗
SV = 13, 049 years 

throughout this study.

Nonlinearity of the numerical geodynamo: error growth 
e‑folding time
Since the 4DEnVAR approach relies heavily on the lin-
ear assumption Eq.  (3) and resulting Eq.  (6), we should 
be careful about its validity in the problem in concern, 
i.e., the data assimilation and forecast of the geomagnetic 
field for IGRF-13SV. We here investigate the timescale of 
nonlinearity of our numerical geodynamo by introduc-
ing the error growth rate (e.g., Hulot et al. 2010), which 
measures the rate at which small error in a dynamo state 
vector grows with time. It is known that the error growth 
rate is stable once a dynamo model and parameters are 
provided, independent of the magnitude of inserted error 
and types of variables into which error is contaminated 
(Lhuillier et al. 2011b). Its inverse, i.e., the e-folding time 
of error growth τe , therefore, can be interpreted as a limit 

of the period over which data assimilation is feasible with 
the nonlinear dynamo model; when the length of assimi-
lation window is comparable with τe , small error in the 
initial state is critical to the state at the end of the win-
dow, and one cannot expect to obtain reasonable initial 
condition. The linear assumption for 4DEnVar (Eq.  3) 
clearly requires that the assimilation window should be 
shorter than τe of our numerical geodynamo model.

We estimate the e-folding time τe of our numerical 
geodynamo by following the method in Lhuillier et  al. 
(2011b). We first choose ten different dynamo state vec-
tors from a dynamo run for about one magnetic diffusion 
time. We then add a small perturbation to the poloidal 
components of the magnetic field over the first eight har-
monic degree by the expression:

where S̃ml  and Sml  are the poloidal scalar functions of the 
magnetic field with degree l and order m of spherical har-
monics for the perturbed and original initial conditions 
at a chosen time tp , respectively. αm

l  is a coefficient obey-
ing the standard normal law and ϵ is the relative magni-
tude of perturbation. We choose ϵ = 10−10 in this study. 
MHD dynamo simulations are performed from both 
original and perturbed initial conditions and the discrep-
ancy between them are measured by the magnetic error 
at the CMB,

where t is time scaled by the magnetic diffusion time τη , 
rCMB is the radial coordinate of the CMB, and �·� denotes 
the time average. For each pair of dynamo runs, the error 
growth rate � and its inverse, the e-folding time τe = �

−1 , 
are estimated by fitting the model of �t + a , where a is 
the offset, jointly to log�yl(t) ( 1 ≤ l ≤ 8 ). The time win-
dow for the fitting is manually determined, by simultane-
ously considering the first eight �yl(t) . After the same 
procedure for ten chosen times of tp , we average ten � s 
and τe s for our final estimates.

Figure  3 shows results of estimation of � and τe for 
our geodynamo model. As shown in Fig.  3a, the error 
growth rate (slope of the blue line) was obtained by the 
linear regression over the first eight spherical harmonic 
degrees (the gray lines). As in Fig. 3b, we finally evaluate 
� = 187± 36 [ 1/τη ] and τe = (5.37± 1.02)× 10−3

[

τη
]

 , 
where the uncertainties are given by two standard devia-
tions. Using the scaling law, τη = Pmτν = 2 · 13, 049years , 
τe of our numerical dynamo is found to be τe = 140± 27 
years. Then we should choose the assimilation window 

(18)S̃ml
(

tp, r
)

=
(

1+ αm
l ǫ

)

Sml
(

tp, r
)

,

(19)

�yl(t) =

√

√

√

√

√

1

2l + 1

∑

m

(

S̃ml (t, rCMB)− Sml (t, rCMB)

)2

�Sml (t, rCMB)
2�

,

Fig. 2  Secular variation time scale of our dynamo model. The time 
scale of secular variation for each spherical harmonic degree τl is 
fitted by τ ∗SV /l for l ≥ 2 . The resulting τ ∗SV is 0.0411, which was utilized 
to scale the dimensionless numerical dynamo time
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shorter than ~ 110 years to avoid the effect of nonlinear-
ity of our geodynamo model (Takahashi 2012, 2014). We 
later select a maximum assimilation window of 10 years 
and a prediction period of 5  years, which seem short 
enough to circumvent the nonlinearity effect and to hold 
Eq. (3).

Hulot et  al. (2010) claimed that τe of the Earth’s 
dynamo system appears to be about 30 years from the 
linear relationship between τe/τSV and Rm , provided 
that Rm > 100 , E < 10−9 , and τSV = 535years (Chris-
tensen and Tilgner 2004) for the Earth. Although our 
τe(∼ 140 years) is much longer than τe(∼ 30  years) by 
Hulot et  al. (2010), it is found that τe highly depends 
on numerical dynamo models even under the simi-
lar dynamo parameter settings (e.g., see Fig.  3 in 
Hulot et  al. (2010) for the comparison between τe 
by Hulot et  al. (2010) and that by Olson et  al. (2009) 
under E = 3× 10−4 ). We, therefore, think our long τe 
is a characteristic of our geodynamo model. We here 
conclude that our assimilation window of maximum 

10 years is short enough to adopt linear approximation 
of Eq. (3) and resulting Eq. (6) from the perspective of 
τe of our numerical geodynamo.

Data 1: poloidal scalar potential at the CMB obtained 
from the MCM model
We use a version of the MCM model (Ropp et al. 2020) 
which spans from 2001.5 to 2019.25, referred to as the 
MCM3 model in this paper hereafter, to construct data 
vectors for our data assimilation. The MCM3 model has 
been built using hourly mean observatory data together 
with CHAMP and Swarm-A satellite magnetic data. 
These data have been selected depending on their local 
time and for magnetically quiet periods (c.f., Lesur et al. 
2008). The model is made of a series of snapshot models, 
3  months apart, that have been built through a Kalman 
filter approach combined with a correlation-based mod-
eling technique for the analysis step (Holschneider et al. 
2016). Each snapshot model is parameterized in terms 
of spherical harmonics and includes static core field and 
secular variation contributions. Lithospheric, external 
and induced fields are also co-estimated as well as crustal 
offsets at each observatory. Details of the modeling tech-
nique are described in Ropp et al. (2020). The Gauss coef-
ficients of the core field and its secular variation can be 
downward continued to the CMB for use, e.g., for infor-
mation on the flow in the liquid outer core.

Assuming the mantle an electrical insulator, we 
convert the Gauss coefficients, gml (t) and hml (t) , given 
by the MCM3 model to the poloidal scalar potential, 
Smc
l (t) and Sms

l (t) , at the CMB, respectively, as

where t is the dimensional time, re = 6371.2km and 
roc = 3485km are the radii of the Earth and outer core, 
respectively, and Smc

l (t) and Sms
l (t) are poloidal scalar 

functions for cosine and sine terms, respectively. One of 
data to be assimilated is Sml (t) which denotes Smc

l (t) and/
or Sms

l (t) , and the truncation of spherical harmonics is 
LMCM = 14 . In the assimilation procedure, however, we 
use only coefficients with degree up to 13 assigning very 
small weight to coefficients for l = 14 . The magnetic data 
are constructed in the form of

(20)
Smc
l (t) = 1

l

1

r2oc

(

re

roc

)l+2

gml (t),

Sms
l (t) = 1

l

1

r2oc

(

re

roc

)l+2

hml (t),

(21)dSml (t) =
Sml (t)

S01ref
,

Fig. 3  Error growth rates of the numerical geodynamo model. The 
top panel a shows an example of estimation of error growth rate 
using least-squares linear regression, where the gray lines denote 
magnetic errors, �yl (Eq. 19), for the spherical harmonic degree from 
1 to 8, and the blue line is the result of the linear regression. The 
bottom panel b shows superimposed ten results of estimation of 
error growth rates, where the average error growth rate turns out to 
be 187 with 95 percent uncertainty (2σ) of 36. See text for details of 
the estimation
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where S01ref is a certain reference value for S01 . For the 
observation, we use S01 at the start time of assimilation 
window as S01ref throughout this study. For the numeri-
cal geodynamo, we substitute a typical S01 value of 0.3 into 
S01ref in Eq. (21) to generate vectors comparable with the 
magnetic data vectors. We prepare the data vector by a 
0.25-year interval. From the outputs of the numerical 
geodynamo, the poloidal scalar potentials are normalized 
according to Eq. (21) after the conversion of the dimen-
sionless time to the actual time.

