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Abstract 

The Nankai Trough in Southwest Japan exhibits a wide spectrum of fault slip, with long-term and short-term slow-
slip events, slow and fast earthquakes, all associated with different segments down the plate interface. Frictional 
and viscous properties vary depending on rock type, temperature, and pressure. However, what controls the down-
dip segmentation of the Nankai subduction zone megathrust and how the different domains of the subduction 
zone interact during the seismic cycle remains unclear. Here, we model a representative cross-section of the Nankai 
subduction zone offshore Shikoku Island where the frictional behavior is dictated by the structure and composition 
of the overriding plate. The intersections of the megathrust with the accretionary prism, arc crust, metamorphic belt, 
and upper mantle down to the asthenosphere constitute important domain boundaries that shape the characteris-
tics of the seismic cycle. The mechanical interactions between neighboring fault segments and the impact from the 
long-term viscoelastic flow strongly modulate the recurrence pattern of earthquakes and slow-slip events. Afterslip 
penetrates down-dip and up-dip into slow-slip regions, leading to accelerated slow-slip cycles at depth and long-
lasting creep waves in the accretionary prism. The trench-ward migrating locking boundary near the bottom of the 
seismogenic zone progressively increases the size of long-term slow-slip events during the interseismic period. Fault 
dynamics is complex and potentially tsunami-genic in the accretionary region due to low friction, off-fault deforma-
tion, and coupling with the seismogenic zone.
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Introduction
Subduction megathrusts accumulate and release 
mechanical energy through a variety of slip modes, 
including earthquakes, low-frequency earthquakes, 
slow-slip events, and stable creep. These different types 
of events can be discriminated in seismo-geodetic obser-
vations by their distinct peak slip velocities, frequency 
spectra, durations, and recurrence intervals (e.g., Wal-
lace and Beavan 2006; Ito et al. 2007; Araki 2017). Slow 
earthquakes involve slip velocities and rupture speeds 
fast enough to be detected by broadband seismometers, 
but not fast enough to generate high-frequency seismic 
waves  (Barbot 2019b). Slow-slip events are too slow to 

be detected by seismometers due to their low frequency 
content, but may be monitored with geodetic instru-
ments. Hence, in this paper, we refer to slow earthquakes 
as any of low-frequency earthquakes, very-low-frequency 
earthquakes and non-volcanic tremors, but exclude slow-
slip events from this denomination. In contrast, we refer 
to slow-slip event as either long-term or short-term slow-
slip events. At subduction zones, each slip mode is com-
monly associated with distinct down-dip segments of the 
megathrust  (Oleskevich et  al. 1999; Rogers and Dragert 
2003; Peng and Gomberg 2010; Hirose and Obara 2005; 
Obara and Kato 2016; Gao and Wang 2017). Structural 
control also operates along strike  in various ways (e.g., 
Kodaira et  al. 2006; Sieh 2008; Contreras-Reyes et  al. 
2010; Contreras-Reyes and Carrizo 2011; Moreno 2012; 
Lin 2013; Metois et al. 2016; Bassett et al. 2016; Nocquet 
2017; Philibosian 2017; Vaca et  al. 2018; Van Rijsingen 
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et  al. 2018; Nishikawa et  al. 2019), but the down-dip 
segmentation of slip behavior  seems to be an ubiqui-
tous feature of subduction megathrusts. The Nankai 
Trough offers a striking example of down-dip segmenta-
tion, with shallow low-frequency and very-low-frequency 
earthquakes, large megathrust earthquakes, long-term 
and short-term slow-slip events, the latter accompanied 
with deep low-frequency tremors (Fig. 1).

This study represents an attempt to reconcile geological 
and seismo-geodetic observations at the Nankai Trough, 
including insights from other subduction zones. We first 
review the general characteristics of subduction meg-
athrusts, in particular, the seismic potential and source 
characteristics at each structural segment. The shallow-
est fault segment, overlain by the accretionary prism, was 
once thought to undergo stable sliding due to the low 

seismicity near the trench late in the seismic cycle and 
the presence of poorly consolidated sediments. However, 
accretionary prisms are known to host tsunami earth-
quakes  (Kanamori 1972; Pelayo and Wiens 1992; Satake 
and Tanioka 1999; Bilek and Lay 2002; Geersen 2019), for 
example, along the Sunda arc (Ammon et al. 2006; Kan-
amori et  al. 2010; Lay et  al. 2011; Newman et  al. 2011; 
Bilek et al. 2011; Satake et al. 2013), the Hikurangi sub-
duction zone (Bell et al. 2014), Nicaragua (Kanamori and 
Kikuchi 1993; Satake 1994), the Aleutian Islands  (John-
son and Satake 1997), the Peru–Chile trench (Pelayo and 
Wiens 1990), and the Kuril–Kamchatka trench  (Kan-
amori 1972). The rupture of giant earthquakes also 
propagates to the trench, for example, the 1960 Val-
divia, Chile, the 1964 Alaska, the 2004 Aceh–Andaman, 
the 2010 Maule, Chile, and the 2011 Tohoku-Oki, Japan 
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Fig. 1  Down-dip segmentation and the spectrum of slip styles for the Nankai subduction zone. Horizontal projection of the rupture area of the 
1854 ML = 8.4 , 1944 Mw = 8.1 and 1946 Mw = 8.3 earthquakes are outlined by orange contours, which approximately define the along-dip range 
of the seismogenic zone. Shallow low-frequency earthquakes and very-low-frequency earthquakes are located up-dip to the seismogenic zone. 
Deep slow-slip events are located down-dip extension of the seismogenic zone. Deep tremors are denoted by dark red dots clustered within a 
belt-like region down-dip to the deep slow-slip events. The 20-km-interval contours of the depth from 0 to 100 km (Hayes et al. 2018) and trench 
(thick black toothed lines) depict the geometry of the Philippine Sea slab that is subducting in the direction represented by the black arrow. P-P’ 
represents a reference profile for the two-dimensional model. The Median Tectonic Line (thick solid line) (Kawamura et al. 2003; Ito et al. 2009) and 
the landward limit of the accretionary prism (solid-dashed line) (Leggett et al. 1985; Kodaira et al. 2000; Takahashi et al. 2003) are the surface 
expression of the material boundaries shown in Fig. 11. The  spatial distribution of deep tremors is from Maeda and Obara (2009) and Obara et al. 
(2010); great earthquakes, slow-slip events and shallow  low-frequency earthquakes from Obara and Kato (2016)
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earthquakes (Plafker 1965; Ishii et al. 2005; Lorenzo-Mar-
tín et al. 2006; Yue et al. 2014; Tomita et al. 2017), with 
the notable exception of the 2005 Nias, Sumatra earth-
quake (Hsu et al. 2006; Konca et al. 2007). Several mech-
anisms have been proposed to explain the failure of the 
shallow megathrust in giant ruptures. Noda and Lapusta 
(2010) use thermal pressurization to facilitate dynamic 
weakening in a creeping segment. Kozdon and Dunham 
(2013) invoke wave-mediated propagation of rupture 
into a shallow velocity-strengthening segment. In these 
models, seismic ruptures nucleate in the seismogenic 
zone and propagate up-dip to the velocity-strengthening 
segment. However, discoveries of low-frequency earth-
quakes and tectonic tremors within the shallow fault 
segment underlying the accretionary prism, such as in 
the Nankai Trough  (Sugioka 2012; Yamashita 2015; Toh 
et  al. 2018; Nakano et  al. 2018), Costa Rica (Jiang et  al. 
2012; Dixon et al. 2014) and New Zealand (Wallace and 
Beavan 2006; Wallace 2016; Wallace et  al. 2017), indi-
cate that slip instabilities can nucleate at shallow depth. 
Laboratory experiments on clay minerals  indicate a low 
static friction of accretionary sediments and a complex 
temperature and velocity dependence of dynamic friction 
(Saffer and Marone 2003; Ikari 2019) that includes veloc-
ity-weakening behavior at tectonic loading rates (Ikari 
and Kopf 2017).

The seismogenic zone is a major section of the meg-
athrust overlain by the continental crust or arc crust, 
depending on the  tectonic setting, that generates large 
earthquakes (e.g., Pacheco et al. 1993; Heuret et al. 2011; 
Hayes et al. 2012). The down-dip limit of the seismogenic 
zone is thought to coincide with the upper-plate Moho or 
a shallower isotherm. The frictional properties of quartz-
rich crystalline rocks explain the firmly velocity-weak-
ening properties of this region (Scholz et al. 1972; Tullis 
and Weeks 1986; Kilgore et al. 1993; Blanpied et al. 1991, 
1995; Mitchell et al. 2013). The low-angle intersection of 
the megathrust with the upper-plate crust at subduction 
zones forms the source region for Earth’s largest earth-
quakes. The oblique convergence at the trench is often 
accommodated by strike–slip faulting in the forearc, for 
example, the Median Tectonic Line in Southwest Japan, 
the Sumatran Fault in Indonesia, the Linquine–Ofqui 
fault system in South Chile, and the Fairweather and 
Denali faults in Alaska  (Schellart and Rawlinson 2013). 
Earthquake source properties vary among subduction 
zones (e.g., Ye et al. 2016; Hayes 2017; Meier et al. 2017; 
Ye et al. 2018), but a remaining puzzling behavior is the 
full and partial ruptures of the seismogenic zone in super-
cycles. For example, coral, turbidite, and paleo-tsunami 
records indicate a wide range of earthquake sizes in the 
Sunda trench (Sieh 2008; Patton 2015; Philibosian 2017; 
Rubin et al. 2017). In the Japan trench, only earthquakes 

of moment magnitude 7 preceded the 2011 Tohoku 
megaquake in the last century  (Yamanaka and Kikuchi 
2004; Nakata et al. 2016). Partial rupture of the seismo-
genic zone also occurs in a continental collision setting, 
for example, along the Main Himalayan front  (Sapkota 
et  al. 2013; Bollinger et  al. 2013; Bilham 2015; Mencin 
2016; Hubbard et al. 2016; Feng 2017). Herrendörfer et al. 
(2015), Michel et  al. (2017), and Barbot (2019b) argue 
that the super-cycle is a self-emergent behavior from the 
nonlinear dynamics of fault slip favored by wide seismo-
genic zones. Qiu et al. (2016) and Hubbard et al. (2016) 
suggest the important role of morphological gradients, 
i.e., local changes in the geometry of the plate interface. 
How the earthquake recurrence and super-cycle patterns 
are affected by surrounding activity, notably slow-slip 
events and asthenospheric viscoelastic flow is another 
important unknown.

