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Testing the seismic quiescence hypothesis 
through retrospective trials of alarm‑based 
earthquake prediction in the Kurile–Japan 
subduction zone
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Abstract 

We make trial binary forecasts for the Kurile–Japan subduction zone for the period 1988–2014 by hypothesizing that 
seismic quiescence (i.e., the absence of earthquakes of M ≥ 5 for a minimum period of Tq) is a precursor of a large 
(7.5 ≤ Mw < 8.5) earthquake in the coming period Ta within a radius R of the quiescence. We evaluate the receiver-
operating-characteristic diagram constructed using a range of forecast models specified by (Tq, R, Ta). A forecast 
experiment targeting eight large earthquakes in the studied spacetime suggests that the risk of a large earthquake is 
modestly (probability gain G ~ 2) but significantly (p-value less than 5%) heightened for several years following a long 
quiescent period of Tq ≥ 9 years, within several tens of kilometers of the quiescence. We then attempt cross-validation, 
where we use half the data for training [i.e., optimization of (Tq, R, Ta)] and the remaining half for evaluation. With only 
four target earthquakes available for evaluation of the forecasts in each of the learning and evaluation periods, our 
forecast scheme did not pass the cross-validation test (with a criterion that the p-value is less than 5%). Hence, we 
cannot formally deny the possibility that our positive results for the overall period are a ghost arising from over-fitting. 
However, through detailed comparison of optimal models in the overall test with those in the cross-validation tests, 
we argue that severe over-fitting is unlikely involved for the modest G of ~ 2 obtained in the overall test. There is thus 
a reasonable chance that the presently tested type of quiescence will pass the cross-validation test when more target 
earthquakes become available in the near future. In the meantime, we find that G improves to ~ 5 when target earth-
quakes are limited to 8 ≤ Mw < 8.5, though we cannot say anything about the possible involvement of over-fitting 
because we have only three such very large target earthquakes.
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Introduction
Large earthquakes are often preceded by a period 
of seismic quiescence; that is, a remarkable drop in 
regional background seismicity lasting for several years. 
Drawing attention as a possible intermediate-term 
earthquake precursor (e.g., Scholz 2019), quiescence 

has a long history of research. Whereas earlier studies 
(e.g., Inouye 1965; Utsu 1968; Mogi 1969; Ohtake et al. 
1977; Kanamori 1981) lacked an objective definition of 
quiescence, later studies have developed a variety of 
measures quantifying quiescence, including the ZMAP 
method (Wiemer and Wyss 1994; Katsumata 2011, 
2017a), ETAS modeling (Ogata 1992), and RTL/RTM 
method (e.g., Sobolev and Tyupkin 1997; Nagao et  al. 
2011). Thus, seismic quiescence has been established as 
an objectively demonstrable anomalous incident, which 
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often precedes large (typically Mw ≥ 7.5) earthquakes by 
several years to decades.

Finding more and more earthquakes preceded by 
quiescence, however, does not answer the real ques-
tion of interest; does a statistically significant tendency 
exist for quiescence to precede large earthquakes? 
Specifically, we must ask if the observed frequency of 
the coincidence of the two occurrences (quiescence 
and a subsequent large earthquake) is beyond the 
level explainable as a mere matter of chance. To our 
knowledge, this point has not been tested, except for 
an attempt by Katsumata (2017a), who, unfortunately, 
failed to set an objective criterion for the coincidence as 
detailed later. Thus, while long having received research 
attention, quiescence has remained a well-known pre-
cursor candidate for half a century.

In the meantime, an earthquake-preceding tendency 
(e.g., Nakatani 2020) has been proven to exist for a spe-
cial class of quiescence called ‘relative quiescence’ (Ogata 
2001), a phenomenon that the aftershock seismicity fol-
lowing a large earthquake starts depleting at one point 
of time during the aftershock period, compared with 
extrapolation following Omori’s law. However, there is no 
reason to presume that the affirmative conclusion about 
the precursory relative quiescence applies to the (general) 
quiescence seen in the non-aftershock period.

To judge if a certain phenomenon has an earthquake-
preceding tendency, we need to scan the entire spacetime 
of study, not only the times preceding large earthquakes, 
for the same type of phenomenon. We refer to the phe-
nomena as ‘anomalies’ following the convention adopted 
in earthquake precursor research, but ‘anomalies’ in this 
context can be any incidents that are objectively defin-
able; they do not have to be rare or anomalous in a statis-
tical sense.