Data 2: core surface flow
We also include the core fluid velocity field slightly below 
the CMB in our data assimilation. In the present numeri-
cal simulation of geodynamo, the no-slip condition for 
the velocity field is imposed at the CMB (Takahashi 2012). 
It, therefore, is pertinent to adopt core surface flows esti-
mated with the effect of viscous boundary layer at the 
CMB (Fig. 4a). Hence, we employ a method of Matsushima 
(2015). Before recalling the method, we define the velocity 
field, V  , and the magnetic field, B , in the outer core. V  can 
be expressed in terms of the poloidal and toroidal scalar 
functions as

where (r, θ ,φ) is the spherical coordinates, r̂ is a radial 
unit vector, and Pm

l  is Schmidt quasi-normalized associ-
ated Legendre function with degree l and order m . Near 
the core surface, the radial component of the velocity 
field, Vr , is likely to be much smaller than the horizon-
tal component, V h . Therefore, in core surface flow mod-
eling, only the horizontal component, V h = θ̂Vθ + φ̂Vφ , 
is computed:

(22)V (r, θ ,φ, t) = ∇ × ∇ ×
(

r̂U
)

+∇ ×
(

r̂W
)

,

(23)

U(r, θ ,φ, t) =

L
∑

l=1

l
∑

m=0

{

U
mc
l

(r, t) cosmφ

+U
ms
l

(r, t) sinmφ
}

P
m

l
(cos θ),

(24)

W (r, θ ,φ, t) =

L
∑

l=1

l
∑

m=0

{

W
mc

l
(r, t) cosmφ

+W
ms

l
(r, t) sinmφ

}

P
m

l
(cos θ),

(25)

Vθ (r, θ ,φ, t) =
L

∑

l=1

l
∑

m=0

[{

1

r

∂Umc

l

∂r
cosmφ + 1

r

∂Ums

l

∂r
sinmφ

}

dP
m

l

dθ

+m

{

−
W

mc

l

r
sinmφ +

W
ms

l

r
cosmφ

}

P
m

l

sin θ

]

,

where θ̂ and φ̂ are unit vectors in the θ - and φ-direc-
tions, respectively. Hence, Matsushima (2015) computed 
Ūm
l = ∂Um

l /r∂r and W̄m
l = Wm

l /r . A boundary condi-
tion, Um

l (ro) = 0 , leads to

where ro is the outer radius of the rotating spherical shell 
in numerical MHD dynamo model, and ξ∗2  is a depth 
from r = ro . Therefore, taking into account the length 
scale roc − ric and the velocity scale (roc − ric)/τν (see 
Appendix C), we have

and

In the method of Matsushima (2015),

(0)	 At the CMB (r = roc) , geomagnetic secular varia-
tions are caused only by magnetic diffusion due to 
the no-slip boundary condition; 

where η is the magnetic diffusivity.
(1)	 Inside the viscous boundary layer 

(r = rb1 = roc − ξ1) , the viscous force plays an 
important role in force balance as 

where � is the rotation rate of the mantle, ρ is the 
density of the core fluid, J  is the electric current 
density, and ν is the kinematic viscosity. The mag-
netic diffusion, motional induction, and advection 
are assumed to contribute to temporal variations of 
the magnetic field; 

(26)

Vφ(r, θ ,φ, t) =
L

∑

l=1

l
∑

m=0

[

m

{

− 1

r

∂Umc

l

∂r
sinmφ + 1

r

∂Ums

l

∂r
cosmφ

}

P
m

l

sin θ

−
{

W
mc

l

r
cosmφ +

W
ms

l

r
sinmφ

}

dP
m

l

dθ

]

,

(27)

1

ro − ξ∗
2

∂Um

l

∂r
≈ 1

ro − ξ∗
2

U
m

l
(ro)−U

m

l

(

ro − ξ∗
2

)

ξ∗
2

= − 1

ro − ξ∗
2

U
m

l

(

ro − ξ∗
2

)

ξ∗
2

,

(28)

Um
l

(

ro − ξ∗2
)

= − ro − ξ∗2
roc − ric

ξ∗2
roc − ric

Ūm
l (roc − ξ2)

(roc − ric)/τν
,

(29)Wm
l

(

ro − ξ∗2
)

= ro − ξ∗2
roc − ric

W̄m
l (roc − ξ2)

(roc − ric)/τν
.

(30)
∂Br

∂t
= η

r
∇2(rBr),

(31)
r̂ · ∇ ×

(

−2�× V + ρ−1J × B + ν∇2V
)

= 0,
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Fig. 4  a The schematic view of the viscous boundary layer at the core–mantle boundary (after Matsushima 2015), b The RMS misfit for velocity 
at rb2 = 3428.5 km (Eq. 42), where the gray horizontal dashed line denotes the assimilation window from 2004.50 to 2014.25, and c comparison 
between the real core surface flows at rb2 from the MCM3 model and the recovered velocity field for Case A1 (see Table 1 for details). Arrows denote 
the horizontal flow velocity field, while color contours show upwellings and downwellings given by horizontal divergence of the velocity field. The 
poloidal and toroidal scalar potentials of velocity are compared at rb2 in our data assimilation
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where core fluid is assumed to be incompressible, 
∇ · V = 0.

(2)	 Below the boundary layer (r = rb2 = roc − ξ2) , core 
flow is assumed to be tangentially magnetostrophic 
(Matsushima 2020) as 

Temporal variation of the magnetic field is assumed to 
be caused by the motional induction and advection, and 
the magnetic diffusion is neglected, as in the frozen-flux 
approximation (e.g., Holme 2015) as

The radial component of the electric current density, 
Jr , is likely to be much smaller than the horizontal com-
ponent, Jh , near the core surface due to the electrically 
insulating mantle. Following Shimizu (2006), we assume 
that the electric field does not contribute to the electric 
current density, and we have

where σ is the core electrical conductivity. Hence, the 
tangentially magnetostrophic constraint is given as

The ratio of the Lorentz to the Coriolis forces is the 
Elsasser number given by

We can have a local value of Λ ≈ 0.62 , using actual 
physical parameters for the outer core, σ = 1× 106S m−1 , 
Ω = 7.29× 10−5rad s−1 , ρ = 1.1× 104kg m−3 , and 
Br = 1mT . In the numerical MHD dynamo model, we 
obtain Λ∗ = 1.778 from the initial ensemble members for 
our data assimilation (see “Numerical experiments” sec-
tion for details of the ensemble), which is approximately 
three times larger than Λ for the actual outer core. Such an 
Elsasser number larger than 1 means relative importance of 
the Lorentz force in our numerical geodynamo. Hence, we 
consider that the tangentially magnetostrophic constraint 
for core surface flow is appropriate. The Elsasser number 
Λ∗ = 1.778 leads to Br ∼ 0.1 mT in our numerical geody-
namo model, where we adopt σ = 1.277× 105S m−1 and 
Ω = 4.05× 10−8rad s−1 derived from τν = 13049 years 
(see Appendix C). This shows that the magnetic field in our 

(32)

∂Br

∂t
= η

r
∇2(rBr)− (V · ∇)Br + (B · ∇)Vr ,

(33)r̂ · ∇ ×
(

−2�× V + ρ−1J × B
)

= 0.