At most subduction zones, the seismogenic zone is fol-
lowed down-dip by a stability transition where the meg-
athrust slips in slow, dominantly aseismic episodes (e.g., 
Rogers and Dragert 2003; Schwartz and Rokosky 2007; 
Szeliga et  al. 2008; Gomberg and Group 2010; Beroza 
and Ide 2011; Kobayashi 2014; Obara and Kato 2016; 
Gao and Wang 2017; Bürgmann 2018). Slow-slip events 
are thought to occur in a narrow metamorphic belt of 
serpentinized rocks where the development of fric-
tional instabilities is inhibited by high temperature and 
high pore-fluid pressure  (Kodaira et  al. 2004; Katayama 
et al. 2013; Audet and Bürgmann 2014; Frank et al. 2015; 
Goswami and Barbot 2018; Audet and Schaeffer 2018; 
Nakajima and Uchida 2018; Cruz-Atienza et  al. 2018). 
The long-term slow-slip events, characterized by dura-
tions of months or years and recurrence time of several 
years  (Kobayashi 2014), take place immediately under-
neath the seismogenic zone, in the mantle wedge corner, 
representing either slip on the megathrust or distributed 
flow in a narrow metamorphic shear zone  (Platt et  al. 
2018). In contrast, the short-term slow-slip events, with 
durations of days or weeks and recurrence times of sev-
eral months  (Hirose and Obara 2005, 2006; Obara et al. 
2004), take place in the upper mantle and are accompa-
nied by substantial tremors and low-frequency earth-
quakes (Obara 2002; Obara et al. 2004; Shelly et al. 2006; 
Ito et  al. 2007), a phenomenon referred to as episodic 
tremor and slip. Examples include the Cascadia (Rogers 
and Dragert 2003) and Nankai  (Obara and Kato 2016) 
subduction zones (Fig.  1). The slow-slip phenomenon 
can be reproduced in a laboratory setting within the 
stable-weakening conditions promoted by low normal 
stress  (Leeman et  al. 2016; Scuderi et  al. 2017; Mclas-
key and Yamashita 2017; Ikari 2019). Conditional stabil-
ity, a situation that occurs when the size of nucleation is 
commensurate with the size of the fault segment, can be 
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invoked to simulate slow-slip events  (e.g., Liu and Rice 
2005; Rubin 2008; Li and Liu 2016, 2017). Conditional 
stability occurs over a wide range of parameters, espe-
cially considering near velocity-neutral conditions, where 
most of the available energy is consumed by fracture (Wu 
and Chen 2014; Barbot 2019b). Furthermore, stability 
can be promoted by activation of viscoelastic flow in a 
semi-brittle matrix (Goswami and Barbot 2018), velocity-
dependent frictional properties (Shibazaki and Shimam-
oto 2007; Matsuzawa et al. 2010; Shibazaki et al. 2011) or 
dilatancy effects (Liu and Rubin 2010; Segall et al. 2010; 
Segall and Bradley 2012). The down-dip limit of slow-
slip is an isotherm corresponding to the stable creep of 
olivine and pyroxene. Below this depth, the plate inter-
face is stable, creeping at the plate rate, only modulated 
by stress perturbations from earthquakes and slow-slip 
events (Barbot 2018b). As the recurrence times of slow-
slip events and large earthquakes are so widely different, 
the mechanical coupling between the seismogenic zone 
and the slow-slip region is poorly known. However, slow-
slip events can be triggered by distant earthquakes (Araki 
2017; Wallace et al. 2017; Wei et al. 2018), act like struc-
tural barriers (Vaca et al. 2018; Rolandone 2018), or trig-
ger other slow-slip events (Payero et al. 2008; Kano et al. 
2019). Along-strike segmentation of slow-slip events in 
the Nankai Trough follows the spatial pattern of coupling 
in the seismogenic zone  (Takagi et  al. 2019). Numerical 
simulations indicate that the recurrence pattern of slow 
slip is modulated by the earthquake cycle  (Matsuzawa 
et al. 2010).

The subduction of an oceanic slab below another plate 
is resisted by frictional drag along the megathrust that 
results in extremely localized brittle deformation. Conse-
quently, the two plates are separated by the megathrust at 
geological time scales from the trench down to a depth of 
about 80 km (Wada and Wang 2009), which also marks 
the down-dip limit of stable creep, the brittle–ductile 
transition, and the termination of the megathrust. Below 
this depth, the subducting slab is permanently coupled 
with the upper mantle rocks, entraining a convection 
cell that drives local circulation of volatiles, culminat-
ing in the formation of a volcanic arc at most subduction 
zones  (e.g., Spiegelman and McKenzie 1987; Kawakatsu 
and Watada 2007; van Keken et  al. 2011). The termina-
tion of frictional heating associated with megathrust slip 
seems required to explain the pattern of surface heat flow 
at most subduction zones (Wada and Wang 2009). As a 
result, 50% of all frontal arc volcanoes lie between 85 and 
119  km above the subducting slab  (Syracuse and Abers 
2006). The volatiles originate from the hydrous metamor-
phism of upper mantle rocks at the spreading center and 
from bend-related faulting at the outer rise (e.g., Ranero 
et al. 2003; Rüpke et al. 2004; Naif et al. 2013, 2015). The 

Nankai Trough offshore Honshu is a notable exception, 
not being associated with a volcanic arc, presumably due 
to the shallow dip angle of the Philippine Sea slab that 
inhibits efficient corner flow (Nakajima and Hasegawa 
2007; Hirose et  al. 2008; Hayes et  al. 2018) and the 
influence of the Shikoku back-arc basin behind the Izu 
arc. The deformation of the mantle wedge above the slab 
is accommodated by the  viscoelastic flow of peridotite, 
facilitated by the weakness of olivine at this temperature 
and pressure (Karato et al. 1986; Mei and Kohlstedt 2000; 
Van der Wal et  al. 1993; Chopra 1997; Karato and Jung 
2003; Masuti et al. 2019). Thermally activated viscoelas-
tic flow in the asthenosphere facilitates plate tectonics 
and the Wilson cycle (e.g., Burke 2011). Asthenospheric 
flow is modulated by the seismic cycle  (Barbot 2018b), 
creating large-scale deformation during the postseismic 
period  (Savage and Prescott 1978; Hirahara 2002; Hu 
et  al. 2004; Wang 2007; Pollitz et  al. 2008; Wang et  al. 
2012; Sun 2014; Masuti et  al. 2016; Klein et  al. 2016; Li 
et al. 2018; Qiu et al. 2018; Weiss et al. 2019). Viscoelas-
tic flow and fault slip are mechanically coupled during 
postseismic deformation  (Agata et  al. 2019; Muto et  al. 
2011). However, the impact of viscoelastic flow on the 
recurrence pattern of earthquakes and slow-slip events is 
poorly known.

Schematics of heat, mass, and fluid transport at sub-
duction zones abound  (e.g., Hyndman et al. 1997; Stern 
2002; Agard et al. 2009, and references therein). However, 
how lithology, temperature, and structure affects the seis-
mic cycle is not firmly established. Scholz (1998) invokes 
the temperature dependence of the friction properties of 
granite to define the boundary of the seismogenic zone. 
Lay et  al. (2012) describe how other segments can be 
associated with tsunami earthquakes and short-period 
seismic radiations. Gao and Wang (2017) highlight the 
rheological separation of the megathrust into regions 
of different rupture styles. But the first-order, structural 
control on the dynamics of fault slip has not been prop-
erly asserted. Here, we describe a model of the seismic 
cycle at the Nankai  subduction zone where the style of 
fault dynamics is controlled by the structure and com-
position of the overriding plate. The intersection of the 
megathrust with thoroughly different terranes creates 
structural domain boundaries that profoundly affect the 
style of rupture. Using the Nankai Trough as a backdrop 
because of the manifestation of many rupture styles, we 
describe how each region of the megathrust—the accre-
tionary prism, arc crust, metamorphic belt, mantle lid, 
and upper mantle—can be associated with characteristic 
physical properties and dimensions that have a long-last-
ing influence on the unfolding of the seismic cycle. We 
highlight how the nonlinear dynamics of fault slip and 
the interplay between each domain introduces additional 
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complexity, such as full and partial earthquake ruptures, 
modulation of slow-slip during the seismic cycle, and 
aperiodic super-cycles, that overprint the structural con-
trol. We also discuss the mechanical coupling between 
the brittle domain and the viscoelastic substrate.