On the basis of the above concept, Katsumata (2017a) 
exhaustively scanned background seismicity in subduc-
tion zones around Japan in the period 1975–2012, for 
long-term quiescence anomalies (lasting longer than 
9 years). He compared the detected anomalies with four 
earthquakes having Mw ≥ 8.25 that occurred in the stud-
ied spacetime, using a contingency table. A Fisher’s exact 
test found a p-value (i.e., the probability that the observed 
or higher extent of correlation emerges by chance 
under the null hypothesis of no correlation between the 
anomalies and earthquakes) of 0.021, suggesting that 
the quiescence has an earthquake-preceding tendency. 
Conceptually, this is a correct method of evaluation. 
However, he did not set a consistent, objective criterion 
with which to judge whether a large earthquake followed 
a quiescence anomaly, leaving room for doubt. More 
importantly, it seems that Katsumata (2017a) hesitated 
to set an objective criterion for the anomaly–earthquake 

association to get around a technical difficulty inherent 
to a contingency table as explained below.

In evaluating a contingency table for an earthquake-
preceding tendency, the number of anomalies or alerts 
incurred by them needs to be counted. When multiple 
incidents of anomalies occur close to each other in space 
and time, incurred alerts largely overlap. In such cases, 
one physical incident of a correct (or incorrect) anomaly 
or alert is evaluated as many successful (or unsuccessful) 
incidents, while it should be ideally counted as just one 
incident of success (or failure) in the contingency table. 
Thus, in practice, number counting is not a good way to 
quantify anomalies or alerts. Probably as a subconscious 
workaround for this problem, Katsumata (2017a) subjec-
tively combined clustered anomalies into one incident 
of quiescence for the contingency table. The evaluation 
conducted by Katsumata (2017a) thus lacked objectivity, 
even though his subjective grouping is probably reason-
able from a physical point of view.

The above difficulties with the contingency table can be 
avoided by instead using an alarm map, with each spati-
otemporal cell being given a binary value of either alarm-
on or alarm-off according to any objective rule. A simple 
example may be alerting a region within a distance R 
from an anomaly for a time duration Ta following the 
anomaly. The total alerted volume, instead of the num-
ber count of alarms or anomalies, can be used for alarm 
quantification. In this way, largely overlapped alerts 
from clustered anomalies do not cause disproportionate 
weighting of their success or failure.

Under the null hypothesis of no correlation between 
the anomalies and earthquakes, expectancy for the pre-
diction rate (i.e., the ratio of the number of alerted earth-
quakes to the total number of target earthquakes) is equal 
to the alarm fraction (i.e., the ratio of the alerted volume 
to the total spacetime of the study). On this basis, the 
statistical significance of the earthquake-preceding ten-
dency and its strength can be evaluated using the p-value 
and the probability gain, respectively (e.g., Zechar and 
Jordan 2008; Nakatani 2020).

Note that the above statistical testing cannot tell if indi-
vidual anomalies that preceded the target class of earth-
quakes were indeed related to the earthquake. Instead, 
the ’existence of an earthquake-preceding tendency’ 
means that one or more of the anomalies followed by 
earthquakes were indeed related to the subsequent earth-
quake occurrence.

In the present paper, we evaluate the earthquake-pre-
ceding tendency of long-term (~ 10-year) quiescence in 
the Kurile–Japan subduction zone (Katsumata 2017a) 
adopting the alarm-map-based testing described above.

As the primary goal of the present paper is to dem-
onstrate rigorous yet generic statistical procedures of 
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alarm-map-based evaluation, we only consider quies-
cence to avoid distraction. However, we recognize that 
various, sometimes even opposite, senses of seismic-
ity changes [e.g., quiescence and activation (Reasenberg 
and Matthews 1988) and acceleration and deceleration 
(Hardebeck et  al. 2008)] might precede earthquakes. 
We emphasize that there is no logical or practical diffi-
culty in producing and evaluating alarm maps based on 
such mixed behaviors as long as the alerting procedure 
is stated objectively; e.g., the M8 algorithm (Keilis-Borok 
and Kossobokov 1990).