(34)
∂Br

∂t
= −(V · ∇)Br + (B · ∇)Vr .

(35)Jh = σ(V × B)h ≈ σBrV h × r̂,

(36)∇h ·
(

2Ω cos θV̄h + ρ−1σB2
r V̄h × r̂

)

= 0.

(37)Λ = σB2
r

2ρΩ|cos θ | .

numerical geodynamo model is rather weak compared to 
that of the actual Earth, possibly due to the small Ω . This 
is the reason why we use a relative magnetic field dSml (t) 
defined in (21). To overcome this problem, we should per-
form more realistic numerical simulation of geodynamo 
for a much smaller Ekman number corresponding to much 
larger Ω , although this remains a problem to be solved in 
the future.

We compare the poloidal and toroidal scalar potentials, 
Um
l  and Wm

l  , for the core flow field with those for the 
numerical flow field, up to l = 14 (the same as the trun-
cation degree of the MCM3 model, and also practically 
used up to degree 13 in the assimilation by controlling 
the weight). The core flow data, Um

l  and Wm
l  , are con-

structed from the main field and SV at 0.25-year inter-
vals in the MCM3 model. To make the dimensionless 
numerical velocity output comparable with the core flow 
data, we scale the simulated velocity using the relation of 
τSV/τ

∗
SV = 13, 049years and the kinematic viscosity, which 

is derived from Ekman number and magnetic Prandtl 
number adopted in the numerical dynamo. See “Appen-
dix C” for more details of scaling of the dimensionless 
velocity field. The left column of Fig. 4c shows examples 
of core flows at rb2 = 3428.5km , which is ξ2 = 56.5km 
below the Earth’s core radius of roc = 3485.0km , corre-
sponding to a numerical grid point in the radial direction, 
r∗89 , for the epochs of 2007.0, 2010.0 and 2013.0 calculated 
from the MCM3 model.

Implementation of assimilation
We implement the data assimilation for the following 
data vectors:

where dS denotes the magnetic data vector composed of 
the scaled poloidal component specified in Eq. (21), while 
dU and dW  represent the velocity data vectors. Sub-
scripts U and W  denote the poloidal and toroidal scalars 
of the velocity field, respectively. In this study, dU and dW  
consist of Um

l  and Wm
l  at rb2 = 3428.5 km, respectively. 

We consider the observation error covariance matrix, Rk 
in Eqs. (2) and (12), as having a simple time-independent 
form:

where RS , RU , and RW  are the diagonal covariance matri-
ces with each degree dependence. Weights for data sets 
are controlled by the two scalar coefficients of αS and 

(38)yk =





dS(tk)
dU (tk)
dW (tk)



,

(39)Rk = R =





α2
SRS 0 0

0 α2
UWRU 0

0 0 α2
UWRW



,
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αUW  . We simply adopt a time-independent form of 
Rk = R , since the MCM3 model is a quality-controlled 
smooth model. We prepare RS by the expression 
{RS}l = CSlm

[

σ 2
Gl=1(l + 1)−1

]

 , where {RS}l is the diago-
nal element of RS for degree l , (l + 1)−1 is the degree 
dependence of the variance of Gauss coefficients based 
on the theory by Lowes (1975), σ 2

Gl=1 is the averaged 
actual variance of Gauss coefficient at degree l = 1 from 
the MCM3 model, and CS

m
l [·] is a function for conversion 

of the covariance of Gauss coefficients to that of the 
poloidal scalar potentials at the CMB for degree l and 
order m . Similarly, we prescribe RU and RW  by the 
expressions {RU }l = CU

m
l

[

σ 2
U l=1(2l + 1)/

(

l2 + l
)]

 and 
{RW }l = CW

m
l

[

σ 2
W l=1(2l + 1)/

(

l2 + l
)]

 , respectively, 
where {RU }l and {RW }l are expressions similar to {RS}l , 
(2l + 1)/

(

l2 + l
)

 is the degree dependence of the variance 
of Schmidt quasi-normalized poloidal and toroidal scalar 
potentials of the core surface flow based on discussion in 
Holme (2015). σ 2

U l=1 and σ 2
W l=1 are the averaged actual 

variances of the Schmidt quasi-normalized poloidal and 
toroidal scalar potentials of the core surface flow at 
degree l = 1 , respectively. They are calculated from the 
observation error of the Gauss coefficients in the MCM3 
model. CU

m
l [·] and CW

m
l [·] are functions converting the 

covariances of the poloidal and toroidal scalar potentials 
for the velocity field at the CMB to covariances of those 
dimensionless at the radial grid r∗89 in our numerical 
dynamo model with the velocity scaling by 
(roc − ric)/τν = 0.1736km year−1 (see Appendix C), 
respectively. CS

m
l [·] , CU

m
l [·] , and CW

m
l [·] also include the 

conversion from the Schmidt quasi-normalization to the 
normalization adopted in our MHD dynamo model 
(Takahashi 2012, 2014), since we prepare yk (Eq.  38) 
directly comparable to the outputs of our numerical geo-
dynamo model.

Numerical experiments
We examine the data assimilation scheme using geo-
magnetic data from 2004.50 to 2014.25 from the MCM3 
model, covering up to 2019.25, as observations, and eval-
uate the resulting forecasts against data from 2014.25 
to 2019.50 using the latest version of the MCM model, 
MCM6, covering up to 2019.50. The difference between 
the MCM3 and MCM6 models is as small as ~ 5 nT at the 
Earth’s surface on average. This hindcast can be a rigor-
ous test of our forecast scheme since a geomagnetic jerk 
occurred in 2014 (Torta et al. 2015). We set the ensem-
ble size as 960 and prepare ensemble members from a 
single free dynamo run for a long time corresponding to 
320,000  years, where the ensemble members are taken 
randomly to be longer than one turn over time of core 
convection apart from each other. We found that iterative 

renewals of the ensemble members after obtaining x̄0,m+1 
in Eq. (9) is remarkably effective, compared with the orig-
inal 4DEnVar (Liu et al. 2008). This approach enables us 
to deal with weak nonlinearity of the physical process in 
concern by shrinking the matrix 

⌣

X0,m through iterations, 
which meets the requirement (II) for the linear approxi-
mation we discussed after Eq.  (6). We refer to Nakano 
(2020) for the efficiency of the iterative approach in 
4DEnVar. In this section, we focus on the results after five 
iterations (‘five’ was found enough to minimize the cost 
function of Eq. (12) from our experiments). We sequen-
tially reduce αS and αUW  (Eq. 39) through iterations, and 
the values in the final iteration are listed in Table  1. By 
the numerical experiments, we investigate dependences 
of our data assimilation and forecast performance on sev-
eral parameters: length of the assimilation window, data 
weights ( αS , αUW  ), and types of prediction approaches 
for the following 5 years.

In this section, we investigate three types of forecasts:
	(i)	 Ensemble-weighted sum, shorten to “Ens. wei. 

sum” hereafter, is a forecast based on Eq. (13). After 
the five iterations of our data assimilation proce-
dure, the final MHD ensemble members gk

(

x
(n)
0,M

)

 
for n = 1, . . . ,N  and gk

(

x̄0,M
)

 for k = 1, . . . ,K  are 
available with the optimized weight ŵM . We fur-
ther run MHD dynamo simulations to obtain 
gk

(

x
(n)
0,M

)

 and gk
(

x̄0,M
)

 for k > K  and calculate the 
field in the forecast period by Eq. (13).

	(ii)	 The MHD forecast is the forecast by an MHD 
dynamo simulation starting from a state vector 
given by data assimilation at time tk ′ (Eq. 16). The 
MHD forecast differs from the Ens. wei. sum in the 
sense that it involves only a single MHD dynamo 
simulation after the data assimilation procedure. 
Since tk ′ is arbitrary within the assimilation win-
dow, we test k ′ = 0 (at the beginning of the win-
dow) and k ′ = K  (at the end of the window). If the 
adopted linear approximation (Eqs. 3 or 17) holds 
precisely, the MHD forecast is equivalent to the 
Ens. wei. sum by Eq. (13).