The manuscript is organized as follows. In the follow-
ing section, we propose a structural model of the meg-
athrust at the Nankai  Trough along a representative 
cross-section. We describe a numerical model that repro-
duces the salient features over the following sections. In 
the third section, we introduce the constitutive laws for 
fault slip and viscoelastic flow and the relevant governing 
equations. In the fourth section, we discuss the physical 
and structural properties of the model. In the fifth sec-
tion, we present numerical simulations of the system-
level dynamics. In the following sections, we focus on the 
mechanical coupling between earthquakes and the short-
term and long-term slow-slip events. We also discuss the 
impact of viscoelastic flow in the oceanic asthenosphere 
and the mantle wedge on the recurrence pattern of earth-
quakes. This is followed by a discussion and conclusion.

Structural and lithological control on megathrust 
dynamics
We describe a representative cross-section of the Nan-
kai Trough where the major rupture styles are associated 
with structural boundaries of the overriding plate. From 
the trench to the asthenosphere, we describe five meg-
athrust segments delineated by structural boundaries or 
an isotherm (Fig. 2). Each of these segments is associated 
with physical characteristics and a length scale that con-
trol fault dynamics at first order. We do not resolve the 
interactions with the Median Tectonic Line because pure 
strike–slip and thrust faults are mechanically decoupled 
in two-dimensional approximations.

Segment A. The top segment represents the intersec-
tion of the megathrust with the accretionary prism, a 
sedimentary sink characterized by intense off-fault defor-
mation  (Moore et  al. 1990; Hubbard et  al. 2015; Sathia-
kumar et  al. 2020), low rigidity  (Sallarès and Ranero 
2019), and particularly low static friction (e.g., Byrne and 
Fisher 1990; Cubas et al. 2013). The shortening taken up 
by secondary faults and folds in the upper plate builds 
topography and reduces the long-term loading rate on 
the megathrust, resulting in a low rate of seismicity on 
the plate interface. The low static friction coefficient 
of clay minerals and derived sedimentary rocks greatly 
affects the rupture style, resulting in anomalously long, 
complex ruptures  (Barbot 2019b). The many high-angle 
ramps and splay faults of the frontal prism are respon-
sible for the tsunami-genic potential. The dominantly 
velocity-weakening properties of the plate interface at 
these depths  (Saffer and Marone 2003; Ikari and Kopf 

2017; Ikari 2019) allows for the development of slow-
slip events, slow earthquakes, and tsunami earthquakes. 
Deep ruptures may also propagate through the accretion-
ary prism and arrest near the trench.

Segment B. The seismogenic zone corresponds to the 
cold section of the low-angle intersection between 
the megathrust and the arc crust. The rupture of the 
seismogenic zone is controlled by the frictional prop-
erties of quartz-rich crystalline rocks, which are con-
sidered velocity-weakening at temperatures up to at 
least 350  °C (Blanpied et al. 1991, 1995; Mitchell et al. 
2013, 2016). The large intersection of the megathrust 
down to this isotherm allows great and giant inter-
plate ruptures. The width of the seismogenic zone pro-
vides a characteristic length scale for rupture size, but 
full and partial ruptures of the seismogenic zone take 
place spontaneously because of the nonlinear dynamics 
of the system  (Kato 2012; Wu and Chen 2014; Michel 
et  al. 2017; Cattania and Segall 2018; Barbot 2019b; 
Cattania 2019). Giant earthquakes may also occur if 
ruptures propagate across segment boundaries.

Segment C. We associate the long-term slow-slip 
events with a metamorphic belt within the man-
tle wedge corner, a narrow serpentinized shear zone 
below the arc crust. The slow-slip events develop 
in antigorite-rich serpentinite, which is velocity-
strengthening at the low temperatures and pressures 
of the seismogenic zone, but velocity-weakening at 
and above 450 °C (Okazaki et al. 2013; Katayama et al. 
2013; Okazaki and Katayama 2015). The low activation 
energy of the viscoelastic flow of serpentinite (Hilairet 
et  al. 2007) may hinder the development of frictional 
instabilities in this region (Goswami and Barbot 2018). 
The depth of the metamorphic belt coincides roughly 
with the arc lower crust farther inland, but the shear 
zone of the mantle wedge corner and the lower crust 
differ in composition.

Segment D. The episodic tremor and slip phenom-
enon coincides with the mantle lid, i.e., the brittle 
layer of the upper mantle, where olivine-rich perido-
tite exhibits velocity-weakening frictional properties 
at temperatures up to 600–800 °C (Boettcher et al. 207; 
King and Marone 2012). The proximity to the stability 
transition induced by high temperature creates the con-
ditions for chaotic short-term slow slip where a mac-
roscopic slow rupture is accompanied by intermittent 
slow earthquakes (Viesca 2016a, b; Barbot 2019b). The 
mix-mode failure with coincident slow and fast rupture 
during the same event may provide a first-order expla-
nation for the intense tremor activity of this section.

Segment E. The deep velocity-strengthening seg-
ment of the megathrust corresponds to temperatures 
between that of the stability transition of peridotite 
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(600–800  °C) and that of the brittle–ductile transition 
(1000 °C or 80 km depth). Beyond this depth, the down-
going slab is bound to the mantle wedge rocks and fault 
slip is prevented or greatly limited. This segment plays 

an important role during postseismic relaxation, releas-
ing the coseismic stress change rapidly with afterslip, 
and during the interseismic period towards loading of 
the seismogenic zone.
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In the following sections, we describe a two-dimen-
sional model that implements this idealized structural 
segmentation of the megathrust. Compatible with pre-
vious findings, we show that megathrust dynamics is 
greatly controlled by the structure and composition 
of the upper plate, but that additional complexity and 
non-periodic recurrence patterns result from the non-
linear dynamics of the system. This results in a com-
plex history of earthquakes and slow-slip events with 
large-scale and long-period characteristics that are pre-
determined by the structural layout.

Constitutive laws and governing equations
In this section, we describe the assumed constitutive 
relationships for fault friction and viscoelastic flow. We 
describe a modeling framework that allows us to simu-
late the dynamics of fault slip in a viscoelastic medium 
that includes the mechanical coupling between brittle 
and ductile deformation during the seismic cycle. We 
then discuss important take-aways from a dimensional 
analysis of the governing equations that allows us to dis-
cuss the emergence of a wide spectrum of rupture styles. 
These considerations provide the building blocks for 
simulating the short-term dynamics of subduction zones 
during the seismic cycle.

Constitutive framework for fault slip
The evolution of fault friction on a fault during all stages 
of the seismic cycle can be captured by the constitutive 
framework of rate-and-state friction introduced by Die-
terich (1979), Ruina (1983), and  Rice and Ruina (1983). 
The constitutive law is motivated by a wealth of labora-
tory experiments  (Dieterich 1978; Marone et  al. 1990; 
Marone and Kilgore 1993; Nakatani 2001; Yamashita 
et al. 2014; Lyu et al. 2019, and references therein) and is 
supported by various micro-physical models for the evo-
lution of strength in fault gouge or bare contacts (Ches-
ter 1989; Sleep and Blanpied 1992; Sleep 1995, 2006; 
Barbot 2019a). The framework of rate-and-state friction 
has been useful to model a wide spectrum of rupture 
styles, including slow and fast ruptures  (Rice and Tse 
1986; Lapusta and Rice 2003; Hori et  al. 2004; Liu and 
Rice 2005; Rubin 2008; Chen and Lapusta 2009; Kaneko 
et al. 2010; Barbot et al. 2012; Wei et al. 2015; Veedu and 
Barbot 2016; Lambert and Barbot 2016; Lui and Lapusta 
2016; Salman et al. 2017; Yu et al. 2018; Ong et al. 2019) 
and the dynamics of quasi-static deformation in domi-
nantly aseismic periods  (Perfettini and Avouac 2004, 
1992; Barbot et al. 2004; Bruhat et al. 2011; Rousset et al. 
2012; Rollins et al. 2015).

Several forms of constitutive equations that fall into 
the rate-and-state framework have been proposed (Ruina 

1983; Linker and Dieterich 1992; Rice and Ben-Zion 
1996; Kato and Tullis 2001; Bizzarri 2011; Nagata et  al. 
2012), in particular due to uncertainties about the evolu-
tion law for the state variable and issues regarding regu-
larization for vanishing velocities. In this study, we adopt 
the formulation proposed by  Barbot (2019a), where the 
velocity across the fault zone is controlled by the area 
of the contact junctions that support the shear and nor-
mal loads. The model assumes the following constitutive 
relationship

where V is the sliding velocity, τ is the norm of the shear 
traction resolved on the fault plane, T is the local abso-
lute temperature, µ0 is the static coefficient of friction at 
velocity V0 and temperature T0 , A is the real area of con-
tact divided by the nominal surface area, χ is the indenta-
tion hardness of the fault material, and a ≪ 1 is a power 
exponent. Fault slip is thermally activated with the acti-
vation energy Q; R is the universal gas constant. The real 
area of contact depends primarily on the applied normal 
stress, but it evolves during the seismic cycle, modulated 
by changes in the morphology of the micro-asperities. 
Flattening of the micro-asperities increases the area of 
contact junctions and strengthens the fault. Comminu-
tion during fault slip reduces the average contact area and 
weakens the fault. This behavior is captured by a depend-
ence on effective normal stress and a state variable

where σ̄ is the effective normal stress, L is the character-
istic weakening distance, b ≪ 1 is a power exponent, and 
θ is a state variable that represents the age of the contact, 
or equivalently, the duration of contact flattening (Barbot 
2019a). Combining (1) and (2), we obtain the constitutive 
relationship

To capture the evolution of the topography of the fault 
surface at the micro-scale, the state variable follows the 
evolution law (Barbot 2019a)

where H is the activation enthalpy for contact heal-
ing (Chester and Higgs 1992; Chester 1994). In this study, 
we assume isothermal conditions, and, in the limit of 
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this approximation, Eqs. (3) and (4) represent a complete 
constitutive framework for the dynamics of fault slip. 
Choosing T = T0 , Eq. (4) simplifies to the aging law pro-
posed by Ruina (1983). The parameters a, b, and L have 
the same function as in the classical formulation of Ruina 
(1983), despite the multiplicative form of Eq. (3). The spa-
tial distribution of the constitutive parameters µ0 , a, b, 
and L and the effective normal stress σ̄ along the megath-
rust as a function of lithology and temperature will shape 
the dynamics of the seismic cycle.