The statistical power depends strongly on the num-
ber of target-class earthquakes available, and we thus 
make trial forecasts targeting earthquakes of Mw ≥ 7.5 
instead of Mw ≥ 8.25 for which the precursory long-
term quiescence has already been suggested (Katsumata 
2017a). However, there are still only nine earthquakes of 
Mw ≥ 7.5, and this small number of target earthquakes 
is certainly a weak point of the present study. Although 
more target earthquakes would be available if we add 
more study regions, we decided not to add other tectonic 
regions as our priority is to investigate the effects of ret-
rospective optimization (e.g., Mulargia 1997). For that 
purpose, we examine a suite of forecast models, where 
we vary the model’s three main adjustable parameters 
(i.e., the anomaly detection threshold and the temporal 
and spatial limits within which anomalies are associated 
with subsequent earthquakes) over a wide range. We 
also examine the likelihood of over-fitting by conducting 
additional cross-validation experiments. We therefore 
take a minimalistic approach in other regards.

Data
The present study area comprises subduction zones along 
the western margin of the Pacific Plate, spanning 25°–
55° N and 138°–163° E and including the east coast of 

Kamchatka, the Kurile Islands, and the Izu-Bonin Islands. 
Forecast targets are shallow (having a centroid depth less 
than 70 km) earthquakes of Mw ≥ 7.5 listed in the Global 
Centroid Moment Tensor catalog. The term ‘centroid’ 
means the gravity center of the seismic moment released 
by an earthquake, while the term ‘hypocenter’ means the 
location where the main shock rupture started. For large 
earthquakes, the centroid and hypocenter usually do not 
coincide. Nine earthquakes (Fig.  1 and Table  1) satisfy 
these conditions in the period from January 1, 1988 to 
December 31, 2014. These nine earthquakes are clearly 
main shocks, sufficiently isolated on a space–time plot of 
seismicity. Evaluation of a forecast is not straightforward 
if the forecast targets include aftershocks (Michael 1997).

We exclude EQ#9, the 2011 Tohoku Earthquake (Mw 
9.1), from our forecast targets because it was preceded 
by super-long (i.e., super-strong) quiescence that we 
could not detect owing to a mere practical limitation. 
As detailed in “Methods” section, we detect changes in 
seismicity by examining 15-year sub-catalogs of the back-
ground seismicity, such that there is no way of detecting 
quiescence lasting 15 years or more. If we use sufficiently 
long sub-catalogs, we can correctly recognize the excep-
tionally long quiescence exceeding 20 years that preceded 
EQ#9 (Katsumata 2017b). Therefore, counting EQ#9 as 
a false negative would not be scientifically adequate. We 
therefore decided to exclude EQ#9. If one still finds it 
unfair to ignore EQ#9, whose precursor is missed by our 
presently adopted algorithm, we can modify our forecast 
target to 7.5 ≤ Mw < 8.5, instead of Mw ≥ 7.5.

In addition, the 1993 Hokkaido Nansei-oki earthquake 
(Mw7.7, 42.71° N, 139.28° E, 16.5  km deep) is excluded 
from our forecast targets because the earthquake 
occurred in the "alarm-undecidable" spacetime defined 
in the step (2) of “Alarm map” section. This event is not 
included in Table 1 or Fig. 1.
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Fig. 1  Centroid location of each earthquake listed in Table 1. Red stars indicate earthquakes having 8.0 ≤ Mw < 8.5. Black and green stars, 
respectively, indicate earthquakes having 7.5 ≤ Mw < 8.0 and Mw ≥ 8.5. The numerals denote the earthquake ID# in Table 1. Thin lines in the ocean 
indicate plate boundaries (Bird 2003)
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To detect quiescence, we analyze seismicity (i.e., body-
wave magnitude mb ≥ 5.0, depth ≤ 60  km, 5792 events 
in total) in the study area for January 1, 1964, through 
December 31, 2014. We downloaded data from Reviewed 
ISC Bulletin (ftp://​isc-​mirror.​iris.​washi​ngton.​edu/​pub/​
prere​build/​ffb/​catal​ogue/). Although the International 
Seismological Centre (ISC) has finished rebuilding the 
bulletin from 1964 to 1979 (Storchak et al. 2017), we use 
old data stored in the "prerebuild" directory to ensure 
temporal homogeneity of source parameters, especially 
the magnitude.