	(iii)	 The KD forecast is the forecast by a KD simulation 
starting from a state vector given by assimilation 
at time tk ′ (Eq.  16), similar to the MHD forecast. 
The only difference is that the KD forecast fixes the 
flow field in the outer core through the simulation. 
As for the KD forecast, we test only the case with 
k ′ = K .

We test the three types of forecasts to choose the best 
way to generate an SV candidate model for IGRF-13SV. 
For comparison of our results with IGRF-12, we assume 
the release time of our hindcast to be 2014.75, taking into 
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consideration that one can use magnetic data until roughly 
0.50 year before the release epoch for generation of IGRF 
candidate models.

To assess results of our data assimilation and forecasts, 
we use the square root of the data misfit dP (e.g., Whaler 
and Beggan 2015) defined by

where the subscripts “model” and “data” mean that the 
Gauss coefficients come from our data assimilation-fore-
cast procedure and from the observation (the MCM6 
model in this study), respectively. To obtain gml model

 and 
hml model

 in the unit of nT, we use S01ref in Eq. (21). At the 
beginning of the data assimilation, S01ref is set for both the 
observation and the numerical geodynamo, here named 
S01ref_data and S01ref_model . To multiply Sml  from the numeri-
cal geodynamo by the ratio of S01ref_data/S

0
1ref_model gen-

erates dimensional numerical magnetic fields available 
in Eq. (40). To assess the performance of SV forecast, we 
further define

(40)

dP(t) =
LMF
∑

l=1

l
∑

m=0

(l + 1)

[

(

gml model
(t)− gml data

(t)
)2

+
(

hml model
(t)− hml data

(t)
)2
]

,

where �gml release
= gml model

(trelease)− gml data
(trelease) and 

a similar equation for �hml release
 , and trelease denotes the 

release time of the forecast. dPwo(t) measures dP with-
out the main field offset at the release time and purely 
evaluate the accuracy of SV from the release time. Table 1 
summarizes all the assimilation and forecast settings with 
the results of 

√
dP and 

√
dPwo 4.5 years after the release 

time.

Bias and trend terms
We first explain the effect of the bias and trend terms in 
Eqs.  (10)–(13) on our data assimilation. We introduced 
those trend and bias terms, only in the final iteration and 
only for the magnetic field variations to reduce the data 
misfits. We found that the bias and trend terms represent 
model errors of the dynamo simulation well. Figure  5 
shows three examples of the MHD forecasts with the 
initial condition at k ′ = 0 (Eq. 16): Case O1 for an MHD 
dynamo forecast without bias and trend terms, Case O2 

(41)

dPwo(t) =
LMF
∑

l=1

l
∑

m=0

(l + 1)

[

(

gml model
(t)− gml data

(t)−�gml release

)2

+
(

hml model
(t)− hml data

(t)−�hml release

)2
]

,

Table 1  Summary of the numerical experiments

In calculations of 
√
dP (Eq. 40) and 

√
dPwo  (Eq. 41), the MCM6 model, which covers up to 2019.50, is used as gml data

 and hml data
 . Release times for all cases are assumed 

to be 2014.75, except 2015.00 for IGRF-12. In the “Forecast type” column, k′ = 0 and k′ = K  mean the MHD dynamo or KD simulations running from the optimized 
state vector at 2004.25 and 2014.25, respectively. See text for details of the three forecast types. In the αS and αUW columns, we specify those for the final 5th step in 
Eq. 39, where α′ = 14 and α′′ = 7

Italic—Case A4 was found to be the best setting in our numerical experiments

Case code Window length αS αUW

[×30]
T (trend), B (bias) Forecast type

√
dP 4.5 years 

after release [nT]

√
dPwo 4.5 years 

after release 
[nT]

(O1) 10 years α′ 2 no T, B MHD ( k′ = 0) 228.5 168.2

(O2) 10 years α′ 2 only B MHD ( k′ = 0) 212.9 164.0

(A1) 10 years α′ 2 T and B Ens. wei. sum 153.8 129.9

(A2) 10 years α′ 2 T and B MHD ( k′ = 0) 168.2 136.2

(A3) 10 years α′ 2 T and B MHD ( k′ = 0) 155.7 131.5

(A4) 10 years 0.1α′ 2 T and B Ens. wei. sum 100.9 95.1

(A5) 10 years 0.1 α′ 2 T and B MHD ( k′ = 0) 107.8 102.5

(A6) 10 years 0.1 α′ 2 T and B KD ( k′ = 0) 106.3 99.3

(B1) 5 years α′′ 2 T and B Ens. wei. sum 146.8 137.3

(B2) 5 years α′′ 2 T and B MHD ( k′ = 0) 147.6 136.4

(B3) 5 years α′′ 2 T and B MHD ( k′ = 0) 145.7 136.2

(B4) 5 years 0.1α′′ 2 T and B Ens. wei. sum 115.0 111.4

(B5) 5 years 0.1 α′′ 2 T and B MHD ( k′ = 0) 118.7 114.5

(B6) 5 years 0.1 α′′ 2 T and B KD ( k′ = 0) 137.6 134.1

(C1) IGRF-12 96.9 94.7

(C2) Extrapolation using SV of MCM at 2014.25 72.4 73.4

(C3) No SV from 2014.25 442.7 398.9
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for that containing the effect of the bias term, −b , and 
Case A2 for that containing the effect of the combination 
of the bias and trend terms, −b − ak , when minimizing 
the cost function V (x0) in the final iteration. One can 
see that the data misfits became smaller successively by 
introducing the bias and trend terms.

We here briefly discuss the accuracy of the linear 
approximation Eq. 3 from the results in Fig. 5. We found 
from all of our experiments that “Ens. wei. sum” (Eq. 13) 
results in symmetric √dP within the assimilation win-
dow with respect to the central time of the assimilation 
window (see Case A1 in Fig. 5). This is likely because we 
adopt the time-independent data covariance Rk (Eq. 39) 
through the window. On the other hand, the MHD fore-
casts with k ′ = 0 (Eq.  16) often show asymmetric 

√
dP 

lines in the assimilation window (see Cases O1 and O2 
in Fig. 5). The departures of the MHD forecast lines from 
the symmetry, especially at the end of the assimilation 
window, imply break-down of the linear approximation. 
This break-down probably arises from large deviations, 
x
(n)
0,m − x̄0,m (n = 1, . . . ,N ) , which breaks the require-

ment (II) specified after Eq. (6), because the requirement 
(I) is satisfied by the 10-year assimilation window, much 
shorter than the error growth e-folding time τe of our 
numerical dynamo (~ 130 years). In Fig. 5, however, the 
MHD forecast line approaches symmetry by introducing 
the bias and trend terms. The MHD forecast with bias 
and trend terms (Case A2) fits the Ens. wei. sum (Case 

A1) from 2004.50 to 2012.00 very well, which indicates 
that the linear approximation Eq.  3 holds over 75% of 
the assimilation window. This implies that the introduc-
tion of the bias and trend terms is effective not only for 
reducing the data misfit 

√
dP but also for shrinking 

⌣

X0,m 
(Eq.  4) and keeping the linear approximation accurate. 
From the small departure of Case A2 from Case A1 in 
Fig.  5, we conclude that both requirements for the lin-
ear approximation (I) and (II) are satisfied by the 10-year 
window and by the introduction of the bias and trend 
terms in our iterative 4DEnVar scheme, and that the lin-
ear approximation Eq. 3 is acceptable in our assimilation 
scheme. Hereafter, we only discuss results including both 
bias and trend terms in the final iteration.

