
Toepfer et al. Earth, Planets and Space           (2021) 73:65  
https://doi.org/10.1186/s40623-021-01386-4

FULL PAPER

The Mie representation for Mercury’s 
magnetic field
S. Toepfer1*, Y. Narita2,3, K. ‑H. Glassmeier3, D. Heyner3, P. Kolhey3, U. Motschmann1,4 and B. Langlais5

Abstract 

The parameterization of the magnetospheric field contribution, generated by currents flowing in the magnetosphere 
is of major importance for the analysis of Mercury’s internal magnetic field. Using a combination of the Gauss and the 
Mie representation (toroidal–poloidal decomposition) for the parameterization of the magnetic field enables the anal‑
ysis of magnetic field data measured in current carrying regions in the vicinity of Mercury. In view of the BepiColombo 
mission, the magnetic field resulting from the plasma interaction of Mercury with the solar wind is simulated with a 
hybrid simulation code and the internal Gauss coefficients for the dipole, quadrupole and octupole field are recon‑
structed from the data, evaluated along the prospective trajectories of the Mercury Planetary Orbiter (MPO) using 
Capon’s method. Especially, it turns out that a high‑precision determination of Mercury’s octupole field is expectable 
from the future analysis of the magnetic field data measured by the magnetometer on board MPO. Furthermore, 
magnetic field data of the MESSENGER mission are analyzed and the reconstructed internal Gauss coefficients are in 
reasonable agreement with the results from more conventional methods such as the least‑square fit.
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Introduction
Characterization of Mercury’s internal magnetic field is 
one of the primary goals of the BepiColombo mission 
(Benkhoff et al. 2010). The magnetic field in the vicinity 
of Mercury is composed of internal and external parts. 
The internal field originates in the dynamo-generated 
field, crustal remanent field and induction field, which 
are mainly dominated by the dipole, quadrupole and 
octupole field. The external field originates from cur-
rents flowing in the magnetosphere. For a clear sepa-
ration of the internal magnetic field from the external 
field, each part of the magnetic field has to be mod-
eled properly. Especially the parameterization of the 
external parts is of major importance since these parts 

contribute a significant amount to the total field within 
Mercury’s magnetosphere (Anderson et al. 2011).

Above the planetary surface, the internal part of 
the field is a current-free magnetic field which can be 
parameterized by the Gauss representation (Gauß 1839; 
Glassmeier and Tsurutani 2014). When only data in 
source-free regions without currents are analyzed, the 
Gauss representation also yields a parametrization for 
the external parts of the field (Olsen et al. 2010). But in 
the vicinity of Mercury significant currents are expected 
(Anderson et al. 2011, eg); and therefore, the Gauss rep-
resentation is insufficient due to the current-generated 
magnetic field outside the planet. In this paper, we con-
struct a parametric Mercury magnetic field model by 
extending the Gauss representation to the Gauss–Mie 
representation.

Previous studies parameterized the external parts by 
making use of a global magnetospheric model, such as 
the paraboloid model for Mercury’s magnetosphere 
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(Alexeev et al. 2008), that has successfully been applied to 
the analysis of Mercury’s internal and external magnetic 
field (Alexeev et al. 2010; Johnson et al. 2021), as well as 
the modified Tsyganenko model (Korth et  al. 2004). As 
an alternative for these models the Mie representation 
is useful for decomposing the magnetic field in current 
carrying regions in the vicinity of Mercury (Backus 1986; 
Olsen 1997; Olsen et al. 2010).

The Mie representation, also known as toroidal-poloi-
dal decomposition, is based on the solenoidality of the 
magnetic field and enables to decompose the field into 
its toroidal and poloidal parts (Backus 1986; Backus et al. 
1996; Kazantsev and Kardakov 2019). This representa-
tion has successfully been applied to several problems 
in space plasma physics, especially for the analysis of the 
Earth’s magnetosphere. For example, Engels and Olsen 
(1999) used the Mie representation for calculating the 
magnetic effect caused by a three dimensional current 
density model. Olsen (1997) applied the Mie representa-
tion to reconstruct ionospheric F-currents in the Earth’s 
magnetosphere from MAGSAT data. Furthermore, Bayer 
et  al. (2001) introduced the wavelet Mie representation 
of the magnetic field to calculate current densities from 
MAGSAT and CHAMP data. This approach has been 
expanded on the modeling of the Earth’s magnetic field in 
terms of vector kernel functions (Mayer and Maier 2006). 
Kosik (1984) constructed a model for the Earth’s magne-
tosphere based on the Mie representation.

In this work, the magnetic field in the vicinity of Mer-
cury is parameterized by a combination of the Gauss and 
the Mie representation (hereafter, Gauss–Mie representa-
tion), based on the works of Backus (1986), Backus et al. 
(1996) and Olsen (1997), for analyzing Mercury’s internal 
magnetic field. The desired internal Gauss coefficients for 
the dipole, quadrupole and octupole field are estimated 
with Capon’s method (Capon 1969). The Capon method 
serves as a powerful inversion method for linear inverse 
problems and was used by, e.g., Motschmann et al. (1996), 
Glassmeier et  al. (2001), Narita et  al. (2006) and Narita 
(2012) to evaluate spatial spectra of space plasma waves. 
As shown by Toepfer et al. (2020a) the Capon method can 
also be used in a generalized way to compare actual meas-
urements with theoretical models. Here, we expand on 
this method. First of all, the mathematical foundations of 
the Mie representation, as derived by Backus (1986) and 
Backus et al. (1996) are revisited. Afterwards, the resulting 
thin shell approximation is applied to simulated magnetic 
field data, that are evaluated along the future data points 
of the Mercury Planetary Orbiter (MPO). This enables the 
judgement of the expectable inversion results from the 
data of the magnetometer (Glassmeier et al. 2010; Heyner 
et al. 2020) on board MPO. Finally, the model is applied 
to MESSENGER data and the reconstructed Gauss 

coefficients are compared with the results of former 
works by Anderson et al. (2012), Thébault et al. (2018) and 
Wardinski et al. (2019).

The Mie representation
The solenoidality of the magnetic field B guarantees the 
existence of a vector potential A , so that

holds, where ∂x is the spatial derivative. Using spherical 
coordinates with radius r ∈ [0,∞) , longitude � ∈ [0, 2π ] 
and co-latitude angle θ ∈ [0,π ] the vector potential can 
be seperated into its component �T r parallel to r = r er , 
where er is the unit vector in radial direction, and its 
components F × r perpendicular to r , yielding

with the scalar functions �T and ϕ as well as a vector 
field F  (Jacobs 1987; Krause and Rädler 1980). Because of 
∂x × ∂xϕ = 0 , the function ϕ can be chosen properly so 
that ∂x × F = 0 holds, and therefore

with a scalar function �P without changing the magnetic 
field (Jacobs 1987; Krause and Rädler 1980). The vector 
potential results in

Substituting A into Eq. (1) delivers

which is called the Mie representation of the magnetic 
field (Backus 1986; Backus et al. 1996).