Catalog completeness may vary with space and time. 
As an example, Michael (2014) found that the magni-
tude of completeness, Mc, of the global ISC-GEM cata-
log is 6.0 for shallow (depth ≤ 60  km) earthquakes that 
occurred from 1964 to 1975 around the world. How-
ever, in our study area, we find that Mc of the ISC cata-
log (depth ≤ 60  km) is much better, ranging from 3.5 to 
4.7 throughout the study period (Additional file 1: Figure 
S1). Hence, our analysis using only events with mb ≥ 5.0 
is prudent.

Methods
Sub‑catalogs
We first make 16-year subsets of the 5792 earthquakes 
of mb ≥ 5.0. We make 351 sub-catalogs, with the starting 
date varying from the year 1964.0 to 1999.0, in 0.1-year 
steps, so that the first sub-catalog covers 1964.0–1980.0, 
the second sub-catalog covers 1964.1–1980.1, …, and the 
351st sub-catalog covers 1999.0–2015.0. We then remove 

aftershocks in each sub-catalog, using a declustering 
algorithm based on the eight-parameter ETAS model 
(Zhuang et al. 2002, 2005), where the observed seismic-
ity is decomposed into the quasi-steady background seis-
micity and the temporary surge due to aftershock-type 
triggering following the Omori–Utsu law (Utsu 1957).

We decluster each sub-catalog independently. We first 
determine ETAS parameters by fitting only the seismic-
ity in each sub-catalog. All eight ETAS parameters were 
reasonably stable among different sub-catalogs (Addi-
tional file 1: Figure S2). It is thus unlikely that uncertain-
ties in the ETAS parameters affect the conclusions of the 
present study, though we do not attempt a quantitative 
assessment of the impact (e.g., Wang et al. 2010).

We then produce a declustered sub-catalog that only 
retains the events likely to belong to the background seis-
micity. Specifically, we judge that an earthquake belongs 
to the background seismicity if the ETAS-modeled prob-
ability Pback that an earthquake belongs to the back-
ground seismicity exceeds Prand, a random number drawn 
from a uniform distribution between 0 and 1 (Zhuang 
et al. 2002).

We then discard the first 1-year portion of each declus-
tered sub-catalog because the ETAS model starts work-
ing properly only after seeing a sufficient length of prior 
seismicity. Although the clustering parameters of Page 
et  al. (2016) for subduction zones suggest the possibil-
ity of aftershocks having mb ≥ 5.0 in the second and later 
years, we find that aftershocks having mb ≥ 5 do not 
exceed the background rate in our study region for more 

Table 1  Main shocks with Mw ≥ 7.5 from January 1, 1988 to December 31, 2014

† Shown in red for events with 8.0 ≤ Mw < 8.5 and in green for events with Mw ≥ 8.5

ftp://isc-mirror.iris.washington.edu/pub/prerebuild/ffb/catalogue/
ftp://isc-mirror.iris.washington.edu/pub/prerebuild/ffb/catalogue/
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than a year even after an earthquake as large as M8 class, 
except for the prolonged aftershock period following the 
2011 M9 earthquake (Additional file 1: Figure S3). There-
fore, discarding the initial year is sufficient.

We thus obtain 351 declustered sub-catalogs, each 
of which is 15  years long. The first sub-catalog covers 
1965.0–1980.0, the second sub-catalog covers 1965.1–
1980.1, …., and the last (351st) sub-catalog covers 
2000.0–2015.0. Hereafter, the term ’sub-catalog’ refers to 
these 15-year declustered catalogs, not the 16-year cata-
logs before declustering. Each sub-catalog contains 671–
986 events, or ~ 850 on average.

ETAS parameters are also spatially variable. However, 
for simplicity and the stability of analysis, we assume 
ETAS parameters to be spatially uniform. Though not 
shown, we attempted declustering with spatially variable 
ETAS parameters, only to find that the alarm maps based 
on this version of declustered sub-catalogs are almost 
identical to the presently shown and evaluated maps 
made with spatially uniform ETAS parameters.

Trial forecast—anomaly detection and construction 
of the alarm map
In the present algorithm of trial forecasts, we first map 
the occurrence of quiescence anomalies throughout the 
studied spacetime (“Anomaly detection” section). Using 
the thus made anomaly map, we issue alarms according 
to the spatiotemporal distance from anomalies (“Alarm 
map” section). We update this alarm map every 0.1 years. 
Both anomaly criteria and alert criteria involve adjustable 
parameters. We will review the performance of the trial 
forecasts made with a wide range of parameter values in 
order to assess if the presently defined type of long-term 
quiescence has an earthquake-preceding tendency.