Recovery of core surface flow by data assimilation
We next check how our data assimilation recovers the 
core surface flow. To evaluate this, we use a data mis-
fit for the velocity field based on Holme (2015) by the 
expression,

where the Um
l  and Wm

l  are the Schmidt quasi-normalized 
poloidal and toroidal functions for the velocity field defined 
by Eq. (22). The subscripts “model” and “data” mean func-
tions from the results of data assimilation and the observa-
tion, respectively. Note that functions with the subscript 
“model” are generated from outputs of the numerical geo-
dynamo at the grid r89 , while those with “data” are prepared 
by the estimation of core surface flow at rb2 = 3428.5 km 
(see “Data 2: core surface flow” section).

Figure  4b shows the data misfit for the velocity field at 
r = rb2 from the assimilation result of Case A. The top panel 
shows the total misfit, 

√
dPUW  , while the each line in the bot-

tom panel indicates the data misfit for each degree, 
√

dPUW ,l . 
The total misfit of the core surface flow, 

√
dPUW  , is relatively 

large compared to the misfit of the magnetic field, 
√
dP 

(Eq. 40). This is caused by the two facts that both the bias and 
trend terms are not introduced in the final iteration for the 
velocity data, and that the factor for the velocity covariance 
matrices, αUW , is larger than that for the magnetic data, αS , in 
construction of R in Eq. 39 (see Table 1). Because our primary 
purpose is to predict the magnetic field over 5 years after the 
assimilation window, the role of the velocity data is comple-
ment to the magnetic data in our data assimilation.

(42)

dPUW (t) =
∫

r=rb2

|VH |2dS =
LMF
∑

l=1

dPUW ,l(t),

dPUW ,l(t) =
l(l + 1)

2l + 1

l
∑

m=0

[

(

U
m

l model
(t)− U

m

l data
(t)

)2

+
(

W
m

l model
(t)−W

m

l data
(t)

)2
]

,

Fig. 5  Effects of the bias and trend terms on 
√
dP , defined by 

Eq. (40). The black dotted and dashed lines and the cyan solid 
line indicate the MHD forecasts with k′ = 0 (Eq. 16), i.e., the MHD 
simulations given the initial condition at 2004.25 obtained by the 
data assimilation. The dotted black line is with neither bias nor trend, 
while the dashed line includes only bias. The cyan solid line takes 
both bias and trend into consideration in minimizing Eq. (10) at the 
final iteration. The blue dashed line shows the ensemble-weighted 
sum with bias and trend terms, corresponding to Eq. (13). See Table 1 
for details of each calculation
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Figure  4c shows the global maps of the velocity field 
for the observation (the MCM3 model) and the opti-
mized one by the data assimilation (Case A1) within the 
assimilation window. The spatial patterns of the hori-
zontal divergence and the arrows for horizontal velocity 
are consistent to some degree. However, the intensities 
of the horizontal velocity at r = rb2 and their horizon-
tal divergence for Case A1 are remarkably smaller than 
those for the MCM3 model. This may be associated with 
the large Elsasser number of our numerical geodynamo 
( Λ∗ ≈ 1.778 ). It seems difficult to optimize intensi-
ties of the magnetic and velocity field in the outer core 
simultaneously with our present dynamo parameters far 
from those of the actual Earth. Alternatively, this may be 
ascribed to the effect of magnetic diffusion. The horizon-
tal velocity at r = rb2 is derived from the MCM3 model, 
on the assumption that the contribution of magnetic 
diffusion to time variations in the magnetic field can be 
neglected. In the numerical geodynamo model, however, 
the induction equation containing the magnetic diffusion 
term as well as the motional induction and advection 
terms is solved. Therefore, the velocity field at r = rb2 
for Case A is probably smaller than that for the MCM3 
model by the contribution of the magnetic diffusion. 
The discrepancy of the intensity of the velocity between 
the model and data remains the problem that should be 
solved in the future.

Length of assimilation window
We tried several lengths of the assimilation window 
with the maximum length of 10  years, and investigated 
dependence of the MHD forecasts on t ′k , when the initial 
condition for the MHD dynamo simulation is given by the 
data assimilation (Eq. 16). Figure 6a and 6b shows com-
parison of the assimilation and forecast results between 
10- and 5-year assimilation windows. As for the 10-year 
assimilation window (Fig. 6a), when the initial condition 
is given at the beginning of the assimilation window, i.e., 
k ′ = 0 (at 2004.25), the MHD forecast (Case A2; the cyan 
line) fits the Ens. wei. sum via Eq. 13 (Case A1; the blue 
dashed line) only up to 2012.0 and slightly deviates from 
it during the prediction period after the assumed release 
epoch, 2014.75 (the red downward arrow). When the ini-
tial condition is given at the end of the assimilation win-
dow, i.e., k ′ = K   (at 2014.25), the MHD forecast (Case 
A3; the green line) fits the Ens. wei. sum well even after 
the release epoch of 2014.75. As for the 5-year window, 
both the MHD forecasts starting with initial conditions 
at k ′ = 0 and k ′ = K  generate almost the same results as 
the Ens. wei. sum even from 2014.50 to 2019.50.

These results imply that the MHD forecast with the 
initial condition at the end of the assimilation window 
( k ′ = K  in Eq.  16) fit the corresponding Ens. wei. sum 

(Eq.  13) well over the forecast period regardless of the 
length of assimilation window. This comes from the fact 
that, when k ′ = K  , gk(x0) is linearly approximated with 
respect to the deviation from x̄K ,m (set k ′ = K  in Eq. 17); 
the accuracy of the linear approximation after the assimi-
lation window is independent of the length of the assimi-
lation window. When k ′ = 0 in the MHD forecast, on 
the other hand, the shorter assimilation window results 
in better accuracy of the linear approximation over the 
forecast period. We can conclude that the adoption of 
k ′ = K  in the MHD forecasts enables us to achieve high 
accuracy of the linear approximation (here Eq.  17) over 
the forecast period even when the assimilation window is 
relatively long.

Dependence on weight, αS

In our numerical experiments, we varied only αS by fix-
ing αUW  as listed in Table 1. Figure 6c and 6d shows the 
dependence of 

√
dP on αS in Eq.  (39). The two panels 

show the results for a given αS (the blue dashed lines) 
and for the corresponding 0.1αS (the red dashed lines). 
We found that longer assimilation window is necessary to 
effectively reduce the misfit in the forecast period using 
smaller αS . On the other hand, when the initial condi-
tions were obtained with too small αS , the MHD fore-
cast did not produce reasonable outputs; the forecast 
was degraded when αS was smaller than shown in Fig. 6 
because the problem got unstable.

Note here that the red dashed lines in Fig. 6 (Cases A4 
and B4) correspond to results with the almost smallest αS 
that allows reasonable MHD forecasts for each assimila-
tion window. We decided to adopt 10-year assimilation 
window for estimation of SV candidate model, because 
(1) the linear approximation (Eq.  3 and resulting Eq.  6) 
is valid over most of the assimilation window shown in 
Figs.  5 and 6a, and (2) smaller 

√
dP can be achieved by 

decreasing αS compared with shorter windows.