The first term on the right hand side in Eq. (6)

is the toroidal part of the field and the second term

is the poloidal part of B.
From the definition of BT  and BP it is clear that BT  is 

perpendicular to BP and also perpendicular to r  . There-
fore, the toroidal part of the field does not have a radial 
component. Furthermore, poloidal magnetic fields are 
generated by toroidal currents and vice versa:

is a poloidal vector and

(1)B = ∂x × A

(2)A = �T r + F × r + ∂xϕ

(3)F = ∂x�P

(4)A = �T r + ∂x�P × r

(5)= �T r + ∂x × (�Pr).

(6)B = ∂x × (�T r)+ ∂x ×
[

∂x × (�Pr)
]

,

(7)BT = ∂x × (�T r)

(8)BP = ∂x ×
[

∂x × (�Pr)
]

(9)∂x × BT = ∂x ×
[

∂x × (r�T )
]
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is a toroidal vector.
In curl-free regions where especially the poloidal cur-

rent density j
P
 vanishes, Ampère’s law reads as follows:

or equivalently

 Therefore, the gradient of ∂r(r�T ) has only a radial com-
ponent, leaving us with

so that the function �T solely depends on the radial dis-
tance from the center (�T = �T (r)) and thus, the toroi-
dal magnetic field vanishes

On the other hand, when the toroidal current density 
vanishes

 or equivalently

and simulanously

the function ∂2x�P solely depends on the radius. There-
fore, the poloidal field

in general remains finite in current-free regions.

Relation to the Gauss representation
When magnetic field data in curl-free regions (where 
∂x × B = 0 holds) are analyzed, there exists a scalar poten-
tial � so that the magnetic field can be written as

(10)
∂x × BP = ∂x ×

[

∂x ×
[

∂x × (r�P)
]]

= ∂x ×

[(

−∂2x�P

)

r
]

(11)
µ0jP

= ∂x ×
[

∂x × (�T r)
]

= −r∂2x�T + ∂x∂r(r�T ) = 0

(12)∂x∂r(r�T ) = r∂2x�T .

(13)∂��T = 0 = ∂θ�T ,

(14)
BT = ∂x × (�T r) =

(

∂x�T

)

× r = ∂r�T er × r = 0.

(15)
µ0jT

= ∂x × ∂x ×
[

∂x × (�Pr)
]

= ∂x ×

[

−r
(

∂2x�P

)

er

]

(16)

=
1

r sin(θ)
∂ϕ

[

−r∂2x�P

]

eθ −
1

r
∂θ

[

−r∂2x�P

]

eϕ

(17)= 0

(18)∂ϕ∂
2
x�P = 0

(19)∂θ∂
2
x�P = 0

(20)
BP = ∂x ×

[

∂x × (�Pr)
]

= −r∂2x�P + ∂x∂r(r�P) �= 0

which is known as the Gauss representation of the mag-
netic field (Gauß 1839; Glassmeier and Tsurutani 2014). 
Simultanously, the Mie representation in due considera-
tion that the toroidal magnetic field vanishes in curl-free 
regions is given by

Comparison of coefficients with Eq. (21) for eθ shows that

and analogously for e�

Consequently, when �P is known, the scalar potential is 
given by

Comparison of the er-coefficients delivers

or equivalently

where

is the angular part of the Laplacian. For a given � , 
the function �P can be found by solving Eqs. (27, 29) 
simultanously.

As a consequence, the scalar function �P and the sca-
lar potential � are equivalent in curl-free regions and the 
Mie representation transists into the Gauss representa-
tion. Thus, the Gauss representation can be understood 
as a special case of the Mie representation.

(21)

B = −∂x� = −∂r� er −
1

r
∂θ� eθ −

1

r sin(θ)
∂�� e�,

(22)B = ∂x ×
[

∂x × (�Pr)
]

(23)

=
1

r sin(θ)

[

−∂θ (sin(θ)∂θ�P)−
1

sin(θ)
∂2
�
�P

]

er

(24)+
1

r
∂θ∂r(r�P)eθ +

1

r sin(θ)
∂�∂r(r�P)e�

(25)
1

r
∂r∂θ (r�P) = −

1

r
∂θ�

(26)
1

r sin(θ)
∂r∂�(r�P) = −

1

r sin(θ)
∂��.

(27)� = −∂r(r�P).

(28)

1

r sin(θ)

[

∂θ (sin(θ)∂θ�P)+
1

sin(θ)
∂2
�
�P

]

= ∂r�

(29)∂2S�P =
1

r
∂r�,

(30)∂2S =
1

r2 sin(θ)
∂θ (sin(θ)∂θ )+

1

r2 sin2(θ)
∂2
�
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Parameterization of the magnetic field
Assuming that the conductivity of Mercury’s mantle 
is negligibly small (like lunar regolith (Zharkova et  al. 
2020)), the planetary contribution to the field outside 
Mercury is purely poloidal. The currents flowing in the 
magnetosphere generate poloidal and toroidal magnetic 
fields that superpose with the curl-free planetary mag-
netic field. To be able to separate the planetary magnetic 
field out of the measured field and to parameterize it via 
the Gauss coefficients, a combined parametrization com-
posed of the Mie and the Gauss representation (Gauss–
Mie representation), which is based on the works of 
Backus (1986) and Olsen (1997) is necessary.

Suppose that the magnetic field in the vicinity of Mer-
cury is measured within a spherical shell S(a, c) with 
inner radius a > RM , where RM indicates the radius of 
Mercury, outer radius c and mean radius b = 1

2
(a+ c) 

as displayed in Fig.  1. The shell can be constructed 
independently of the orbit’s geometry by conceptually 
covering the orbit of the spacecraft. Furthermore, the 
shell may include current carrying regions. Although 
the Mie representation enables us to analyze those cur-
rents, we focus on the analysis of Mercury’s internal 
magnetic field.

Due to the underlying geometry, the space around 
Mercury can be decomposed into three disjoint radial 
zones:

• points in the region r < a below the shell
• points in the region r > c above the shell
• points in the region a ≤ r ≤ c inside the shell layer

Making use of the superposition principle the total 
magnetic field B measured inside the shell layer 
( a ≤ r ≤ c ) is a composition of the field Bj∈[a,c] gener-
ated by currents flowing inside the shell and the field 
Bj /∈[a,c] generated by currents flowing outside the shell. 
Again considering the underlying geometry, the second 
part can be divided into an internal part Bi resulting 
from currents flowing in the region r < a and an exter-
nal part Be resulting from currents flowing in the region 
r > c , so that

As Bi and Be have their sources beyond the shell they are 
purely poloidal and especially nonrotational within the 
shell. Thus, there exist scalar potentials �i and �e so that 
the field can be parameterized in the shell via the Gauss 
representation resulting in

(31)Bj /∈[a,c] = Bi + Be.