Anomaly detection
A variety of quiescence measures have been proposed 
as described in “Introduction”. In the present study, we 
adopt the duration of the streak of no-earthquake days in 
the region, motivated by Katsumata (2017b), who inves-
tigated the seismicity preceding 23 earthquakes having 
Mw ≥ 8 for the period 1990–2014. He found that a streak 
of no-earthquake days lasting longer than ~ 10 years pre-
ceded all but four earthquakes that occurred in regions 
where the background seismicity was already too low to 
detect any further drop.

Judgment of quiescence anomalies is made every 
0.1 years, for each of the spatial grid points laid at inter-
vals of 0.1° N × 0.1° E. The algorithm is as follows:

(1)	 Select a sub-catalog, which covers T1 through 
T2 (= T1 + 15  years). 1965.0 ≤ T1 ≤ 2000.0 and 
1980.0 ≤ T2 ≤ 2015.0. Each grid point shall be diag-

nosed for the occurrence of a quiescence anomaly 
as of T2.

(2)	 Select a grid point for which the anomaly judgment 
is made. From the selected sub-catalog, find the six 
nearest earthquakes around the grid point.

(3)	 If the epicentral distance to the sixth nearest earth-
quake exceeds 100  km, conclude the grid point as 
’anomaly-undetectable’ as of T2 because an anoma-
lous drop in seismicity is difficult to recognize for 
the spacetime that is already very quiet.

(4)	 Let dt be the time interval from the most recent 
of the six earthquakes to T2. This dt represents the 
duration of quiescence (i.e., streak of no-earthquake 
(mb ≥ 5) days) around the grid point as of T2. If 
dt ≥ Tq, conclude the grid point as ’yes-anomaly’ 
as of T2. The value of Tq, the threshold for dt to be 
regarded as anomalous, is one of the three adjust-
able parameters of the present forecast algorithm. It 
may represent the forecaster’s idea about the dura-
tion of precursory quiescence. A higher Tq means a 
more stringent selection of quiescence anomalies.

(5)	 If neither (3) nor (4) applies to the grid point, con-
clude it as ’no-anomaly’.

Alarm map
On the basis of the anomaly map obtained in “Anomaly 
detection” section, we now construct an alarm map, any 
spatiotemporal point of which is given one of the three 
forecast values: ’alarm-on’, ’alarm-off’, or ’alarm-undecid-
able’. The algorithm is as follows.

(1)	 Label the spacetime as ’alarm-on’ if at least one 
’yes-anomaly’ grid point exists in the preceding 
period of length Ta within a distance R. R and Ta are 
two adjustable parameters of the present forecast 
scheme. They may represent the spatial and tempo-
ral ranges up to which the forecaster expects that 
quiescence anomalies are likely related to the subse-
quent earthquake.

(2)	 Label the spacetime as ’alarm-undecidable’ if the 
spacetime does not satisfy (1) and if at least one 
’anomaly-undetectable’ grid point exists in the pre-
ceding Ta within the distance R.

(3)	 Label all the remaining spacetime as ’alarm-off’. 
Note that in the alarm-off spacetime, it is guaran-
teed that no quiescence anomaly occurred within R 
during the preceding Ta.

(4)	 Finally, we relabel any spacetime belonging to the 
aftershock region of earthquakes having Mw ≥ 7.5 
as ’alarm-undecidable’. This is for prudence; appli-
cation to an aftershock period is beyond the scope 
of the traditional precursory quiescence hypoth-
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esis. Using the ETAS parameters obtained in the 
declustering procedure, we calculate Pafter = 1 - Pback 
as a function of the time elapsed since the occur-
rence of the main shock. For the time period when 
Pafter ≥ 0.01, the region within R of the grid point 
closest to the centroid of the main shock is desig-
nated as ‘alarm-undecidable’. This step overrides 
decisions made in earlier steps. Spacetime labeled 
’alarm-undecidable’ shall not count in the evalua-
tion (see “Evaluation of the trial forecasts” section).