MHD and KD forecasts
We investigated the three types of forecasts for the fore-
cast period from 2014.50 to 2019.25: the Ens. wei. sum 
by Eq.  (13), the MHD forecast, and the KD forecast. 
As already shown in Figs.  5 and 6, the Ens. wei. sum is 
a good candidate SV, which is theoretically identical to 
the MHD forecast with the optimized initial condition 
under the linear approximation assumption (Eqs.  3 or 
17). Figure 6e and 6f shows comparison of the three types 
of forecasts for the 10- and 5-year windows, respectively. 
The MHD and KD forecasts were conducted with the 
same initial condition given at the end of the assimila-
tion window, 2014.25 ( k ′ = K  in Eq. 16). For the 10-year 
window, the MHD and KD forecasts are almost the same 
and slightly worse than the Ens. wei. sum. For the 5-year 
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window, the MHD forecast is almost the same as the Ens. 
wei. sum, while the KD forecast is remarkably worse than 
the other two. As far as the 10-year and 5-year assimila-
tion windows are concerned, the following three seem to 
hold: (1) the Ens. wei. sum is always one of the best fore-
casts among the three, (2) the MHD forecast is the same 
as or slightly worse than the Ens. wei. sum, and (3) the 
KD forecast is often similar to MHD forecasts, although 
it is sometimes remarkably worse than the other two. We 
speculate that the MHD forecast is always slightly worse 

than the Ens. wei. sum because of a slight departure from 
the linear approximation over the forecast period.

We further examined the difference between the 
MHD and KD forecasts. Figure  7a shows the compari-
son of secular acceleration (SA) of the radial component 
of the geomagnetic field at the Earth’s surface between 
the MHD and KD forecasts for both 10-year and 5-year 
assimilation windows. SA was calculated by the equation, 
SA(t) = (F(t + 0.25)+ F(t − 0.25)− 2 · F(t))/(0.25)2   , 
where F(t) represents the geomagnetic main field and t is 

Fig. 6  Time evolutions of 
√
dP (Eq. 40) for the numerical experiments (see Table 1 for the summary). Left and right columns show results of 10-year 

and 5-year assimilation windows, respectively. All ordinates are 
√
dP , i.e., the metric for deviation from the MCM6 model. The 10-year window spans 

from 2004.50 to 2014.25, while the 5-year one from 2009.50 to 2014.25. α′(= 14) in the left and α′′(= 7) in the right indicate αS (Eq. 39) adopted 
in the final 5th iteration. a, b The weighted sum of ensemble members by Eq. (13) (the Ens. wei. sum) and MHD dynamo simulation starting from 
optimized initial conditions at the beginning ( k′ = 0 ) or the end ( k′ = 0 ) of the assimilation window (see Eqs. 14–16) (the MHD forecasts). c, d The 
dependence on the weight coefficient, αS (Eq. 39), where the red dashed lines show the results with 0.1 α′ and 0.1 α′′ . e, f The ensemble-weighted 
sum, MHD dynamo, and KD simulations starting at the end of assimilation window (the MHD and KD forecasts with k′ = K  ) for 0.1 α′ and 0.1 α′′ . 
In all the panels, the black solid lines indicate 

√
dP calculated between the MCM6 model and IGRF-12. The release time for our forecast, assumed 

0.5 year after the end of the assimilation window, is 2014.75, while 2015.00 for IGRF-12
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time in year. After the calculation of SA, we applied 0.75-
year (three-point) running average only to SA from the 
MCM6 model in order to reduce the noise. The results 
in Fig. 7a are the same as those in Fig. 6e, f. It is notice-
able in Fig. 7a that SAs from the MHD and KD forecasts 
are totally different from each other; SAs from the MHD 
forecasts (Cases A5 and B5) generate synthetic jerks, 
i.e., a flip of spatial patterns of SA in sign from 2015.0 to 
2017.0, and the phenomenon is more remarkable for the 
5-year window. As for the KD forecasts (Cases A6 and 

B6), the spatial patterns of SAs do not change signifi-
cantly from 2015.0 to 2017.0.

We show in Fig.  7b, c the comparisons of SV and SA 
for two example Gauss coefficients, h23 and h33 , which cor-
respond to Fig. 6e, f, respectively, since we found that the 
large 

√
dP over the forecast period by the KD forecast 

with 5-year window (Case B6 in Fig.  6f ) arises mainly 
from the misfit in degree l = 3 in comparison to the 
MHD forecast (Case B5). Top two panels in Fig. 7c, SV of 
h23 and h33 for the 5-year window, illustrate the reason for 

Fig. 7  a Comparison of SA, the second time derivative of the geomagnetic field at the Earth’s surface, between the MCM6 model, and the MHD 
and KD forecasts using 10- and 5-year assimilation windows. The initial conditions for the MHD and KD forecasts are given at 2014.25 for all forecasts. 
b, c Comparison of the first time derivative (SV) and second time derivative (SA) of two Gauss coefficients, h32 and h33 , among the MCM6 model 
(the black line), the weighted sum of the final ensemble members by Eq. (13) (the Ens. wei. sum; the red line), the MHD forecast (the blue line), and 
the KD forecast (the green line) for 5- and 10-year assimilation windows. The assimilation windows are indicated by gray arrows. Panel c shows that 
SV of h32 and h33 have large discrepancies between the KD forecasts (the green lines) and the other three lines (the blue, red, and black lines) with 
5-year assimilation window. The monotonic decrease and growth of SV in the KD forecasts are caused by steady negative and positive SA after the 
assimilation window, respectively, while oscillatory variation of SA in the MHD forecasts and the Ens. wei. sum suppress the departure of SA lines 
from that of the MCM6 model
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the worse KD forecast in Fig. 6f; the KD forecast (Case 
B6) shows rapid monotonic changes in the SV compo-
nents after the initial conditions are imposed at the end 
of assimilation window. These are attributed to the steady 
positive or negative SA through the forecast period as 
shown in the bottom panels in Fig.  7c, which is associ-
ated with the fixed flow velocity in the KD forecast. In 
contrast, since the dynamic processes that allow oscil-
lation of SA in time are present in the MHD forecasts, 
oscillatory SA variation of the MHD forecast results in 
moderate variation of SV and small departures from the 
observation (see Case B5 in Fig.  7c). The rapid mono-
tonic change in SV in the KD forecast does not occur 
in the 10-year assimilation window case (see Case A6 
in Fig.  7b). We speculate that shorter assimilation win-
dow is likely to cause large SA and SV intensities in the 
initial conditions at k ′ = K  (Eq. 16) as shown in Fig. 7a, 
whereas it is easy to reduce 

√
dP over the assimilation 

window. When the short assimilation window of 5 years 
is adopted, the MHD forecast that allows dynamic pro-
cess seems more stable rather than the KD forecast in the 
use of our assimilation scheme.

Performance of 5‑year forecast in comparison to IGRF‑12
At the end of this section, we compare the performance 
of our data assimilation-forecast scheme with that of 
IGRF-12 in terms of 

√
dP (Eq.  40) and 

√
dPwo (Eq.  41) 

from the release time. Figure  8 shows 
√
dP and 

√
dPwo 

from our forecasts and IGRF-12 with respect to the time 
from the release time, where we assume that the release 
time is 2014.75 for our numerical experiments and 
2015.00 for IGRF-12, respectively. Table  1 summarizes 
the values of 

√
dP and 

√
dPwo 4.50 years after the release 

time. In Fig.  8, we added two new results compared to 
Fig. 6, “extrapolation of SV of MCM6” (Case C2) and “no 
SV” (Case C3). In the forecast by “extrapolation of SV of 
MCM6”, we took instantaneous SV at 2014.25 from the 
MCM6 model and extrapolated it to the forecast period. 
The “no SV” forecast in turn provides the result literally 
with “no SV” after the assimilation window. The other 
four lines (Case C1, A4, A5, and A6) are the forecast by 
IGRF-12 and our best forecasts with 10-year assimilation 
window in Fig. 6e.

In both panels of Fig. 8, the orange lines is the worst 
while the blue line is the best. For the orange line, 
one can easily understand that any forecast schemes 
are much better than the result with “no SV”. As for 
the blue line, we should note that the SV at 2014.25 
from the MCM6 model is very accurate compared to, 
for example, IGRF-12SV. This is because the MCM6 
model was constructed by using the geomagnetic data 
up to 2019.50 and applying backward smoothing to 
determine SV at 2014.25 (Ropp et  al. 2020), especially 

including the information on the following rapid 
change of SV due to the geomagnetic jerk in 2014. 
Strictly speaking, our numerical experiments also used 
the accurate SV at 2014.25 from the MCM3 model in 
calculation of the core surface flow. However, the effect 
of the accuracy of SV data at 2014.25, i.e., at the end 
of the assimilation window, is very small because of the 
homogeneous data covariance matrix R through the 
assimilation window (Eq.  39) and of the larger weight 
to the geomagnetic main field (compare αS with αUW  in 
Table 1).