(32)Bi = − ∂x�
i

and

where the scalar potentials are given by (Gauß 1839; 
Glassmeier and Tsurutani 2014)

and

The expansion coefficients gml  and hml  are the internal 
Gauss coefficients, the coefficients qml  and sml  are the 
external Gauss coefficients and Pm

l  are the Schmidt nor-
malized Legendre polynomials of degree l and order m. 
Since Mercury’s internal magnetic field is dominated by 
the internal dipole, quadrupole and octupole fields, the 
series expansions in Eqs. (34, 35) will be truncated at the 
degree l = 3 for the practical application.

It should be noted that the internal field Bi is canoni-
cally described in a Mercury-Body-Fixed co-rotating 
coordinate system (MBF), whereas the external field Be is 
canonically described in a Mercury-Solar-Orbital system 
(MSO) with the x-axis orientated towards the sun, the 
z-axis orientated parallel to the rotation axis, i.e. antipar-
allel to the internal dipole moment, and the y-axis com-
pletes the right-handed system (Heyner et  al. 2020). Let 
xMSO =

(

xMSO, yMSO, zMSO

)T define the MSO coordinate 
system and let xMBF =

(

xMBF, yMBF, zMBF

)T be the coor-
dinates of the co-rotating MBF system. Then, the internal 
parts of the field are given by

whereas the external parts are described in the MSO sys-
tem, i.e.

where the terms of the series expansion are arranged into 
the matrices Hi and He and the corresponding Gauss 
coefficients are summarized into the vectors gi and ge.

The co-rotating MBF system can be transformed into the 
MSO system via

(33)Be = − ∂x�
e,

(34)

�i = RM

∞
∑

l=1

l
∑

m=0

(

RM

r

)l+1

[

gml cos(m�)+ hml sin(m�)
]

Pm
l (cos(θ))

(35)

�e = RM

∞
∑

l=1

l
∑

m=0

(

r

RM

)l

[

qml cos(m�)+ sml sin(m�)
]

Pm
l (cos(θ)).

(36)Bi(xMBF) = −∂xMBF
�i(xMBF) = Hi(xMBF) g

i,

(37)Be(xMSO) = −∂xMSO
�e(xMSO) = He(xMSO) g

e,

(38)xMSO = AxMBF,
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where A describes a rotation matrix around the z-axis 
depending on the angular velocity of Mercury’s self-rota-
tion measured within the MSO system.

For the practical application it is convenient to describe 
both parts of the field in one coordinate system, for 
example the MSO system. The transformed data are 
given by

in the MSO system.
Since for the first validation the model will be applied 

to simulated magentic field data, it is useful to match the 
coordinate system of the parametrization with the coor-
dinate system of the simulation. Therefore, in the fol-
lowing all parts of the magnetic field are described in a 
Mercury-Body-Fixed anti-solar orientated coordinate 
system (MASO) with coordinates x = (x, y, z)T , where 
the x-axis is orientated towards the nightside of Mercury 
(away from the sun), the z-axis is orientated antiparallel 
to the internal dipole moment and the y-axis completes 
the right-handed system, so that

(39)B
(

xMSO

)

= ABi
(

xMBF

)

+ Be
(

xMSO

)

(40)= AHi(xMBF) g
i +He(xMSO) g

e

(41)x =





−1 0 0

0 −1 0

0 0 1



xMSO.

As already mentioned in the introduction ("Introduction" 
section) there is no current-free shell-like region around 
Mercury (Olsen et al. 2010). The currents flowing in the 
shell generate toroidal Bsh

T  and poloidal Bsh
P  magnetic 

fields which superpose with Bi and Be . Thus, the total 
measured field within the shell is composed of four parts 
given by

where each part of the field is described either by a scalar 
potential �i , �e or a scalar function �sh

P  , �sh
T .

The scalar potentials �i and �e are already parameter-
ized by the Gauss coefficients. In the following, a proper 
parameterization for the scalar functions �sh

T  and �sh
P  is 

required. Because of the underlying spherical geometry it 
is straightforward to expand the functions into spherical 
harmonics

and

where aml (r) , b
m
l (r) , c

m
l (r) and dml (r) are the expansion 

coefficients which in general depend on the radius r and 
again Pm

l  are the Schmidt normalized Legendre polyno-
mials. Since the toroidal and poloidal fields can be locally 
generated by currents flowing in the shell the radial 
dependences of the fields and the expansion coefficients, 
respectively, are unknown.

Series expansion of the coefficients
Since the exact radial dependence of the expansion coef-
ficients aml (r) and bml (r) is unknown, it is useful to expand 
these functions into a Taylor series in the vicinity of the 
mean radius b of the shell. Within this series expansion 
it is advisable not to incorporate the effect of all compo-
nents of the poloidal current density to the toroidal mag-
netic field at once. Here, we first concentrate on the radial 
component of the current density and consider the hori-
zontal components in higher orders of the Taylor series.

The toroidal magnetic field Bsh
T  is generated by poloidal 

currents j
P
 (cf. Eq. (11)). Ampère’s law yields

(42)B = Bj /∈[a,c] + Bj∈[a,c] = Bi + Be + Bsh
T + Bsh

P

(43)
= −∂x�

i − ∂x�
e + ∂x ×

[

∂x ×

(

r�sh
P

)]

+ ∂x ×

(

r�sh
T

)

,

(44)

�sh
T =

∞
∑

l=1

l
∑

m=0

[

aml (r) cos(m�)+ bml (r) sin(m�)
]

Pm
l (cos(θ))

(45)

�sh
P

= RM

∞
∑

l=1

l
∑

m=0
[

c
m

l
(r) cos(m�)+ d

m

l
(r) sin(m�)

]

P
m

l
(cos(θ)),

Fig. 1 Cross section of the spherical shell S(a, c) with inner radius a , 
outer radius c and mean radius b = (a+ c)/2 . The inner sphere with 
radius RM symbolizes Mercury
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The components of the horizontal eθ - and e�-direction 
are proportional to ∂r

(

r�sh
T

)

 . Therefore, the ansatz

and

where ρ = r−b
RM

 and aml  , a′ml  , bml  , b′ml  are constants for 
each pair of l and m, is utilized. In the first order of the 
Taylor series expansion in the vicinity of the mean radius 
b, where �sh

T ∼ 1
r , the horizontal components of j

P
 van-

ish and only the contributions of the radial currents driv-
ing the toroidal magnetic field are considered (Olsen 
1997). Using higher orders of the Taylor series, also the 
contributions of the horizontal components of j

P
 to the 

toroidal magnetic field in the vicinity of the mean radius 
b can be incorporated.

The scalar function of the toroidal magnetic field 
results in

where αm
l = aml cos(m�)+ bml sin(m�) and 

α′m
l = a′ml cos(m�)+ b′ml sin(m�) (Olsen 1997). 

Thereby, each order of the Taylor series is linked with an 
additional set of expansion coefficients aml  , bml  , a′ml  , b′ml  
and so on which can be reconstructed from the data in 
analogy to the Gauss coefficients.