The constitutive law of Eq.  (3) takes a multiplicative 
form, differing in that regard from the additive, logarith-
mic form used elsewhere  (e.g., Ruina 1983, and refer-
ences therein). A truncated power series expansion of the 
multiplicative form, which remains valid for a wide range 
of velocities around V0 = 1 μm/s, reduces to the additive 
form  (Barbot 2019a). However, the logarithmic form is 
ill-posed for vanishing velocity and requires regulariza-
tion, such as the one with a hyperbolic sine motivated by 
thermo-dynamic considerations proposed by  Rice and 
Ben-Zion (1996). In contrast, the multiplicative form is 
valid for vanishing velocities and does not require addi-
tional regularization. The multiplicative form of rate-and-
state friction described above produces a different style 
of rupture dynamics in weak faults ( µ0 ≤ 0.1 ), resulting 
in exceedingly long, multi-pulsed ruptures resembling 
that of tsunami earthquakes (Barbot 2019a, b).

Constitutive framework for viscoelastic flow
The deformation of crust and mantle rocks, inferred from 
laboratory experiments on aggregates or single crystals, 
is accommodated by several micro-mechanisms that 
include diffusion creep, dislocation creep, and dislocation 
glide (Karato et al. 1986; Hirth and Tullis 1992; Gleason 
and Tullis 1995; Chopra 1997; Mei and Kohlstedt 2000; 
Rybacki and Dresen 2000; Karato and Jung 2003; Hirth 
and Kohlstedt 2003; Dimanov and Dresen 2005). During 
steady-state, i.e., at constant stress or strain-rate, a con-
stitutive relationship of the form

where A is a constant pre-factor, σ is the norm of the 
deviatoric stress, and m, n, and r are power exponents, 
predicts the deformation-rate ǫ̇ based on in situ physi-
cal conditions, including water content COH , grain-size 
d, pressure p, activation volume � , activation energy E, 
and temperature T. For diffusion creep and pressure-
solution creep, the power exponent is n = 1 , correspond-
ing to linear viscoelasticity. For dislocation creep, n > 1 
and m = 0 , corresponding to a power-law rheology. 

(5)ǫ̇ = A σ n(COH)
rd−m exp

(

−

E + p�

RT

)

,

Dislocation glide has a nonlinear response with n ∼ 2 , 
but is also sensitive to grain-size ( m  = 0) (Karato 2008).

During periods of rapid change of stress or strain-rate, 
other deformation processes take place within the rock 
or mineral structure, leading to a short phase of harden-
ing that transitions to the steady-state response, usually 
referred to as transient creep (Chopra 1997; Wu et  al. 
2016). In contrast to steady-state, the micro-mechanics 
of transient creep are poorly understood and different 
constitutive relationships have been proposed (Sherburn 
et al. 2011; Thieme et al. 2018; Holtzman et al. 2018), but 
plastic anisotropy within single crystals may be an impor-
tant factor  (Masuti et  al. 2019). Because of the rapid 
change imposed by the seismic cycle, transient creep 
may be operating during postseismic relaxation  (Pollitz 
et al. 2008; Freed et al. 2010; Hoechner et al. 2011; Tang 
et al. 2019; Muto et al. 2011). The strain-rate of transient 
creep may be represented by an additional strain compo-
nent (Masuti et al. 2016)

where AK  is a pre-exponential factor, q = σ − 2GKǫK 
is the effective stress, and GK  is strain-hardening coef-
ficient. This rheological framework has been useful to 
model postseismic deformation  (e.g., Nur and Mavko 
1974; Savage 2000; Hirahara 2002; Freed and Bürgmann 
2004; Hu et  al. 2004; Hetland and Hager 2005; Wang 
2007; Pollitz et  al. 2008; Johnson et  al. 2009; Suito and 
Freymueller 2009; Wang et al. 2012; Sun 2014; Hu et al. 
2016; Klein et  al. 2016; Li et  al. 2017; Muto et  al. 2011, 
and references therein). In this study, we approximate the 
rheological response by the steady-state, as the details of 
sub-annual evolution of viscoelastic relaxation is not of 
central importance to our discussion.

Governing equations
We consider the dynamics of fault slip and viscoelastic 
flow during the seismic cycle within the quasi-dynamic 
approximation  (Tse and Rice 1986; Rice and Tse 1986; 
Rice et  al. 2001), whereby the wave-mediated stress 
transfer is ignored. In a viscoelastic medium, the traction 
along the fault depends on both the velocity of the sur-
rounding fault elements and the anelastic strain-rate in 
the surrounding rocks. The rate of change of shear trac-
tion due to fault slip (e.g., Maruyama 1964; Rice and Tse 
1986; Shibazaki and Matsu’ura 1992; Kato 2003; Ziv and 
Cochard 2006; Fukuyama 2007) is extended to include 
the effect of viscoelastic flow as follows

(6)ǫ̇K = AK q ||q||n−1(COH)
rd−p exp

(

−

E + p�

RT

)

,

(7)

τ̇ =
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K · (v − vL) dA+

∫

�

J · (ǫ̇ − ǫ̇L) dV −

G

2VS

˙V ,
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where K is the Green’s function tensor for self-interac-
tions on the fault surface ∂Ŵ (e.g., Chinnery 1963; Okada 
1992; Segall 2010; Gimbutas et  al. 2012; Nikkhoo and 
Walter 2015), v is the instantaneous velocity vector, vL is 
the local loading rate on the fault, ǫ̇ represents the ane-
lastic strain-rate tensor in the ductile domain � , and J is 
the Green’s function tensor describing how distributed 
deformation affects the shear stress on the fault  (Faivre 
1969; Chiu 1978; Nozaki and Taya 2001; Kuvshinov 2008; 
Barbot et  al. 2017; Barbot 2018a). The last term on the 
right-hand side corresponds to the radiation-damping 
term with the rigidity G, shear wave velocity VS and slip 
acceleration ˙V   (Rice and Tse 1986; Tse and Rice 1986; 
Rice et al. 2001).

Viscoelastic deformation is controlled by the ampli-
tude and orientation of stress. Following a decomposition 
of the total strain into the elastic and anelastic compo-
nents (Andrews 1976; Barbot and Fialko 2010), the evo-
lution of the deviatoric stress tensor in the viscoelastic 
substrate can be written

where M is the Green’s function for self stress in the duc-
tile substrate and L represents the stress impacted by 
fault slip onto the ductile rocks. Therefore, the Green’s 
functions J and L represent the mechanical coupling 
between brittle and ductile deformation. The terms vL 
and ǫ̇L represent the long-term slip-rate on the fault and 
the long-term strain-rate in the viscoelastic substrate, 
respectively, and are considered constants imposed by 
long-term geodynamics. Combining the constitutive laws 
(3), (4), and (5) with the governing equations (7) and (8) 
allows us to simulate the dynamics of fault slip coupled 
with viscoelastic flow.

Several numerical approaches have been proposed to 
incorporate nonlinear viscoelastic flow in seismic cycle 
simulations, including the finite-difference and finite-ele-
ments methods (Herrendörfer et al. 2015; Erickson et al. 
2017; Sobolev and Muldashev 2017; Biemiller and Lavier 
2017; Allison and Dunham 2018; Tong and Lavier 2018). 
Here, we use the integral method proposed by Lambert 
and Barbot (2016) and Barbot (2018b), whereby the fault 
surface is discretized into line elements and the duc-
tile domain is meshed with surface elements in cross-
section (Barbot et al. 2017; Barbot 2018a). The integrals 
in Eqs.  (7) and  (8) can then be evaluated numerically 
with algebraic relationships. The approach allows us 
to include non-planar fault geometry  (Ong et  al. 2019) 
and to accommodate nonlinear rheological laws. The 
dynamics of fault slip coupled with viscoelastic flow is 
then obtained based on the Runge–Kutta method with 
adaptive time steps  (Press et  al. 1992). Some aspects of 

(8)σ̇ =

∫

�

M · (ǫ̇ − ǫ̇L) dV +

∫

∂Ŵ

L · (v − vL) dA,

the numerical method have been validated against other 
tools (Erickson et al. 2020).