Figure  2 shows, in the form of yearly snapshots, an 
example (Tq = 11  years, R = 60  km, Ta = 7  years) of the 
spatiotemporal alarm map created adopting the above 
procedure. The time attached to each snapshot is that 
when the alarm status was decided and issued; that is, T2 
of the newest sub-catalog available then. For the anomaly 
map obtained in “Anomaly detection” section, T2 ranges 
1980.0 ≤ T2 ≤ 2015.0, but, for the alarm map, T2 ranges 
1988.0 ≤ T2 ≤ 2015.0 because Ta up to 8 years is consid-
ered in the present study.

Evaluation of the trial forecasts
For each forecast model, specified by a combination of 
(Tq, R, Ta), we thus obtain one spatiotemporal alarm map 
stating the model’s forecasts for 1988.0 through 2015.0. 
We evaluate the performance of each model by looking 
at its prediction rate r, compared with the alarm frac-
tion f invested by the model. Considering the existence 
of ’alarm-undecidable’ spacetime, the exact formulae for 
f and r are

and

 where Von is the total spatiotemporal volume labeled 
’alarm-on’, Voff is that labeled ’alarm-off’, Non is the 
number of target (i.e., 7.5 ≤ Mw < 8.5) earthquakes that 
occurred in Von, and Noff is the number of target earth-
quakes that occurred in Voff.

To obtain r, one needs to compare the forecast (alarm 
map) with the catalog of target-class earthquakes. By 
contrast, f is independent of target earthquakes; it 
depends solely on the forecast model (Tq, R, Ta) and the 
background seismicity up to the date of alarm issue T2. 
Figure  3 shows f as a function of T2, for representative 
models discussed in the present paper: Tq = 9, 10, 11, 
and 12 years, with Ta and R, respectively, fixed at 7 years 
and 60 km. We see f is smaller for higher Tq, where mod-
els become more selective in recognizing anomalies. 

(1)f = Von/(Von + Voff),

(2)r = Non/(Non + Noff),

Additionally, note that f is quite large (> 10%), meaning 
that the present paper deals with quite vague forecasts.

Following Zechar and Jordan (2008), we define the 
probability gain G as

As mentioned earlier (“Introduction” section), f is the 
expectancy of r under the null hypothesis that the pres-
ently defined quiescence anomalies are not relevant 
to the subsequent occurrence of earthquakes having 
Mw ≥ 7.5. Therefore, the right-hand side of Eq.  (3) rep-
resents the improvement ratio of the prediction rate, 
whereas the standard definition of probability gain is the 
improvement ratio of the success rate (i.e., the enhance-
ment of the probability density of earthquake occurrence 
in the alerted spacetime) (e.g., Aki 1981). However, it 
can be shown mathematically that the two improvement 
ratios necessarily coincide (Nakatani 2020). Incidentally, 
note that the theoretical upper limit for G is 1/f. As seen 
in Fig.  3, f was > 10% in the present study, such that G 
cannot exceed 10, even if none of the target earthquakes 
are missed.

The null hypothesis of no correlation is equivalent 
to the proposition that the true value of G is unity. As 
shown in “Results and discussion” section, many of our 
forecast models exhibited G > 1, suggesting an earth-
quake-preceding tendency. To check if the tendency 
is statistically significant, we will calculate the p-value, 
which is the probability that G (or r) equal to or higher 
than the observed occurs in the random forecasts hav-
ing f equal to that of the forecast (i.e., alarm maps) being 
scrutinized. The formula of binomial probability giving 
the p-value (e.g., Zechar and Jordan 2008) is

In the present study, where we can use a maximum of 
eight target earthquakes for statistical testing, we ten-
tatively adopt p < 5% as the criterion for statistical sig-
nificance, though the choice of threshold is a subjective 
matter after all.

Results and discussion
Experiment 1 (main experiment)
As Mulargia (1997) pointed out, retrospective optimi-
zation of a forecasting method is prone to over-fitting, 
which would lead to overrating of the method. We 
therefore illustrate the method’s robustness by showing 
the results of all 210 forecast models produced in retro-
spective optimization instead of judging the significance 
solely according to the lowest p-value among them. In 
our optimization, we search with respect to all three 

(3)G = r/f .