Our three forecasts in Fig.  8, Cases A4, A5, and A6, 
result in slightly worse forecast performance in terms of √
dP than that of IGRF-12 and almost the same in terms 

Fig. 8  Time evolutions of a 
√
dP (Eq. 40) and b 

√
dPwo (Eq. 41) from 

the release times, 2014.75 for our numerical experiments and 2015.00 
for IGRF-12. Four results in a, Cases C1, A4, A5, and A6, are the same 
as the results in Fig. 6e. Newly added blue and orange lines indicate 
the extrapolation of SV at 2014.25 of the MCM6 model, and the case 
without SV from 2014.25, respectively. See Table 1 for the values of √
dP and 

√
dPwo 4.50 years after the release time
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of 
√
dPwo . Since the pure performance of SV forecast 

for the 5 years after the release time can be measured by √
dPwo , Fig.  8b illustrates that the performance of our 

data assimilation-forecast scheme is comparable with 
that of IGRF-12SV. It is also noticeable that our numeri-
cal experiments used only data up to 2014.25, almost at 
the center of the geomagnetic jerk, around 2014.0 (Torta 
et  al. 2015), while the candidate models for IGRF-12SV 
used data up to around 2014.50, or even up to around 
2014.75 (e.g., Lesur et  al. 2015), including data slightly 
after the jerk center. This fact implies that our data-assim-
ilation forecast strategy has the possibility of retrieving 
part of information about the coming jerks from the data 
just before the jerks and weakening their effect on the 
5-year SV forecast. Figure 8b also reveals that the IGRF-
12 is clearly better than our SV forecast during the initial 
2  years in the forecast period. We, therefore, speculate 
that our scheme may not reproduce the future magnetic 
jerks accurately, but can possibly provide a SV trend 
including jerks over the 5-year forecast period, compared 
to conventional SV candidate models for IGRF.

Since the Ens. wei. sum by Eq.  (13) always provides 
the best forecast among the three forecasts through our 
numerical experiments, we decided to adopt it for esti-
mation of our candidate SV model for IGRF-13, which 
is theoretically, and in most cases practically, equivalent 
to the forecast by MHD dynamo simulation starting at 
the end of assimilation window (the MHD forecast with 
k ′ = K).

Summary of numerical experiments
We found in the application of our data assimilation and 
to the geomagnetic data from 2004.50 to 2014.25 that:

•	 A longer assimilation window works better than a 
shorter window, up to the assimilation window of 
10 years, although we could not try assimilation win-
dows longer than 10 years in this study.

•	 MHD forecast is not systematically superior to KD 
forecast. However, KD forecast is sometimes much 
worse than MHD forecast. Forecast by the Ens. wei. 
sum by Eq.  (13) is always one of the best forecasts 
among the three.

•	 KD forecasts sometimes give worse results due to the 
monotonic increase/decrease in the intensity of geo-
magnetic field arising from the almost fixed pattern 
of SA since the release time, especially with the short 
assimilation window in the use of our data assimila-
tion scheme. On the other hand, the MHD forecast 
seems stable, possibly because it can suppress large 
SVs by dynamic processes allowed.

•	 The performance of our data assimilation-forecast 
scheme turns out to be comparable with that of 
IGRF-12 for the purpose of 5-year SV forecast, even 
though the tested data assimilation window ends 
around the center of the geomagnetic jerk in 2014.0.

The SV candidate model for IGRF‑13
We generated a final SV candidate model valid for the 
period from 2020.0 to 2025.0 based on the numerical 
experiments described in the previous section. We con-
ducted the data assimilation with the 10-year assimila-
tion window from 2009.50 to 2019.50 using the provided 
MCM6 model. The ensemble size was set to 960 in the 
same manner as the numerical experiments. We adopted 
values of αS and αUW  for five iterations as listed in 
Table 2. In the 5th iteration, the adopted weights for Sml  
and (Um

l  , Wm
l  ), i.e., α−1

S  and α−1
UW  , are approximately 4:1 

respecting each observation error.
Before the final iteration, we prepared the final ensem-

ble simulation members by MHD dynamo simulations 
for both assimilation window and further 5.50 years start-
ing from the end of assimilation window, 2019.50. We 
then forecast the future magnetic field by the weighted 
sum of all the ensemble members, i.e., the Ens. wei. sum 
by Eq.  (13), for each epoch with 0.25 year interval from 
2019.50 to 2025.00, which yielded time-series of Gauss 
coefficients, pml (t) , for each mode from (l,m) = (1, 0) 
through (8, 8). We generated a SV candidate model not 
by an averaged SV from 2020.0 to 2025.0 but by fitting of 
linear lines to our forecasts from 2019.50 to 2025.0. Line-
fitting was applied to each time-series so as to estimate 
our candidate secular variation, aml  , during the 5.50 years:

where the time origin, t0 , was set to the end of our data 
assimilation window, i.e., 2019.50. Figure 9 shows the fit-
ting results for several modes, where we can confirm that 
the estimated SV (the blue lines) fits to the original SV 
forecast by the weighted sum of MHD simulation mem-
bers (the red dashed lines).

(43)pml (t) = aml · (t − t0)+ pml (t0),

Table 2  Weight factors for  observation error covariance 
matrices in generation of the IGRF13-SV candidate model

Iteration# αS (factor for RS)
[×1.4× 104]

αUW

(

factor for RU , RW
)

[×300]

1 1.0 1.0

2 0.2 0.2

3 0.1 0.2

4 0.02 0.2

5 0.001 0.2
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Fig. 9  Comparison of Gauss coefficients between the final SV of our candidate model (the blue lines) and the forecasts by the Ens. wei. sum by 
Eq. (13) (the red dashed lines). The gray shadow areas behind the final SV correspond to the error provided in our SV model. The green solid lines 
behind the red dashed line denote the MCM6 model. The orange lines show time evolution of Gauss coefficients obtained from the MHD dynamo 
simulation with the initial condition at the end of the assimilation window, 2019.25 (the MHD forecast with k′ = K  in Eq. 16)
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Whether or not the line-fit model in Eq.  (43) gives 
a good secular variation estimate over the 5.50  years 
depends on each spherical harmonic mode. For some 
modes, it may be necessary to include higher time 
derivatives such as secular acceleration in order to 
describe the time variation in concern properly. It, 
therefore, is necessary to diagnose the validity of the 
line-fit model by examining the distribution of the 
resulting ensemble members for each mode, which will 
be described in the next section.

Error estimation of the candidate SV model
After carrying out the data assimilation, we estimated 
a 5-year SV candidate model by fitting Eq.  (43) to the 
prediction using the Ens. wei. sum by Eq. (13) over the 
period from 2019.5 to 2025.0. We applied the same SV 
estimation procedure to every ensemble member and 
obtained 960 SV models from the ensemble. We used 
the standard deviation of 960 SV values as the error of 
our SV candidate model. Figure  10 shows two exam-
ples of the distribution of SV values including all the 
ensemble members. In each panel of Fig.  9, the esti-
mated error is displayed by a gray area behind the esti-
mated SV candidate line (the blue line).