Take‑away from dimensional analysis
A dimensional analysis of the governing equation for 
fault slip can help identify four dimensionless variables 
that control the rupture style and other characteristics 
of the seismic cycle in isothermal conditions  (Barbot 
2019b). Non-dimensional parameters are important to 
consider because they reduce the parameter space con-
siderably: various combinations of physical parameters 
producing the same set of non-dimensional parameters 
are expected to produce similar rupture styles, only with 
different recurrence times or overall size. The static fric-
tion parameter µ0 controls the overall fault strength 
and affects the rupture style. In particular, weak faults 
can rupture in anomalously long and complex ruptures. 
Another parameter Vth = 2VS (b− a)σ̄ /G , linked to seis-
mic wave radiation, controls the peak velocity and the 
rupture velocity during fast ruptures (Barbot 2019b). This 
parameter affects the accretionary prism in subduction 
zones particularly because of the low shear wave speeds 
of water-saturated sedimentary muds. The remaining 
two non-dimensional parameters Ru and Rb represent 
important degrees of freedom because they vary wildly 
in nature and play important roles in controlling fault 
dynamics. The Dieterich-Ruina-Rice number

where G is the rock rigidity, W is a representative length 
scale of the fault segment, and a and b are defined in 
Eqs.  (1) and  (2), controls the importance of non-local 
stress transfer. The Ru number can be shown to represent 
a ratio of segment size to nucleation size (Barbot 2019b). 
The Rb number

controls the relative importance of the transient evolu-
tionary effects, i.e., the weakening and strengthening with 
contact rejuvenation and contact aging, respectively. The 
Rb number also controls the ratio of static and dynamic 
stress drops during rupture, and hence the amount of 
fracture energy consumed. The Ru and Rb numbers form 
a two-dimensional phase space, each coordinate being 
associated with a potentially different rupture style. Large 
Ru numbers promote complexity of the seismic cycle, 
with a wide range of rupture sizes  (Wu and Chen 2014; 
Cattania and Segall 2018; Cattania 2019). Low Ru num-
bers correspond to increasing stability of the fault patch, 
i.e., a propensity for cycles of slow earthquakes, slow-slip 

(9)Ru =

(b− a)σ̄

G

W

L
,

(10)Rb =

b− a

b
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events, or creep, depending on the actual value. Low Rb 
numbers also promote macroscopic stability, but a com-
bination of large Ru and low Rb leads to chaotic cycles of 
slow-slip events encompassing slow earthquakes (Barbot 
2019b). During model design, we choose the physical 
parameters considering the predicted dynamics asso-
ciated with the corresponding set of non-dimensional 
parameters and their coordinates in phase space.

Model description and physical parameters
We design a numerical simulation of short-term subduc-
tion dynamics that incarnates the structural model pre-
sented in the previous Section. The model allows us to 
discuss the emergence of a wide range of rupture styles, 
each associated with a specific megathrust segment, and 
to illuminate the nonlinear coupling among the various 
domains of the megathrust and surrounding viscous 
substrate. For numerical convenience, we consider a 
two-dimensional approximation in plane-strain condi-
tions along a trench-perpendicular cross-section of the 
Nankai Trough (Fig. 2). The model is complex enough to 
discuss general aspects of fault dynamics in this region, 
but the reader is referred to even more sophisticated 
models of the Nankai  Trough   (Hori et  al. 2004; Hori 
2006; Matsuzawa et al. 2010; Shibazaki et al. 2012; Mat-
suzawa et al. 2013; Hyodo and Hori 2013). We follow the 
megathrust geometry from the Slab1.0 model  (Hayes 
et al. 2012) along the profile P-P’ in Fig. 1. We extend the 
slab geometry down to more than 200 km depth, even 
though the deepest section is not observed seismologi-
cally (Nakajima and Hasegawa 2007; Hirose et  al. 2008; 
Hayes et  al. 2018).  We divide the megathrust into five 
segments with piecewise constant dip angles. The physi-
cal parameters at each segment are determined consid-
ering the lithology and temperature at the plate interface 
as well as the expected dynamics based on the resulting 
non-dimensional number in the governing equations. 
Because of numerical limitations, we adopt a uniform 
rigidity G = 30GPa , shear wave speed VS = 3000m/s , 
and Poisson’s ratio ν = 0.25 . This prevents us from using 
more realistic variations, in particular, in the accretionary 
prism, where low rigidity plays an important role (Sal-
larès and Ranero 2019). The spatial distribution of the 
relevant physical parameters is compiled in Table 1.

For segment A, we use a low static friction coefficient 
µ0 = 0.1 , compatible with the presence of poorly con-
solidated material in the overlying sediment pile-up. 
Clay minerals also exhibit velocity-weakening behav-
ior under low normal stress and low loading rate. For 
simplicity, we conflate the accretionary prism and the 
frontal prism into one single region of uniform proper-
ties. We also ignore the change of frictional properties 

associated with the smectite to illite transition  (Saffer 
and Marone 2003). The local loading rate on the meg-
athrust VL = 1.2× 10−9 m/s , is smaller than the plate 
convergence of Vpl = 1.8× 10−9 m/s to account for the 
partitioning of deformation among the megathrust, 
thrusts, and folds of the sedimentary wedge  (Sathiaku-
mar et al. 2020). Using the down-dip width of the meg-
athrust that intersects with the accretionary wedge, 
i.e., W = 41.75 km , and the frictional properties shown 
in Table  1, the resulting non-dimensional parameters 
Ru = 1.82 and Rb = 0.025 are associated with a complex 
long-term slow-slip regime (Barbot 2019b). All other seg-
ments have VL = Vpl.

In the seismogenic zone (segment B), we select a set of 
physical parameters that produces large ruptures within 
the recurrence period of the Nankai earthquakes, which 
vary within 140± 42 years  (Ando 1975; Rikitake 1976; 
Thatcher 1984; Kumagai 1996). In addition, we choose 
the frictional properties to obtain complex seismic 
sequences with full and partial ruptures of the seismo-
genic zone, which occurs for Ru ≥ 16 for a single asper-
ity embedded in a planar fault  (Barbot 2019b). Using 
W = 148.75 km as the characteristic length scale of the 
seismogenic zone and with the combination of effective 
normal stress, characteristic weakening distance, and 
kinematic friction coefficients, we obtain Ru = 29.7 , a 
value high enough to generate complex seismic cycles 
with a variety of rupture sizes.

In the metamorphic belt (segment C), we choose a set 
of frictional properties that reflects stable weakening and 
the emergence of long-term slow-slip events with recur-
rence times of about 2 years and rupture durations of 
several months. As discussed in the introduction, this 
can be obtained with a variety of mechanisms that permit 
nucleation but inhibit fast slip. For simplicity, we adopt a 
simple frictional behavior with physical properties such 
that Ru = 1.75 and Rb = 0.18 , a near-stable regime of 
periodic slow slip  (Barbot 2019b). The  low Rb number 
associated with near velocity-neutral conditions is justi-
fied by the gradual transition from velocity-weakening 
to velocity-strengthening properties as temperature 
increases with depth. After we added other velocity-
weakening segments to the model, the recurrence time of 
the long-term slow-slip events can be extended to about 
2 to 6 years, consistent with the observations in different 
regions along the strike of the Nankai  Trough   (Hirose 
et  al. 1999; Hirose and Obara 2005; Yarai and Ozawa 
2013; Kobayashi 2014).

In the mantle lid (segment D), we consider frictional 
properties that produce a chaotic form of slow-slip 
events, whereby macroscopic slow slip is accompanied 
by slow earthquakes. This phenomenon emerges from 
the nonlinear dynamics of fault slip and was identified 
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Table 1  Summary of the physical parameters controlling fault dynamics and viscoelastic flow

Segment A—accretionary prism

 Static friction coefficient µ 0.1

 Effective normal stress σ̄ 35 MPa

 Direct-effect parameter a 5.85× 10−2

 Steady-state parameter (velocity-weakening) b− a 1.5× 10−3

 Characteristic weakening distance L 4 cm

 Loading rate VL 1.2× 10−9 m/s

 Segment width W 41.75 km

Segment B—seismogenic zone

 Static friction coefficient µ 0.6

 Effective normal stress σ̄ 20MPa

 Direct-effect parameter a 7.6× 10−3

 Steady-state parameter (velocity-weakening) b− a 2.4× 10−3

 Characteristic weakening distance L 8mm

 Loading rate VL 1.8× 10−9 m/s

 Segment width W 148.75 km

Segment C—metamorphic belt (mantle wedge corner)

 Static friction coefficient µ 0.6

 Effective normal stress σ̄ 20MPa

 Direct-effect parameter a 2× 10−3

 Steady-state parameter (velocity-weakening) b− a 4.5× 10−4

 Characteristic weakening distance L 4.1mm

 Loading rate VL 1.8× 10−9 m/s

 Segment width W 24 km

Segment D—mantle lid

 Static friction coefficient µ 0.6

 Effective normal stress σ̄ 20MPa

 Direct-effect parameter a 2× 10−3

 Steady-state parameter (weakening near velocity-neutral) b− a 2× 10−4

 Characteristic weakening distance L 0.7mm

 Loading rate VL 1.8× 10−9 m/s

 Segment width W 32 km

Segment E—mantle wedge

 Static friction coefficient µ 0.6

 Effective normal stress σ̄ 40MPa

 Direct-effect parameter a 1× 10−2

 Steady-state parameter (velocity-strengthening) a− b 2× 10−3

 Characteristic weakening distance L 2.5 cm

 Loading rate VL 1.8× 10−9 m/s

 Segment width W 53.5 km

Viscoelastic substrate—upper mantle, oceanic asthenosphere

 Background strain rate ε̇022 −10−15 s−1

 Basal mantle temperature T 1673 K

 Prefactor A 90 MPa−ns−1(ppm H/Si)−r

 Power-law stress exponent n 3.5

 Activation energy E 460 kJ/mol

 Activation volume � 11× 10−6 m3/mol

 Water content COH 1000 (ppm H/Si)