From a mathematical point of view the scalar func-
tion �sh

P  of the poloidal magnetic field Bsh
P  can be para-

metrized analogously to the toroidal counterpart. But 
within the reconstruction procedure the poloidal fields 
that are generated by toroidal currents flowing inside 
the shell cannot be distinguished from the internally and 
externally driven poloidal fields, since these fields follow 
the same topological structure. But when the half thick-
ness of the shell, defined by h = (c − a)/2 is smaller than 
the length scale on which the toroidal currents change in 
radial direction, the shell is called a thin shell and the sca-
lar function �sh

P  of the poloidal field Bsh
P  vanishes within 

(46)µ0jP
= ∂x × Bsh

T = ∂x ×

[

∂x ×

(

r�sh
T

)]

(47)

=
1

r sin(θ)

[

−∂θ

(

sin(θ)∂θ�
sh
T

)

−
1

sin(θ)
∂2
�
�sh

T

]

er

(48)

+
1

r
∂θ ∂r

(

r�sh
T

)

eθ +
1

r sin(θ)
∂�∂r

(

r�sh
T

)

e�.

(49)aml (r) =
RM

r

[

aml + a′ml ρ +O(ρ2)

]

(50)bml (r) =
RM

r

[

bml + b′ml ρ +O(ρ2)

]

,

(51)

�sh
T =

RM

r

∞
∑

l=1

l
∑

m=0

[

αm
l + α′m

l ρ +O(ρ2)

]

Pm
l (cos(θ)),

this thin shell approximation (Backus 1986; Backus et al. 
1996) as illustrated in the following section.

The thin shell approximation
The thin shell approximation (Backus 1986; Backus et al. 
1996) finally allows the separation of the poloidal field 
into its internal and external contributions.

Conferring to Eq. (6), the Mie representation for the 
magnetic field in the whole space R3 is given by

Following Ampère’s law the current density j is also sole-
noidal and can as well be parameterized via the Mie rep-
resentation resulting in

with related scalar functions ŴT and ŴP.
Since the poloidal part of the current density corre-

sponds with the curl of the toroidal magnetic field, the 
comparision of Eq. (53) with Eq. (9) shows that the scalar 
function �T and ŴP are the same

Analogously, the toroidal part of the current density cor-
responds with the curl of the poloidal magnetic field and 
the comparision of Eq. (53) with Eq. (10) shows that the 
functions �P and ŴT are related via

so that the function �P is given by the Green’s function 
method

Due to the underlying geometry the toroidal current 
density j

T
 flowing in the whole space can be written as 

the sum of the toroidal currents ji
T

 flowing in the region 
r < a , the toroidal currents je

T
 flowing in the region r > c 

and the toroidal currents jsh
T

 flowing inside the spherical 
shell in the region a ≤ r ≤ c , so that

Thereby, the Mie representation of each part is given by

(52)B = ∂x × (�T r)+ ∂x ×
[

∂x × (�Pr)
]

.

(53)µ0j = ∂x × (ŴT r)+ ∂x ×
[

∂x × (ŴPr)
]

(54)�T = ŴP .

(55)∂2x�P = −ŴT ,

(56)�P(r) =
1

4π

∫

R3

ŴT (r
′)

∣

∣r − r′
∣

∣

d3r′.

(57)j
T
= ji

T
+ je

T
+ jsh

T
.

(58)ji
T
= ∂x ×

(

Ŵi
T r

)

(59)je
T
= ∂x ×

(

Ŵe
T r

)
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with Ŵi
T = ŴT χ[r<a] , Ŵe

T = ŴT χ[r>c] and 
Ŵsh
T = ŴT χ[a<r<c] , where

is the indicator function of the interval I. Using this seg-
mentation the scalar function of the poloidal field can be 
rewritten as

Thus, the part of the scalar function that corresponds to 
the poloidal magnetic field which is generated inside the 
shell is given by

Since 2b = a+ c and 2h = c − a the bounds of integra-
tion can be rewritten as a = b− h and c = b+ h , so that

Analogously to the scalar function �T , the function ŴT 
can be expanded into a Taylor series in the vicinity of the 
mean radius b, resulting in

(60)jsh
T

= ∂x ×

(

Ŵsh
T r

)

(61)χI (x) =

{

1 , x ∈ I
0 , x /∈ I

(62)

�P(r) =
1

4π

∫

V (r′<a)

Ŵi
T (r

′)
∣

∣r − r′
∣

∣

d3r′

+
1

4π

∫

V (r′>a)

Ŵe
T (r

′)
∣

∣r − r′
∣

∣

d3r′

+
1

4π

∫

S(a,c)

Ŵsh
T (r′)

∣

∣r − r′
∣

∣

d3r′.

(63)�sh
P (r) =

1

4π

∫

S(a,c)

Ŵsh
T (r′)

∣

∣r − r′
∣

∣

d3r′.

(64)�sh
P (r) =

1

4π

∫

S(b−h,b+h)

Ŵsh
T (r′)

∣

∣r − r′
∣

∣

d3r′.

(65)Ŵsh
T (r′) =

∞
∑

n=0

1

n!
∂nr′Ŵ

sh
T

∣

∣

r′=b
(r′ − b)n.

Substituting the Taylor series into the function �sh
P

 
delivers

For the further evaluation of the integral it is assumed 
that the derivatives of the toroidal currents with respect 
to r are bounded, i.e., there exists a constant L > 0 , so 
that

for n ∈ N . Thus, L represents the length scale on which 
the toroidal currents change in radial direction. From

and therefore

it follows that

or equivalently

Since r′ ∈ [b− h, b+ h] , each summand within the Tay-
lor series can be estimated upwards via

delivering for Eq. (66)

(66)

�sh
P (r) =

1

4π

∞
∑

n=0

1

n!

∫

S(b−h,b+h)
∂nr′Ŵ

sh
T

∣

∣

r′=b

(r′ − b)n
∣

∣r − r′
∣

∣

d3r′.

(67)Ln
∣

∣∂nr jT

∣

∣ ≤
∣

∣j
T

∣

∣

(68)

j
T
= ∂x × (ŴT r)

=
1

sin(θ)
∂�ŴT eθ − ∂θŴT e�

=

(

1

sin(θ)
eθ ∂� − e�∂θ

)

ŴT

(69)∂nr jT
=

(

1

sin(θ)
eθ ∂� − e�∂θ

)

∂nr ŴT

(70)Ln
∣

∣∂nr Ŵ
sh
T

∣

∣ ≤
∣

∣Ŵsh
T

∣

∣

(71)
∣

∣∂nr Ŵ
sh
T

∣

∣ ≤

∣

∣Ŵsh
T

∣

∣

Ln
.

(72)
∣

∣∂nr′Ŵ
sh
T (b)

∣

∣ ·
∣

∣r′ − b
∣

∣

n
≤

∣

∣Ŵsh
T (b)

∣

∣

Ln
· hn

(73)
∣

∣�sh
P (r)

∣

∣ ≤
1

4π

∞
∑

n=0

1

n!