Discussion and conclusions
We derived an SV candidate model for IGRF-13 (listed in 
Table  3) using the 4DEnVar data assimilation technique 
and MHD dynamo simulations. This candidate model 
is the first ‘model’ contribution to the IGRF community 
from Japanese research groups. In this paper, we illus-
trated a potential of the 4DEnVar data assimilation in 
the field of short-term forecast of the geomagnetic field, 
through the numerical experiments with the existing 
geomagnetic data and construction of our SV candidate 
model for IGRF-13 SV.

Our numerical experiments using the iterative 4DEn-
Var approach in the geomagnetic field prediction pro-
vided us important information. Introduction of the bias 
and trend terms in Eq.  (10) effectively reduces the data 
misfit in the prediction of the geomagnetic field as shown 
in Fig. 5. We also confirmed that the bias and trend terms 
enhance validity of the linear approximation (Eq.  3) 
over the 10-year assimilation windows. In the numeri-
cal experiments, we tested three types of forecasts, the 
weighted sum of the ensemble members of MHD simula-
tions extended to the forecast period by Eq. (13) (the Ens. 
wei. sum), the forecast by a single MHD dynamo simula-
tion starting from the optimized initial state vector at t ′k 
(Eq. 16) (the MHD forecast), and the forecast by a single 
KD simulation from the optimized initial state vector at 

Fig. 10  Histograms of the final distribution of ensemble members for SV ( ̇g0
1
 and ġ0

2
 ). The black and red dashed lines denote the range of one sigma 

(standard deviation) and the mean of the ensemble, respectively. The red dashed means correspond to components of the final SV candidate 
model



Page 21 of 24Minami et al. Earth, Planets and Space          (2020) 72:136 	

t
′
k (the KD forecast). We found that the Ens. wei. sum is 

always one of the best forecasts among the tested three 
forecast types, and that longer assimilation window (up 
to 10  years) is superior to enhance the performance of 
SV forecast for 5 years after the assimilation window. It 
is also found that the KD forecasts are sometimes much 
worse than the MHD forecasts with short assimilation 
window, probably due to large SA and SV intensities in 
the initial condition and the lack of dynamic process that 
suppresses monotonic growth of the SV amplitude. This 
feature is just a characteristic of our current data assimi-
lation and forecast scheme. If more stable estimation of 
SA at the end of assimilation windows becomes feasible 
in the future, the KD forecast may be the best forecast in 
conjunction with our data assimilation scheme.

We found that the SV forecast performance of our 
scheme is comparable with that of IGRF-12 in terms of √
dPwo (Eq. 41) from the release time (see Fig. 8). How-

ever, there is still plenty of room of further improve-
ment in our iterative 4DEnVar data assimilation. For 
example, we found synthetic rapid SV changes at the 
end of the assimilation window in the Ens. wei. sum 
forecast, e.g., the rapid SV change in h23 around 2014.0 
(red lines) in Fig.  7b and c, and the significant SV 
change in g01  in Fig. 9 before and after the release epoch 
of 2020.0. These are possibly associated with the fact 
that the data misfit close to the edge of the assimilation 
window is likely larger than the center of the assimila-
tion window (see cases of the Ens wei. sum in Fig.  6). 
Because this arises mainly from the time-independent 
data covariance matrix R (Eq.  39), one possible solu-
tion is to adopt relatively large weight, i.e., small αS 
and αUW  , close to the end of the assimilation window. 
Suppression of large SV and SA discrepancies from the 
observations at the end of assimilation window is one 
of the urgent issues that should be solved in the future.

Abbreviations
IGRF: International Geomagnetic Reference Field; MHD: Magnetohydrody-
namic; KD: Kinematic dynamo; SV: Secular variation; SA: Secular acceleration; 
4DEnVar: Four-dimensional ensemble-based variational method; CMB: Core–
mantle boundary.

Acknowledgements
We are grateful to J. Aubert, A. Fournier, and G. Hulot for their helpful com-
ments and discussion on our data assimilation scheme and SV forecast. 
We deeply thank the two reviewers, P. Livermore and A. Fournier, whose 
comments improved the manuscript considerably. Numerical calculation of 
this study was carried out on Supercomputer System for Statistical Science at 
ISM under the ISM Cooperative Research Program (2019-ISMCRP-1030), and 
the computer facilities at the Research Institute for Information Technology, 
Kyushu University.

Table 3  Derived SV candidate model

l m ġm
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Appendix A: Renewal of the ensemble members
After obtaining the optimum initial condition, x̄0,m+1 , by;

a set of initial conditions, 
{

x
(1)
0,m+1 · · · x

(N )
0,m+1

}

 , are neces-
sary to perform MHD dynamo simulations to generate 
the ( m+ 1)th ensemble members. This can be achieved 
in a similar manner to the ensemble transform Kalman 
filter (Bishop et al. 2001);

where

A set of initial conditions for the ( m+ 1)th ensemble 
members are obtained by:

(44)x̄0,m+1 = x̄0,m +
⌣

X0,mŵm,

(45)
⌣

X0,m+1 =
⌣

X0,mTm,

(46)Tm =
(

∑

k=1

[

⌣

Γ
T

k ,mR
−1
k

⌣

Γ k ,m

]

+ σ 2
mI

)− 1
2

.

By this procedure, the ensemble gets shrunk so that the 
linear approximation (Eq. 3) holds better than in the previ-
ous step.

Appendix B: How to obtain w, a,b that minimize 
Ĵm(w,b, a) in Eq. (10)
Equation (9) can be written as

Defining the following:

Ĵm can be regarded as a function of w∗ . The function Ĵm 
is minimized at

Appendix C: Conversion of dimensional core flow 
into non‑dimensional one
Fluid flow near the CMB is derived from the MCM3 
model by using physical parameters correspond-
ing to the actual core. On the other hand, dimension-
less parameters are given in numerical MHD dynamo 
models. Hence, for data assimilation using geodynamo 
model outputs, core surface flows must be determined 
not by using actual physical parameters, but by those 
for numerical dynamos. In this study, we use dimen-
sionless parameters given as follows: the Ekman num-
ber, E = ν/2Ω(roc − ric)

2 = 3× 10−5 , and the magnetic 
Prandtl number, Pm = ν/η = 2 , where ν is the kinematic 
viscosity of the core fluid, Ω is the rotation rate of the 
mantle, roc = 3485km is the radius of the outer core, 
ric = 0.35× roc = 1220 km is the radius of the inner core, 

(47)

(

x
(1)
0,m+1 . . . x

(N )
0,m+1

)

=
(

x̄0,m+1 . . . x̄0,m+1

)

+
√
N − 1X̂0,m+1.

(48)

Ĵm(w, b,a) =
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and η = (µ0σ)
−1 is the magnetic diffusivity with the mag-

netic permeability of vacuum, µ0 = 4π × 10−7H m−1 
and the electrical conductivity of core, σ . Then, the 
typical time scale given as τν = (roc − ric)

2/ν = 13, 049 
years leads to ν = 12.467m2s−1 , which 
in turn gives Ω = 4.050× 10−8s−1 and 
σ = 1.277× 105S m−1 . Fluid flow can be scaled by 
(roc − ric)/τν = 5.504 × 10−6m s−1 = 0.1736km year−1.

The Ekman number used in Matsushima (2015) is  
defined as E′ = ν/Ωr2oc = E · 2(roc − ric)

2/r2oc = 2.534 × 10−5 . 
Thickness of the Ekman boundary layer is, therefore, 
δE = roE

′1/2 = 17.544km . It should be noted here that 
the effect of magnetic field reduces the boundary layer 
thickness. In our numerical dynamo model, grid points 
in the radial direction inside the outer core are given as

where Nr = 99 and k = 0, 1, . . . ,Nr . As shown in Fig. 4a, 
rb1 = roc − ξ1 and rb2 = roc − ξ2 should be defined 
to be ξ1 < δE and ξ2 ≫ δE . In this study, we adopted 
rb1 = 3475.9km and rb2 = 3428.5km corresponding to r∗95 
and r∗89, respectively.
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