 Water content exponent r 1.2

The model assumes uniform elastic properties with a shear modulus of G = 30GPa , Poisson’s ratio ν = 0.25 , and shear wave speed VS = 3× 103 m/s . The reference 
slip velocity is V0 = 10−6 m/s
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in studies of rupture nucleation  (Viesca 2016a, b) and 
seismic cycles  (Barbot 2019b). Chaotic slow-slip cycles 
occurs in near velocity-neutral conditions, i.e., close to 
the stability transition forced by high ambient tempera-
tures. We also consider kinematic friction properties and 
effective normal stress to produce slow-slip events every 
about 1 year with ruptures that last several weeks. Using 
the width of the velocity-weakening intersection of the 
megathrust with the upper mantle, W = 32 km , we arrive 
at Ru = 6.1 and Rb = 0.09 . The lower Rb number than in 
the up-dip segment is justified by a greater proximity to 
the velocity-weakening to velocity-strengthening transi-
tion, which is likely an isotherm. This combination of the 
Ru and Rb numbers produces complex slow-slip events 
encompassing slow earthquakes (Barbot 2019b).

In section E, further down-dip, the slab dives deeper 
into the mantle and the increasing temperature results 
in a long ( W = 53.3 km ) velocity-strengthening segment. 
The frictional contact ends at the brittle–ductile transi-
tion at a depth of 71 km (the difference in depth from the 
volcanic arc originates from the absence of topography 
in the numerical model). For simplicity, we assume the 
same viscoelastic properties for the mantle wedge and 
the oceanic mantle, ignoring a more realistic contrast in 
water content and temperature. The temperature profile 
follows the cooling half-space model with a plate age of 
60  Myr, and a basal mantle temperature of 1673  K. We 
use the viscoelastic properties for dislocation creep of 
wet olivine with 1000  ppm  H/Si  (Hirth and Kohlstedt 
2003). We ignore viscoelastic flow in the arc lower crust. 
We drive viscoelastic flow with the non-zero background 
shortening rate ǫ22 = −10−15/s , where the subscripts 2 
and 3 represent the x2 and x3 coordinates in the horizon-
tal and depth direction, respectively.

We discretize the fault with a mesh fine enough to 
resolve the smallest characteristic lengths of the problem, 
in particular nucleation size and cohesion size. We choose 
the final, uniform fault sampling size of 125  m with a 
numerical convergence test. In the ductile substrate, we 
refine the mesh to resolve the spatial distribution of the 
stress change caused by megathrust earthquakes. We use 
10-km-sized cross-section volume elements. The ductile 
substrate is represented by an unstructured mesh of trian-
gular elements (Barbot 2018a, b).

System‑level dynamics of a subduction megathrust
The two-dimensional subduction model simulates the 
dynamics of the megathrust and the surrounding asthe-
nosphere during seismic cycles, including full and partial 
ruptures of the seismogenic zone, foreshocks and after-
shocks, shallow slow-slip events, deep long-term and 
short-term slow-slip events, creep and afterslip, and vis-
coelastic relaxation in the ductile substrate (Figs. 3, 4, 5, 6).

Megathrust dynamics in the fault area within or adjoin-
ing the accretionary prism is perhaps the most complex 
of the model. The slip deficit is released by a wide range 
of slip styles that include long-term creep waves, partial 
coupling, slow and fast creep, afterslip, slow-slip events, 
and slow earthquakes (Figs. 3 and 4). The 450-year win-
dow into the seismic cycle shows no cyclic pattern what-
soever. Every full or shallow rupture of the seismogenic 
zone is followed by a long-period afterslip in segment A 
that endures across multiple earthquake cycles, including 
across super-cycles that is defined as the period between 
two full ruptures. The long afterslip response is better 
characterized as a long-term creep wave. In the inter-
seismic period, creep propagates into the seismogenic 
zone from the top, resulting in the occurrence of slow-
slip events of increasing sizes. Some events culminate to 
a partial shallow rupture of the seismogenic zone. During 
the few years that precede full or shallow earthquakes, 
the shallow megathrust appears to creep near or at a 
fraction of plate rate. In general, the creep velocity is not 
uniform in the accretionary region, exhibiting a complex 
spatial pattern of partial locking.

Rupture dynamics in the seismogenic zone is also 
complex, inherently due to the high Ru number, but 
also because of interactions with the quasi-stable accre-
tionary prism and the slow-slip region. The megathrust 
generates earthquake super-cycles, defined here as the 
period separating two full ruptures of the seismogenic 
zone, with repeating periods varying from 30 to 180 
years, with most super-cycles taking 120 years. Within a 
super-cycle, the recurrence time of full and partial rup-
tures—aftershocks excluded—is irregular, ranging from 
10 to 75 years. Most earthquakes nucleate near the top 
and bottom boundaries of the seismogenic zone due to 
concentrated shear stress caused by creep or slow slip in 
the neighboring segments. A shallow foreshock sequence 
sometimes precede a full rupture, for example, the shal-
low events leading up to full rupture 54 (Fig. 6). All earth-
quakes are followed by afterslip on the deep megathrust 
and viscoelastic relaxation in the oceanic asthenosphere 
and the mantle wedge. Event 46 represents an aftershock 
of a full rupture (event 45).

Long-term and short-term slow-slip events recur 
every 4 years and 11 months, respectively. But the over-
all dynamics of slow-slip events is complex due to the 
systematic interaction of the short-term and long-term 
slow-slip regions, the trench-ward migration of the cou-
pling boundary, and the long-term modulation by seis-
mogenic zone ruptures. The model illuminates a range of 
interactions between the seismogenic zone and the slow-
slip region. Most of the great earthquakes that rupture the 
entire seismogenic zone penetrate through the down-dip 
slow-slip region. However, the full ruptures that initiate at 
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shallow depth sometimes terminate before reaching the 
down-dip boundary of the seismogenic zone and do not 
propagate into the slow-slip region. For example, the full 
ruptures 43 and 54 stretch from the up-dip boundary of 
seismogenic zone to the down-dip boundary of the slow-
slip region, but full rupture 45 instead triggers a deep 
aftershock in the slow-slip region (Fig. 6). During a super-
cycle, the shallow partial ruptures arrest within the seis-
mogenic zone and all deep partial ruptures penetrate into 
the slow-slip region. All ruptures that propagate in the 
slow-slip region greatly perturb the recurrence pattern of 
slow-slip events, sometimes for decades. The long-term 
slow-slip region is the most frequently and most durably 
affected due to its proximity with the seismogenic zone.

The recurrence pattern of slow-slip events is perturbed 
by interactions between the short-term and long-term 
slow-slip events and interseismic migration of the lock-
ing depth. As the locking depth of the seismogenic zone 
slowly migrates towards the trench, the width of the 
creeping section is expanded up-dip of segment C, leading 
to expansion of the long-term slow-slip ruptures (Figs. 3e, 
4c). The short-term slow-slip events have stable peak slip 
rates and recurrence times in the early stage. However, 
the slowly expanding long-term slow-slip events eventu-
ally affects the short-term slow-slip events, which exhibit 
greater variability in slip rates and recurrence intervals in 
the later stage of the interseismic period (Figs. 3e, 4d). As 
a result, the recurrence pattern of long-term and short-
term slow-slip events are opposite: the long-term slow-
slip events, closer to the seismogenic zone, are suppressed 
in the early stage of the seismic cycle, and correspond-
ingly, the short-term slow-slip events are quasi-periodic. 
Later in the seismic cycle, long-term slow-slip events are 
well developed, and the short-term slow-slip events fea-
ture a complex, aperiodic cycle.

Due in part to the chaotic dynamics of slow slip in 
segment D induced by the coordinates of the physi-
cal parameters in phase space, the short-term slow-slip 
sequences exhibit tremendous complexity. This is exem-
plified in two slow-slip sequences that start at about 930 
and 1093 years after the beginning of  the simulation 
(Fig.  5). As the locking depth of the seismogenic zone 
migrates up-dip, the long-term slow-slip events in seg-
ment C are facilitated, triggering larger stress pertur-
bation in segment D when it is expanding up-dip and 

down-dip (Fig. 5a, e). The slow slip reaching the segment 
boundary breaks into segment D, generating a relatively 
rapid slow-slip event that propagates faster and bilater-
ally, lasting half an hour for the first sequence (Fig.  5d) 
or one day for the second sequence (Fig.  5h). A faster 
rupture nucleates immediately thereafter and breaks the 
entire locked section of segment D, eventually trigger-
ing another slow-slip event (Fig. 5b, f ) in segment C. The 
evolution of these two sequences of slow slip and slow 
earthquakes demonstrates that the migration of deep 
slow slip can facilitate the nucleation of adjacent slow 
earthquakes. Conversely, the propagation of slow earth-
quakes affects the pattern of long-term and short-term 
slow-slip events. These sequences are reminiscent of the 
slow slip transient that was excited during an episodic 
tremor and slip event at the down-dip extension of the 
locked zone beneath western Shikoku Island in South-
west Japan (Kano et al. 2019).