(

h

L

)n

max
θ ′,�′

{∣

∣Ŵsh
T (b)

∣

∣

}

∫

S(b−h,b+h)

1
∣

∣r − r′
∣

∣

d3r′.
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The integral in Eq. (73) may be evaluated for any r ∈ R
3 

but we restrict to r inside the shell as only there the mag-
netic field is measured. Then, the remaining integral 
results in

utilizing that the coordinate system can be chosen 
properly so that θ ′ defines the angle between r and r′ . 
Therefore

For all r ∈ [b− h, b+ h] , the function

is non-negative and reaches its maximum value at 
r = b− h with the related function value f (b− h) = 2bh . 
Therefore, an upper bound for �sh

P  can finally be esti-
mated as

When h ≪ L , the spherical shell is called a thin shell 
(Backus 1986; Backus et  al. 1996) and the scalar func-
tion �sh

P  of the poloidal magnetic field Bsh
P  vanishes. The 

scalar function �sh
T  , however, remains finite for all h as 

shown in Appendix A. Thus, if the shell may be regarded 
as thin, then the contribution of the toroidal currents in 
this shell to the poloidal magnetic field may be neglected. 
The poloidal magnetic field is mainly driven by currents 
beyond the shell. The contribution of the poloidal cur-
rents in this shell to the toroidal magnetic field may not 
be neglected.

From a first point of view the thin shell approxima-
tion is not an intuitive approximation. Considering the 
above presented nature of poloidal and toroidal mag-
netic fields it can be understood as follows:

The toroidal magnetic field only exists within current 
carrying regions (cf. Eq. 14) and thus, it is measurable 
only within these regions. Therefore, the spatial extent 
of the regions where the poloidal currents flow does not 
influence the strength of the toroidal magnetic field. It 
solely depends on the strength of the poloidal current 

(74)
∫

S(b−h,b+h)

1
∣

∣r − r′
∣

∣

d3r′ =
4π

3

1

r

[

r3 − (b− h)3
]

+ 2π

[

(b+ h)2 − r2
]

,

(75)|�sh
P (r

−
)| ≤

∞
∑

n=0

1

n!

(

h

L

)n

max
θ ′,�′

{

|Ŵsh
T (b)|

}

{

1

3

[

r2 −
(b− h)3

r

]

+
1

2

[

(b+ h)2 − r2
]

}

.

(76)f (r) =
1

3

[

r2 −
(b− h)3

r

]

+
1

2

[

(b+ h)2 − r2
]

(77)

∣

∣�sh
P (r)

∣

∣ ≤ 2bh

∞
∑

n=0

1

n!

(

h

L

)n

max
θ ′,�′

{∣

∣Ŵsh
T (b)

∣

∣

}

= 2bL

∞
∑

n=0

1

n!

(

h

L

)n+1

max
θ ′,�′

{∣

∣Ŵsh
T (b)

∣

∣

}

.

density. In contrast to the toroidal magnetic field, the 
poloidal magnetic field is also measurable in current-
free region. Thus, the poloidal field is a superposition of 
fields generated by currents flowing inside and outside 

the shell as well as currents flowing within the shell. 
This superposition is verified in Eq. (62). Therefore, 
the amount of the poloidal field generated by currents 

flowing within the shell has to be compared with the 
amount of the internal/external contributions. Further-
more, the poloidal field does not solely depend on the 
strength of the toroidal current density, since for the 
evaluation of the integrals also the volume where the 
current density flows is vital. Thus, a small toroidal cur-
rent density that flows within a large volume outside/
inside the shell can have a larger contribution to the 
field measured within the shell than a stronger current 
flowing within the thin shell.

Application of the thin shell approximation
The thin shell approximation is applied to parameter-
ize the magnetic field in the vicinity of Mercury by the 
Gauss–Mie representation to reconstruct Mercury’s 
internal magnetic field. The internal and external scalar 
potentials �i and �e are expanded into spherical harmon-
ics up to third degree and order, representing the inter-
nal and external dipole, quadrupole and octupole fields. 
The scalar function �sh

T  of the toroidal magnetic field 
Bsh
T  is expanded into spherical harmonics up to second 

degree and order and additionally into a first order Taylor 
series for the radius. The scalar function �sh

P  of the poloi-
dal field Bsh

P  is neglected within the thin shell approxi-
mation. Therefore, the total field is parameterized by 46 
expansion coefficients, i.e. Gauss internal dipole ( g01 , g11 , 
h11 ), Gauss internal quadrupole ( g02 , g12 , h12 , g

2
2 , h22 ), Gauss 

internal octupole ( g03 , g13 , h13 , g
2
3 , h23 , g

3
3 , h33 ), Gauss exter-

nal dipole ( q01 , q11 , s
1
1 ), Gauss external quadrupole ( q02 , q12 , 

s12 , q
2
2 , s22 ), Gauss external octupole ( q03 , q13 , s

1
3 , q

2
3 , s23 , q

3
3 , 

s33 ), toroidal coefficients ( a01 , a
1
1 , b

1
1 , a

0
2 , a

1
2 , b

1
2 , a

2
2 , b

2
2 , a

′ 0
1  , 

a′ 11  , b′ 11  , a′ 02  , a′ 12  , b′ 12  , a′ 22  , b′ 22  ). These 46 coefficients are 
estimated with Capon’s method (Capon 1969; Toepfer 
et  al. 2020a, b). The Capon method and the underlying 
model are tested against simulated data and MESSEN-
GER in situ data around Mercury.
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Hybrid simulation of Mercury’s magnetosphere
For the first application of the thin shell approxima-
tion simulated magnetic field data are analyzed. The 
magnetic field resulting from the plasma interaction 
of Mercury with the solar wind is simulated with the 
hybrid code AIKEF (Müller et  al. 2011), that has suc-
cessfully been applied to several problems in Mercury’s 
plasma interaction, (Exner et  al. 2018, 2020, e.g.). The 
internal Gauss coefficients g01 = −190 nT (dipole field), 
g02 = −78 nT (quadrupole field) and g03 = −20 nT (octu-
pole field) (Anderson et  al. 2012; Thébault et  al. 2018; 
Wardinski et  al. 2019) are implemented in the simula-
tion code. The interplanetary magnetic field with a mag-
nitude of BIMF = 20 nT is orientated along the vector 
(x, y, z)T = (0.0, 0.43, 0.9)T in the MASO frame. The solar 
wind velocity of vsw = 400 km/s points along the x-axis 
(away from the Sun) and the solar wind proton density 
number was chosen to nsw = 30 cm−3 . The resulting 
magnitude of the magnetic field and the corresponding 
current density in the x-z-plane are displayed in Figs. 2, 3.

The internal dipole field dominates the geometry of 
Mercury’s magnetosphere. Yet the quadrupole field in 
terms of the apparently shifted dipole field is visible. The 
influence of the octupole field is not clearly noticeable on 
the field lines in the figure. Furthermore, the distribution 
of the simulated current density shows that there exist no 
completely current-free region around Mercury.