(4)

p
(

f ,Non,Noff

)

=

(Non+Noff)
∑

n=Non

(

Non + Noff

n

)

f n
(

1− f
){(Non+Noff)−n}

.
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Fig. 2  An example alarm map. The spatiotemporal map is made using a forecast model (1–12 in Table 2) and is shown in yearly snapshots. Areas in 
red, gray, and white indicate alarm-on, alarm-off, and alarm-undecidable areas, respectively. The year for the forecast is shown at the top-right corner 
of each panel. The alarm status shown in each panel is decided at T2 = 0:00 am, January 1 of the year, using the seismicity before. Focal mechanisms, 
numbered 1–8, represent the target-class (7.5 ≤ Mw < 8.5) earthquakes that occurred in the year and correspond to EQ#1–8 in Table 1. Predicted 
earthquakes are shown in black, whereas missed earthquakes are shown in green. Thin lines in the ocean indicate plate boundaries (Bird 2003)
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main aspects that generally constitute a precursor-based 
forecast; Tq (7 ≤ Tq ≤ 13 years, at 1-year intervals) regu-
lates the recognition of the suspected precursory phe-
nomenon, while R (50 ≤ R ≤ 100 km, at 10-km intervals) 
and Ta (4 ≤ Ta ≤ 8 years, at 1-year intervals), respectively, 
regulate the spatial and temporal association between 
suspected precursors and subsequent earthquakes. Fig-
ure 4 is the receiver-operating-characteristic (ROC) dia-
gram, constructed by plotting (f, r) for all 210 models. 
All eight target (7.5 ≤ Mw < 8.5) earthquakes (EQ#1–8 in 
Table 1) are considered in calculating r for each model.

Figure  4 shows that r is higher than f for almost all 
models, suggesting that the presently defined (“Anomaly 
detection” section) long-term quiescence provides infor-
mation that helps discriminate spacetime with height-
ened risk. At the same time, G (= r/f) is only ~ 2; the 
information provided by the quiescence is so weak that 
the risk in the alerted spacetime is only twice the secular 
level.

In Fig. 4, we use different marker shapes according to 
the model’s p-value. Furthermore, we use large red mark-
ers for the optimal models yielding p < 5% and r > 0.5. 
Table 2 lists these optimal models. (In Experiment 1, all 
models that yielded p < 5% also yielded r > 0.5; however, 
the condition r > 0.5 matters for consistency with cor-
responding plots in other experiments shown later.) At 
face value, p < 5% for these models implies the statisti-
cal significance of the earthquake-preceding tendency. 
Below, we look into the characteristics of optimal models 

for Experiment 1 (Table 2), in an attempt to elucidate the 
characteristics of precursory long-term quiescence. Note 
that Experiment 1 is the main and base experiment of the 
present paper.

Ten of the 15 optimal models use Tq = 9 years (Table 2, 
models 1–1 through 1–10), while R ranges 50–80  km 
and Ta ranges 4–8  years. These 10 models yield high r; 
eight achieve r = 8/8 and two achieve r = 7/8. For the 10 
models, f ranges 50%–70% and G ranges 1.5–1.8. The 
remaining five models (Table  2, models 1–11 through 
1–15) use stricter criteria for quiescence anomalies, 
Tq = 10–12 years. As a result, EQ#1 and #6 become sur-
prise events, lowering r to 6/8. For model 1–15, which 
adopts Tq = 12  years, EQ#5 also becomes a surprise 
event, further lowering r to 5/8. Nevertheless, these five 
models with higher Tq (i.e., 10–12 years) achieve higher 
G of 1.9–2.3 because f is much improved (i.e., slashed) 
to 27%–39% thanks to the stringent selection of quies-
cence anomalies. The size of the alerted spacetime (R, Ta) 
around an anomaly is generally larger than that for the 10 
models with Tq = 9 years, but not by much.

As seen above, there is a trade-off between the two 
performance demands; that is, higher r and lower f. 
The p-value strongly depends on r and f in the relevant 
range (Fig.  5). The balance between the two seems to 
be regulated by (Tq, R, Ta) in a self-evident sense. It is 
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Fig. 4  ROC diagram for Experiment 1. All eight target earthquakes 
(7.5 ≤ Mw < 8.5, 1988.0–2015.0, Table 1) were considered in calculating 
r for each of the 210 models tried. The marker shape denotes the 
p-value. Large red markers are used for optimal models (p < 5% and 
r > 0.5), listed in Table 2. The three blue curves are contours that 
correspond to p = 5%, 10%, and 15%. The black diagonal line (f = r) 
corresponds to G = 1
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thus hardly meaningful to ask which model is the best. 
Instead, we emphasize that these well-performing mod-
els (Table  2) lie coherently in the model space (Tq, R, 
Ta). This implies that the favorable performance of the 
optimized models (Table  2) originates from decent 
optimization reflecting universal properties of mecha-
nisms underlying the earthquake-preceding tendency 
of the long-term quiescence, rather than originating 
from the use of deliberate, complex algorithms that do 
whatever to score well. Such gerrymandering is unlikely 
because our forecast algorithm, including adjustment 
through (Tq, R, Ta), is straightforward. However, the 
present trial forecast is calibrated with only eight earth-
quakes. Hence, over-fitting, if not gerrymandering, can 
readily occur. We will check this point by reporting on 
cross-validation experiments in “Experiments 2 and 3 
(cross-validation)” section.