At greater depth, fault dynamics is much simpler, dom-
inated by continuous creep at plate rate during most of 
the seismic cycle, but occasionally interrupted by after-
slip following full and partial ruptures (Figs. 3a, 4f ). The 
afterslip period consists of a short pulse of rapidly decay-
ing creep that lasts a few years, as observed after all suit-
ably instrumented large subduction earthquakes  (e.g., 
Hsu et al. 2006; Chlieh 2007; Feng et al. 2016; Tsang et al. 
2016; Bedford et al. 2016; Klein et al. 2016; Hu et al. 2016; 
Qiu et al. 2018; Tang et al. 2019; Muto et al. 2011).

In the upper mantle, a transient flow acceleration is 
triggered by the sudden stress perturbation induced by a 
full rupture or a deep partial rupture (Fig.  3b, c). Due to 
variable earthquake sizes and down-dip moment distri-
bution, the peak postseismic strain-rate varies substan-
tially. The full postseismic relaxation takes 50–150 years 
and during some short interseismic periods the induced 
stress perturbation is not fully relaxed. During the post-
seismic transient, the effective viscosity decreases by one 
order of magnitude from its steady-state value (Figs. 2a, 
7a), consistent with the stress dependence of effective 
viscosity. The postseismic strain-rate components ε̇22 , ε̇23 
and ε̇33 increase to 50 times larger than the steady-state 
values, while the locations of the peak strain rates and 
their directions remain the same except for the region 
at a depth of 100 to 200 km below the deeper portion of 
the seismogenic zone and the slow-slip segments (Fig. 7). 

(See figure on next page.)
Fig. 4  a History of slip velocities at the center of each megathrust segment. b Afterslip, slow earthquakes and slow-slip events in the accretionary 
prism. c Full and partial ruptures break the locked seismogenic zone with varying recurrence intervals. d Long-term slow-slip events in the 
metamorphic belt at down-dip of the seismogenic zone. e Short-term slow-slip events in the mantle lid. f Creeping in the mantle wedge corner 
interrupted by afterslip following full and partial ruptures. g Overall peak slip velocity on the megathrust, which captures events that do not rupture 
the segment centers. h The strain rate evolution of the volume element shown as the gray triangle in the mantle wedge in Fig. 3. i The strain rate 
evolution of the volume element shown as the gray triangle in the oceanic mantle in Fig. 3. The indices of ruptures are consistent among figures
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This feature is consistent with the deep SSEs frequently 
loading the viscoelastic substrate. In the particularly long 
earthquake cycles, the relaxation is followed by a slower 
flow with strain-rates lower than the background loading 
rate, which preserves the long-term imposed strain-rate 
on average in the asthenosphere.

Surface dynamics
Recent studies have illuminated the different contribu-
tions of megathrust slip and mantle flow in the dynamics 
of surface deformation (e.g., Barbot 2018b; Hu et al. 2016; 
Noda et al. 2018; Suito 2017; Sun 2014; Qiu et al. 2018; 
Agata et al. 2019; Weiss et al. 2019). In particular, the vis-
coelastic relaxation of the oceanic asthenosphere in these 
models generates retrograde horizontal displacements in 
the forearc during viscoelastic relaxation. We describe 
the surface dynamics by tracking the surface deforma-
tion deficit, i.e., the difference between the cumulative 

displacement and the long-term average throughout 
several earthquake super-cycles (Fig.  8). We compute 
the space-time distribution of surface displacement pro-
duced by fault slip and viscoelastic flow separately by 
multiplying the slip or strain in the regions of interest by 
the respective Green’s function in a post-processing step. 
Overall, the fault slip contribution dominates the sur-
face displacements above the megathrust, but its effect is 
concentrated in the forearc region and is reduced in the 
interseismic period because of re-locking of the seismo-
genic zone. Partial ruptures also produce sudden surface 
displacements. The complex behavior of the shallow seg-
ment generates long-term displacements in the accre-
tionary prism and in  the outer rise. Viscoelastic surface 
deformation is most rapid in the several years following 
large earthquakes, after which viscoelastic flow gradu-
ally returns to background rates in the following 50 to 80 
years. The surface displacements produced by viscoelastic 
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flow are more distributed than those produced by fault 
slip, spreading across the outer-rise, forearc, and backarc 
regions. All earthquakes, afterslip, slow-slip events and 
creep produce seaward surface displacement. The vis-
coelastic relaxation produces retrograde motion in the 
forearc, most notably above the seismogenic zone. Note 
that the bottom of the seismogenic zone often coincides 
roughly with the continental slope, so this phenomenon 
may only be measured with seafloor geodesy.

The vertical component of the surface deformation 
shows spatial diversity that highly depends on the loca-
tion of the source. The fault slip of a great earthquake 
produces substantial uplift above the major rupture area 
and subsidence in the region landward of the uplifted 
region (Fig.  8b, indicated by colors). The boundary of 
uplift and subsidence regions is about 150 km landward 
from trench. Partial ruptures produce a similar uplift 
and subsidence pattern, but its location varies with the 
distribution of coseismic slip. For example, the surface 
uplift and subsidence pattern created by event 47, which 
occurs in the down-dip portion of the seismogenic zone, 
are farther from the trench than the patterns created by 
event 42 that occurs in the up-dip portion and the full 
rupture 43 (Fig. 8b). The deformation caused by viscoe-
lastic flow is significant during the postseismic period, 
producing uplift within the region between 0 to 150 km 
landward from the trench and the volcanic arc region, 

and subsidence in the outer rise and within the region 
between 150 to 250 km from the trench (Fig. 8c). Some 
important details concerning the dynamics of surface 
deformation may vary among subduction zones depend-
ing on megathrust geometry, the age of the subducting 
plate, and the rheology of the mantle wedge, all of which 
affecting the mechanical response of the brittle–ductile 
system.

System‑level dynamics and impact of mechanical 
coupling
In this section, we compare our coupled subduction 
model with simpler models where only one or a pair of 
velocity-weakening segments are included, assuming 
that the surrounding fault region is velocity strengthen-
ing. This allows us to identify the effect of the mechani-
cal coupling between various nearby segments. First, we 
consider the case of a shallow velocity-weakening region 
that shares the characteristics of segment A, the accre-
tionary prism. In this case, the shallow megathrust pro-
duces creep waves and long nucleations culminating in 
a slow earthquake (Fig. 9a). This behavior is compatible 
with the chaotic slow-slip events that emerge at low Rb 
numbers, producing macroscopic slow-slip interspersed 
by short-duration slow earthquakes  (Barbot 2019b). In 
contrast, the coupled model produces a wider range of 
behaviors at these depths, including slow-slip with slow 
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earthquakes, but also regular slow-slip events, long-term 
creep waves, and afterslip. This comparison illustrates the 
disruptive effect of the nearby seismogenic zone, which 
forces the relaxation of slip deficit in various modes dur-
ing the interseismic period.

Next, we compare the coupled model with a simpler 
case where only the seismogenic zone is included. This 
is done by changing the friction property of segments A, 
C, and D from velocity-weakening to velocity-strength-
ening, keeping the other friction parameters the same. 
The uncoupled model produces super-cycles of great 
regularity, where every event is followed by another in a 

complex, but quasi-periodic repeating sequence (Fig. 9b). 
The recurrence intervals of great earthquakes in the 
uncoupled model are about 95 years, while those in the 
coupled model vary from 70 to 115 in the period con-
sidered (Fig. 9d). The uncoupled model produces recur-
ring partial ruptures during a super-cycle, while partial 
ruptures are not systematic in the coupled model. For 
example, there is no partial rupture during the second 
super-cycle of the period shown in Fig.  9d. The uncou-
pled model illustrates the complexity that spontane-
ously emerges from the nonlinear dynamics of fault slip 
for high Ru numbers (e.g., Barbot 2019b; Cattania 2019). 
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Additional complexity, in particular, aperiodic cycles, is 
obtained by mechanical coupling with the nearby veloc-
ity-weakening segments.

Finally, we examine the dynamics of another sim-
ple model where only the slow-slip events of segments 
C and D are included. The uncoupled model converges 
to a repeating period-two cycle of short-term and long-
term slow-slip events (Fig.  9c). In comparison, the cou-
pled model shows a reduced amplitude of the slow-slip 
events, possibly due to the locking of the seismogenic 
zone (Fig.  9e, f ). Following great earthquakes or deep 
partial ruptures, afterslip propagates down-dip into the 
slow-slip region, weakening the fault segment and releas-
ing the strain energy. The long-term slow-slip events 
are suppressed for 10 to 50 years, depending on the size 
of the earthquake (Fig.  9g). The short-term slow-slip 
events are accelerated for several years, after which they 
resume their natural recurrence pattern (Fig.  9h). The 
acceleration of short-term slow-slip events following a 
great earthquake is reminiscent of the increased tremors 
and slow-slip activity after the 2011 Tohoku-Oki earth-
quake (Nishikawa et al. 2019). As the long-term slow-slip 
events become more significant in the later stage of an 
earthquake cycle, they produce larger stress perturba-
tion in the neighboring segments, which in turn leads to 
the variability of the recurrence time and amplitude of 
short-term slow-slip events. That slow-slip events in the 
metamorphic belt are inhibited in the decades following 
large earthquakes may explain the absence of recurring 
slow-slip observations in the Sunda trench. The series 
of recent Sumatra earthquakes, the 2004 Aceh–Anda-
man, the 2005 Nias, the 2007 Bengkulu earthquakes, may 
indeed have suppressed the slow-slip phenomenon in 
the region for several decades. If the model applies to the 
Sunda trench, slow-slip events should resume in the next 
decades.