Reconstruction of the Gauss coefficients from simulated 
data
For the reconstruction of the internal Gauss coeffi-
cients implemented in the simulation code, first of all, 
magnetic field data at a distance of 0.2RM from Mercu-
ry’s surface are evaluated. The data are retrieved along 
meridional circular orbits around Mercury. The orbital 
plane is rotated about the rotation axis (z-axis) from 
− 50

◦ (afternoon/post-midnight sector) over 0◦ (noon/
midnight, x-z-plane) to 50◦ (morning/pre-midnight sec-
tor). For this synthetically generated ideal case in terms 
of the thin shell approximation, the spherical shell that 
covers the circular orbits has a vanishing thickness 
h = 0 so that the application of the thin shell approxi-
mation is surely valid. The reconstructed internal Gauss 
coefficients are listed in Table 1. The optimal diagonal 
loading parameter which determines how the data are 
weighted within the application of Capon’s method 
results in σopt. ≈ 1000 nT (Toepfer et al. 2020b).

The deviation 
∣

∣gint − gint
C

∣

∣ between the recon-
structed internal coefficients gint

C
 and the imple-

mented internal coefficients gint results in 4.0 nT , i.e. 
∣

∣gint − gint
C

∣

∣/
∣

∣gint
∣

∣ ≈ 1.9% and thus, the implemented 

coefficients are reconstructed from the data with good 
precision.

Concerning the BepiColombo mission the generated 
circular orbits are idealized cases which are not realiz-
able in practice. To investigate the applicability of the 
thin shell approximation for elliptical orbits we analyze 
the magnetic field data along the prospective orbits of 
MPO. The orbits are generated in analogy to the cir-
cular orbits, i.e., with the same longitudinal extend. 
Along this trajectories the distances of the data points 
from Mercury’s surface vary from 0.12RM up to 0.6RM 
resulting in a shell thickness of 2h ≈ 0.48RM . Although 
the shell is now much thicker the thin shell approxi-
mation works successfully. The reconstructed Gauss 
coefficients are displayed in Table 2. The optimal diag-
onal loading parameter for the application of Capon’s 
method results in σopt. ≈ 1000 nT.

The deviation between the reconstructed and the 
implemented internal coefficients results in 4.1 nT , i.e. 
1.9% and thus, these values agree with the coefficients 
reconstructed from the data evaluated along the circu-
lar orbits. Since the data are evaluated along the MPO 
orbits, it is expectable that also Mercury’s internal octu-
pole field will be reconstructed with good precision from 
the data of the magnetometer on board MPO.

It should be noted that the extension of the underly-
ing model by the parameterization of the external parts 
of the field using the Gauss–Mie representation improves 
the results significantly. When only the internal parts 

Fig. 2 Simulated magnitude of the magnetic field B in the x‑z‑plane. 
The white lines represent the magnetic field lines and the grey circle 
of radius 1 RM symbolizes Mercury
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of the field Bi are considered in the model, the devia-
tion between the implemented and the reconstructed 
coefficients results in 29.7 nT or 14.4%, respectively (cf. 
Table  2). Additional parameterization of the external 
poloidal fields Be using the external scalar potential �e 
yields a deviation of 10.0 nT or 4.9%, respectively. Thus, 
for the analysis of Mercury’s internal magnetic field, the 
Gauss–Mie representation is a suitable alternative to the 
application of global magnetospheric models.

Validity of the thin shell approximation
The coefficients reconstructed from the data evalu-
ated along the planned MPO trajectories are basically 
in agreement with that from the data along the circular 
orbits although the shell covering the MPO orbits has a 
finite thickness.

To investigate the limits of the thin shell approximation 
within the hybrid simulation, the thickness of the shell is 
increased incrementally. Referring to Eq. (67), the length 
scale L is estimated via radial variation of the current 
distribution

for the horizontal currents j
H
= j −

(

j · er

)

er which are 
used as a proxy for the toroidal currents at each point 
along the orbit. Since L represents a local quantity that 
varies for each point along the orbit, whereas the half 

(78)L =

∣

∣j
H

∣

∣

∣

∣∂r jH

∣

∣

thickness h is a global quantity, the set of resulting length 
scales is averaged over the number of points along the 
orbit resulting in the mean length scale 〈L〉 . It should be 
noted that also the poloidal currents have horizontal 
components. Thus, the estimation of the length scale L 
with the horizontal currents j

H
 as a proxy for the toroidal 

currents is not exact, but it is sufficient for a qualitative 
discussion.

The deviations between the ideal coefficients imple-
mented in the simulation and the reconstructed coeffi-
cients for varying values of h/〈L〉 are displayed in Table 3.

When h approaches 〈L〉 the deviations are greater 
than 12 nT . This deviation is of the same order when the 
parameterization is restricted to the Gauss representa-
tion. But for the data points along the MPO orbits, where 
h/�L� ≈ 0.47 , the application of thin shell approximation 
is justified.

Since a shell of thickness 2h ≈ 0.48RM is called thin, 
the name thin shell is misleading, although this naming 
has been adopted within the literature. Conferring to the 
global length scale of 1RM the shell of thickness 0.48RM 
is not thin, but compared with the current length scale 
L it is. Therefore, the term thin has to be understood in a 
mathematical sense.

Fig. 3 Simulated magnitude of the current density j  in the x‑z‑plane. 
The grey circle of radius 1 RM symbolizes Mercury

Table 1 Implemented and reconstructed Gauss coefficients 
for the dipole, quadrupole and octupole field resulting from the 
simulated data along the circular orbits at a distance of 0.2 RM 
from Mercury’s surface

Gauss coefficient Input in nT Output 
Capon in 
nT

g01 – 190.0 – 191.2

g11 0.0 – 1.9

h11 0.0 – 1.7

g02 – 78.0 – 76.0

g12 0.0 1.3

h12 0.0 – 0.5

g22 0.0 – 0.5

h22 0.0 – 0.2

g03 – 20.0 – 20.3

g13 0.0 0.5

h13 0.0 0.4

g23 0.0 – 0.1

h23 0.0 0.9

g33 0.0 1.0

h33 0.0 – 0.2
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Reconstruction of the Gauss coefficients from MESSENGER 
data
The Gauss–Mie representation has successfully been val-
idated for the simulated data. For the reconstruction of 
the Gauss coefficients from the MESSENGER data only 
data points in the northern hemisphere within a distance 
of r ≤ 1.5RM and x > −0.4 RM from Mercury’s surface 
can be considered because the orbits do not cover the 
southern hemisphere properly.

For the reconstruction of Mercury’s internal magnetic 
field, the data from nine pairs of MESSENGER orbits 
with different orientations of the periapsis between 10. 
August 2012 and 14. July 2014 are analyzed. The combi-
nation of the orbits improves the model resolution com-
pared to the analysis of single orbits. A discussion of the 
model resolution, as provided by Connerney (1981), can 
be found in the Appendix B. As a proof of concept, only 

a small subset of the whole MESSENGER data set is ana-
lyzed. In the case of a small and noisy data set the per-
formance of the estimator can be improved by seperating 
the data set into several subsets (Meir 1994). Therefore, 
the Gauss coefficients are reconstructed for each pair of 
orbits and the results are averaged over the nine pairs. 
Outliers were not included within the averaging. The 
resulting mean values are listed in Table  4. The recon-
structed coefficients for each pair of orbits and the stand-
ard deviations of the mean values are listed in Table 5 of 
Appendix C.

The mean values of the reconstructed internal Gauss 
coefficients and the external dipole coefficients are in fea-
sible agreement with the values provided by Anderson 
et  al. (2012), Thébault et  al. (2018) and Wardinski et  al. 
(2019). Furthermore, the related standard deviations for 
each coefficient are within the range of the variations 
resulting from the time varying magnetic field (Wardin-
ski et al. 2019). To classify the coefficients reconstructed 
from the simulated magnetic field data (Table 2) in terms 
of that resulting from the MESSENGER data, the simu-
lated data are furthermore evaluated along the MESSEN-
GER trajectories. The reconstructed Gauss coefficients 
are listed in Table  6 of Appendix C. These coefficients 
are in agreement with the results presented in Table  4. 
Since the reconstructed coefficients resulting from the 
data evaluated along the MPO trajectories are in bet-
ter agreement with the implemented coefficients than 
the coefficients resulting from the data evaluated along 
the MESSENGER trajectories, the restriction of the data 
points to the northern hemisphere and the related degra-
dation of the model resolution influences the results sig-
nificantly (Heyner et al. 2020, cf ). Furthermore, it should 
be noted that the analysis of the length scales of the cur-
rent densities (cf. "Validity of the thin shell approxima-
tion" section) cannot be performed for the MESSENGER 
orbits, because the current densities in the vicinity of the 
orbits are unknown.

Table 2 Implemented and reconstructed Gauss coefficients 
for the dipole, quadrupole and octupole field resulting from the 
simulated data along the future MPO orbits. For comparision in 
the last columns the reconstructed Gauss coefficients resulting 
from the sole parameterization of the internal parts Bi (Gauss 
internal, 15 coefficients considered within the model) as well 
as the coefficients resulting from the parameterization of the 
internal Bi and external poloidal fields Be (Gauss internal external, 
30 coefficients considered within the model) are presented

Gauss 
coefficient

Input in nT Output capon in nT

Gauss–Mie Gauss internal Gauss 
internal 
external

g01 – 190.0 – 190.9 – 188.3 – 190.2

g11 0.0 – 2.1 0.8 – 0.8

h11 0.0 1.7 – 18.6 – 5.7

g02 – 78.0 – 76.1 – 78.5 – 76.0

g12 0.0 0.7 5.6 3.3

h12 0.0 0.0 0.7 – 0.1

g22 0.0 0.3 0.5 0.4

h22 0.0 0.4 4.1 4.5

g03 – 20.0 – 19.5 – 14.3 – 20.8

g13 0.0 0.6 – 0.5 0.4

h13 0.0 – 0.1 0.9 – 0.2

g23 0.0 – 1.9 15.2 – 2.1

h23 0.0 0.2 0.4 – 0.2

g33 0.0 0.8 – 3.0 – 0.4

h33 0.0 – 0.4 14.4 5.1

q01 – – 34.0 – – 35.9

q11 – – 8.3 – – 7.2

s11 – – 6.4 – – 9.1

Table 3 Deviation between the implemented and the 
reconstructed Gauss coefficients for varying ratios of the half 
thickness h to the mean current length scale 〈L〉

h in RM 〈L〉 in RM h/〈L〉 Devitation in nT Devitation 
in %

0.24 0.51 0.47 4.1 1.9

0.32 0.49 0.65 4.8 2.3

0.43 0.46 0.94 12.8 6.2

0.62 0.42 1.5 13.5 7.0

1.09 0.37 2.9 16.8 8.1
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Summary and outlook
In the vicinity of Mercury no completely current-free 
region is present. Therefore, the Gauss representation 
does not yield a proper parametrization of Mercury’s 
magnetospheric field. Extension of the Gauss represen-
tation to the Gauss–Mie representation allows a more 
complete characterization of Mercury’s internal and 
magnetospheric field.

For the parameterization of the magnetic field the 
orbit where the magnetic field is measured, is conceptu-
ally covered by a spherical shell. Due to the underlying 
geometry the total measured magnetic field is a super-
position of internal and external poloidal fields gener-
ated by toroidal currents flowing outside the spherical 
shell as well as toroidal and poloidal fields generated by 
currents flowing within the shell. Thereby, each compo-
nent of the field is either described by a scalar potential 
( �i , �e ) or a scalar function ( �sh

P  , �sh
T  ). These potentials 

and functions can be expanded into spherical harmon-
ics. When the thickness of the spherical shell is smaller 
than the length scale on which the toroidal current den-
sity changes in radial direction the shell is called a thin 
shell. Then the poloidal field generated by currents flow-
ing inside the shell is negligible compared to the poloi-
dal field generated by currents flowing beyond the shell, 

whereas the toroidal field remains finite. In the case of 
the planned MPO orbits, the thin shell approximation is 
a reasonable choice.

For the application of the thin shell approximation 
the internal Gauss coefficients for the dipole, quadru-
pole and octupole field are implemented in the simula-
tion code AIKEF and the magnetic field data resulting 
from the plasma interaction of Mercury with the solar 
wind are simulated in the vicinity of Mercury. The data 
are evaluated along the planned MPO orbits and the 46 
expansion coefficients, describing the internal, external 
and the toroidal field are reconstructed with Capon’s 
method. Since the reconstructed internal Gauss coef-
ficients are in good agreement with that implemented 
in the simulation code, the parameterization of the 
magnetic field using the Gauss–Mie representation is a 
suitable alternative to the application of global magneto-
spheric models. Even the implemented Gauss coefficient 
for the octupole field of Mercury can be reconstructed 
accurately and therefore, it is expectable that Mercury’s 
internal octupole field will be reconstructed with high 
precision from the magnetometer data on board MPO. 
Thus, it is worthwile to investigate the analysis of higher 
multipoles, such as hexadecapole, from the data along 
the MPO trajectories.

Furthermore, the thin shell approximation is 
applied to reconstruct Mercury’s internal magnetic 
field from the data of the MESSENGER mission. 
The results are in reasonable agreement with former 
works. Since only the data points in the northern 
hemisphere are vital for the analysis of the MESSEN-
GER data, the symmetrically distributed MPO orbits 
will deliver a better model resolution than the MES-
SENGER orbits.