Seismic cycles modulated by viscoelastic flow
With the model assumption of the viscoelastic flow pre-
sented in Table  1, the viscoelastic flow in upper mantle 
gradually modulates the earthquake super-cycle and the 
evolution of slow-slip events. This effect is illustrated 
by comparing the dynamics of the coupled model with 
another one where the upper mantle flow is preempted. 
In the latter, the fault slip is the only deformation mecha-
nism included. We build earthquake catalogs for the two 
models and both of them show high variability in the size 
and recurrence time of earthquakes (Fig. 10a, b).

To represent the evolution of the super-cycle, the slip 
deficit at the center of the seismogenic zone, which is the 
difference between the cumulative slip and the long-term 
loading, are plotted for both models in Fig. 10c. The effect 
of viscoelastic flow accumulates for 5 super-cycles (560 

years), after which it starts to modulate the short-term 
slow-slip events that are located in the deepest velocity-
weakening segment, also the closest to upper-mantle flow 
(Fig. 10f ). The modulated short-term slow-slip behavior 
in turn decelerates long-term slow-slip events and influ-
ences earthquake cycles in the up-dip segments, amplify-
ing the impact originated from viscoelastic flow (Fig. 10d, 
e).

The statistics of recurrence intervals of earthquakes and 
lengths of super-cycles are shown in Fig. 10g, h, respec-
tively. With the cumulative effect from viscoelastic flow, 
the earthquake recurrence time shows a more random 
pattern, even  though the most frequent recurrence time 
of ∼ 55 years is the same in both cases. Surprisingly, the 
super-cycles modulated by asthenosphere flow are more 
concentrated, around 75 and 120 years. This could be 
related to the interactions between deep partial ruptures 
and slow-slip events. When long-term and short-term 
slow-slip events are decelerated by viscoelastic flow, the 
buildup of shear strain neighboring the slow-slip region 
may be slackened, which might delay a partial rupture 
that nucleates near the bottom of the seismogenic zone to 
the next super-cycle. For example, when viscoelastic flow 
in the asthenosphere is included, the full rupture events 
32 and 33 occur consecutively (Fig.  10a) and the super-
cycle lasts a shorter period. When viscoelastic flow is not 
activated, partial ruptures always occur between two full 
ruptures (Fig.    10b), and the super-cycles span a longer 
period.

Discussion
Fault dynamics at subduction megathrusts is impacted 
by the structure, composition, and temperature of the 
rock assembly at the plate interface. A structural model 
such as the one described in the second Section pro-
vides the constitutive and boundary conditions for the 
seismic cycle, but tremendous complexity emerges from 
the nonlinear dynamics of frictional sliding, the interac-
tions among fault segments, and the coupling between 
brittle and ductile deformation. The simulations of meg-
athrust dynamics illustrate the system-level behavior 
of a complex mechanical system. Analyses of simpler 
architectures provide useful insights, for example, how 
ruptures styles can be associated with certain combina-
tions of physical and geometrical parameters. However, 
some unique behaviors only unfold with added structural 
complexity. The presence of fault bends, the triggering of 
neighboring segments, and the long-range interactions 
between the brittle lithosphere and the ductile astheno-
sphere play an important role.

Despite the emerging complexity, the structural bound-
aries provide a virtually permanent setup that bounds 
the overall mechanical behavior. The slow-slip events are 
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modulated by nearby ruptures, but the slow-slip cycle 
endures over multiple seismic cycles or super-cycles. 
Different types of ruptures, slow and fast, occur near the 
boundaries of the seismogenic zone, but full and partial 
ruptures still represent the dominant style of rupture in 
the forearc. The cycles are aperiodic, but the types of rup-
tures are pre-determined.

A first-order understanding of the down-dip segmen-
tation of the seismic cycle at subduction zone benefits 
from integrating geological and theoretical insights. The 
variability of earthquake sizes results from the nonlin-
ear dynamics of fault slip, favored by a short weaken-
ing distance and a large seismogenic zone. Megathrusts 
intersect the cold, brittle crust at low angle, providing a 
large area for great and giant ruptures, but also the con-
ditions for complex earthquake cycles. This has impor-
tant implications for understanding seismic hazards, 
because no temporal window of observation may capture 
a representative seismic cycle or super-cycle. The inter-
actions between the seismogenic zone and the neighbor-
ing segments introduce dramatic changes in the seismic 
cycle  and the mechanical system never converges to 
a limit cycle. In addition, viscoelastic flow in the asthe-
nosphere produces a subtle modulation of the recur-
rence times and, in some case, rupture styles, on the 
megathrust.

The proposed mechanical model of the Nankai Trough 
highlights some important differences with other sub-
duction zones. For example, the Cascadia subduction 
zone does not feature the type of long-term slow-slip 
events found in the Nankai. The structural layout of the 
Middle American trench differs crucially, with long-
term and short-term slow-slip events taking place along 
a large-scale ramp-flat section of the megathrust. In 
the Japan trench, giant ruptures break all the way to the 
trench, a type of event that does not appear in the cur-
rent simulations. The development of long-term slow-slip 
events in our model requires the presence of a wide met-
amorphic belt in the mantle wedge corner. Perhaps due 
to its temperature profile and degree of metamorphism, 
this region may be under-developed in Cascadia or along 
the Chilean trench.

The model does not explain the formation of tsunami 
earthquakes in some accretionary regions. Tsunami 
earthquakes may occur in a more sophisticated model 
that better resolves the internal stratification of the accre-
tionary wedge  (Leggett et  al. 1985; Moore et  al. 1990; 
Park et al. 2000; Kodaira et al. 2000; Takahashi et al. 2003; 
Ito et  al. 2009), with different properties in the  frontal 
prism, e.g., high-angle ramps, smectite and illite lay-
ers (Saffer and Marone 2003; den Hartog et al. 2012). The 
model does captures the unstable nature of the accretion-
ary wedge, but many different rupture styles and types 

of seismic cycles can be obtained in an unstable domain, 
depending on the details of the parameters and where 
they fall in phase space. In addition, even with the same 
frictional parameters, the dynamics of two accretionary 
prisms may be grossly dissimilar, simply based on their 
geometry, i.e.,  width on the megathrust, dip angle of 
basal décollement, distance to the free surface (sediment 
thickness), and degree of internal deformation. There-
fore, we expect different behaviors in a sediment-thick 
Lesser Antilles subduction zone and a sediment-starved 
northern Chile margin, for example.  The fabric  of the 
upper plate also varies greatly within the Nankai Trough, 
with a mega-splay fault bounding the accretionary prism 
from the forearc offshore the Kii Peninsula (Park et  al. 
2002), with many reverse faults occupying the entire 
outer wedge (Park et  al. 2010; Kamei et  al. 2012; Tsuji 
et al. 2014, 2015, 2017; Shiraishi et al. 2019). We therefore 
anticipate important along-strike variations with differ-
ent rupture styles in the accretionary region even within 
the Nankai Trough.

Conclusions
The down-dip segmentation of rupture styles at subduc-
tion zones indicates a strong control from the thermo-
mechanical structure and composition of the upper plate. 
At the Nankai  Trough, the development of slow earth-
quakes, large earthquakes, and long-term and short-
term slow-slip events can be reconciled with a structural 
model that considers the intersection of the megathrust 
with the accretionary prism, the arc crust, a metamor-
phic belt, the mantle lid, and some important isotherms 
coinciding with the stability transition of granitic rocks 
and peridotite (Fig. 11). The geological structure provides 
the boundary and physical conditions for the unfolding 
of the seismic cycle. Using the integral method within a 
two-dimensional approximation, we simulate the seis-
mic cycle in the viscoelastic medium of the lithosphere–
asthenosphere system. With a choice of parameters 
informed by the geological setting, laboratory experi-
ments, and theoretical insights, we reproduce several key 
rupture styles with their structural setting, providing new 
insights into the coupled dynamics of slow and fast rup-
tures and distributed deformation at subduction zones.

Our model illustrates how the geological structure of 
the overriding plate controls the down-dip segmentation 
of ruptures styles, but also how the nonlinear behavior 
of fault dynamics and the interactions of various parts of 
the mechanical system induce additional complexity. For 
example, the recurrence time and magnitudes of earth-
quakes and slow-slip events exhibit great variability. The 
short-term slow-slip events can be accelerated for several 
years following a great earthquake, and the long-term 
slow slip can be suppressed for decades in the early stage 
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of a super-cycle. This suggests the possible sudden reacti-
vation of slow slip after a long period of creep following a 
great earthquake. The propagation of creep waves in the 
shallowest segment reflects the instability of shallow slip 
and a potential for tsunami-genic ruptures.

Our modeling approach is well suited to simulate fault 
dynamics within a complex geological framework. Future 
work will expand the structural complexity. For example, 
coupling in-plane and anti-plane fault dynamics may be 
important to represent the oblique convergence at a plate 
boundary, which is partitioned into the megathrust and 
an along-arc strike–slip fault in many regions. Addition 
of splay faults, backthrusts, and normal faults may better 
represent the seismicity at subduction zones. Eventually, 
three-dimensional models will be required to capture 
along-strike segmentation and to produce more realistic 
simulations of seismological and geodetic data.
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