Concerning the BepiColombo mission the com-
bination of the Gauss representation with the Mie 
representation is a useful model for the analysis of 
Mercury’s internal magnetic field. As the BepiCo-
lombo mission consits of two elements, the planetary 
orbiter and the magnetospheric orbiter, measure-
ments of any gradients of Mercury’s magnetic field are 
possible which may lead to further improvements of 
the methods presented here. Besides the analysis of 
the internal magnetic field, the reconstructed coeffi-
cients for the toroidal magnetic field can be used for 
calculating poloidal current systems, e.g. field aligned 
currents, in the vicinity of the orbit where the data are 
evaluated.

Table 4 Gauss coefficients for the internal dipole, quadrupole 
and octupole field and for the external dipole field reconstructed 
from MESSENGER data. In the last colum the ranges of Gauss 
coefficients reconstructed from MESSENGER data by Anderson 
et al. (2012), Thébault et al. (2018) and Wardinski et al. (2019) are 
shown

Gauss coefficient Output capon in nT Ranges of former 
works in nT

g01 – 175.9 – 215.8 to – 190.0

g11 – 1.7 – 2.9 – 0.9

h11 4.5 0.8 – 2.7

g02 – 82.0 – 83.2 to – 57.7

g12 0.8 – 1.5 – 3.4

h12 1.0 – 1.4 – 0.0

g22 2.9 – 7.0 to – 1.4

h22 1.7 – 3.3 – 0.4

g03 – 19.1 – 36.7 to – 15.7

g13 1.1 1.8 – 4.1

h13 0.4 0.3 – 0.8

g23 – 0.5 – 1.5 – 9.2

h23 – 5.9 0.9 – 2.6

g33 – 5.8 – 2.5 to– 1.4

h33 – 3.3 0.1 – 0.3

q01 – 36.6 – 39.7 to – 23.2

q11 – 7.4 – 0.2 – 0.7

s11 0.8 – 0.1 – 1.5
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Appendix A: The thin shell approximation 
for the toroidal magnetic field
As derived in "The thin shell approximation" section, 
the scalar function of the poloidal magnetic field can be 
estimated upwards as

When h ≪ L , the function �sh
P  vanishes. Now the influ-

ence of the thin shell approximation for the toroidal mag-
netic field Bsh

T  is discussed.
The scalar function �sh

T  of the toroidal magnetic field 
Bsh
T  can be expanded analogously into a Taylor series in 

the vicinity of the mean radius b

using that the scalar functions �sh
T  and Ŵsh

P  are the same 
(cf. Eq. 54).

If we furthermore assume that also the radial deriva-
tives of the poloidal current density are bounded so 
that

the function �sh
T (r) can be estimated upwards as

Using that �sh
T (r) is solely evaluated within the spherical 

shell, where r ∈ [b− h, b+ h] and therefore 
∣

∣r − b
∣

∣ ≤ h 
results in

When h ≪ L , the function �sh
T  remains finite.

Appendix B: Model resolution
For the analysis of Mercury’s internal magnetic field from 
the MESSENGER data only data points in the northern 
hemisphere can be considered. This limitation impairs the 
condition number κ of the shape matrix H  from κ ≈ 226 
for the data points along the MPO orbits to κ ≈ 108 for the 
data points along a single MESSENGER orbit, where the 
shape matrix describes the spacial distribution of the data 

(79)

∣

∣�sh
P (r)

∣

∣ ≤ 2bL

∞
∑

n=0

1

n!

(

h

L

)n+1

max
θ ′,�′

{∣

∣Ŵsh
T (b)

∣

∣

}

.

(80)�sh
T (r) = Ŵsh

P (r) =

∞
∑

n=0

1

n!
∂nr Ŵ

sh
P (r)

∣

∣

r=b
(r − b)n,

(81)
∣

∣∂nr Ŵ
sh
P

∣

∣ ≤

∣

∣Ŵsh
P

∣

∣

Ln
,

(82)

|�sh
T (r

−
)| ≤

∞
∑

n=0

1

n!
|∂nr Ŵ

sh
P (b)| · |r − b|n

≤

∞
∑

n=0

1

n!

|Ŵsh
P (b)|

Ln
|r − b|n.

(83)
∣

∣�sh
T (r)

∣

∣ ≤

∞
∑

n=0

1

n!

(

h

L

)n
∣

∣Ŵsh
P (b)

∣

∣.

points. The condition number is defined as the ratio of the 
largest and the smallest singular value of the shape matrix. 
Therefore, some of the 46 singular values, corresponding 
to the 46 expansion coefficients, of the shape matrix have 
to be dropped within the numerical calculation to improve 
the condition number. Within the low rank approxima-
tion (Eckart and Young 1936) only k singular values, where 
k ≤ 46 , can be considered and therefore, the shape matrix 
H  is approximated by a shape matrix H

k
 which has a lower 

rank and a lower condition number.
Capon’s filter matrix

which is the key parameter for calculating Capon’s 
estimator

fulfills the distortionless constraint

where I  is the identity matrix and M = �B ◦ B� describes 
the data covariance matrix of the magnetic field meas-
urements B (Toepfer et  al. 2020a, b). As a consequence 
of the low rank approximation Capon’s filter matrix is 
modified to

so that

The matrix R = w†
k
H  is called the model resolution 

matrix. Because of

where gk
C

 denotes the estimator resulting from the con-
sideration of k singular values and g  is the ideal coeffi-
cient vector implemented in the simulation code, the 
diagonal elements of R identify the resolution of each 
coefficient (Connerney 1981). When R = I  each coeffi-
cient is resolved for 100% . If the resolution is smaller than 
100% , there exist model parameter covariances.

The more singular values are considered within the 
estimation, the better the model resolution becomes, 
whereas the condition number of the shape matrix 
increases and thus, the influence of measurement 
errors increases.

To achieve a compromise between the resolution and 
the condition number, the coefficients are estimated 

(84)w† =

[

H †M−1H
]−1

H †M−1

(85)g
C
= w†B

(86)w†H = I ,

(87)w†

k
=

[

H †

k
M−1H

k

]−1

H †

k
M−1

(88)R = w†

k
H �= I .

(89)gk
C
= R g ,
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for different numbers of singular values and the change 
of the coefficients resulting from k singular values to 
the coefficients resulting from k − 1 singular values 
is regarded. For the final computation the maximum 
number of singular values is chosen from which the 
reconstructed coefficients are almost constant. In Fig. 4 

the procedure is exemplarily illustrated for the coef-
ficient g01  , which corresponds to the diagonal element 
R11 by analyzing the data of one pair of MESSENGER 
orbits.

Changing the number of considered singular values 
incrementally from 46 to 37 the resulting coefficient 
changes significantly. For k ≤ 37 the values are almost 
constant and therefore, 37 singular values, correspond-
ing to a model resolution of 88% for the coefficient g01 
are considered within the estimation.

Appendix C: Tables: Reconstructed Gauss 
coefficients from MESSENGER orbits

Fig. 4 Variation of the reconstructed coefficient g01 (red) and the 
related model resolution R11 (blue) with respect to the number k of 
singular values. For k ≤ 37 (dashed line) the reconstructed values of 
g01 are almost constant
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