Table 2  Optimal (p < 5% and r > 0.5) forecast models from Experiment 1

† EQ#1 through 9 from left to right. Shown in red for events with 8.0 ≤ Mw < 8.5
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Experiments 2 and 3 (cross‑validation)
Although they look good, our results so far could benefit 
from over-fitting as cautioned already; good performance 
exhibited by the retrospectively optimized forecast mod-
els does not assure good performance for future data 
(e.g., Mulargia 1997). We thus conduct cross-validation 
experiments by dividing the study period of Experi-
ment 1 into two, using one period to train models and 
the other period to evaluate elite models in the learning 
period. Experiment 2 uses the later period for training 
and the earlier period for evaluation, whereas Experi-
ment 3 uses the earlier period for training and the later 
period for evaluation. In both experiments, we explore 
the same range of the parameter space (Tq, R, Ta) as in 
Experiment 1, amounting to 210 models. The target class 
of forecast remains 7.5 ≤ Mw < 8.5, the same as in Experi-
ment 1. Unfortunately, our low number of target earth-
quakes does not allow us to conduct cross-validation 
experiments separately for earthquakes having Mw < 8.0 
and Mw ≥ 8.0, though this would be desirable given the 
plausible dependence of precursory quiescence on the 
main shock magnitude (Additional file 2).

Experiment 2
In Experiment 2, models are first optimized through 
trial forecasts based on sub-catalogs in the second half 
(1995.0 ≤ T2 < 2015.0), for which four earthquakes having 
7.5 ≤ Mw < 8.5 (EQ#5–8) are available as forecast targets. 
Figure  6 shows the performance in this learning period 
for all 210 models. We draw common reference con-
tours (blue curves) to directly compare the strength of 
the apparent correlations seen in Figs. 4 and 6. The three 
contours correspond to contours of (f, r) that would yield 
p = 5%, 10%, and 15% provided that eight target earth-
quakes were available as in Experiment 1. The marker 
shape convention is the same as that in Fig. 4. This ROC 
diagram, mostly implying G > 1, is generally similar to 
that of Experiment 1, but no model achieves p < 5% 
owing to the limited number of target earthquakes (i.e., 
four target earthquakes). Thus, formally, our cross-vali-
dation attempt has failed already in the learning period; 
the number of available earthquakes (four in the learn-
ing period, four in the evaluation period) is too few to 
attempt cross-validation of the weak (G < 10) earthquake-
preceding tendency.

Nonetheless, we proceed by choosing eight mod-
els that achieve p < 15% and r > 0.5 in the learn-
ing period (indicated by large red symbols in Fig.  6) 
as optimal models (Table  3). Performances of these 
learning-period elites are then evaluated by mak-
ing forecasts based on the sub-catalogs in the first 
half (1988.0 ≤ T2 < 1995.0), the evaluation period of 

Experiment 2. All four target earthquakes (EQ#1–4) 
in the first half are used for evaluation. Figure 7 shows 
the ROC diagram for this evaluation period. Note 
that marker shapes in Fig. 7 reflect the p-values of the 
respective models in the learning period, and large red 
symbols represent the learning-period elites listed in 
Table 3. Table 4 shows how these learning-period elites 
perform in the evaluation period.

In both the learning (Fig.  6) and evaluation (Fig.  7) 
periods, r is higher than f for most models, implying skill 
better than random forecasts. We thus examine the per-
formance in the two periods in detail to seek signatures 
of over-fitting.

A comparison of Tables 3 and 4 shows that Non is lower 
by 1 in the evaluation period for most models. In closer 
examination, we see that almost all the models miss 
EQ#1 in the evaluation period, worsening the p-value. 
We now explain what happened concretely here. All 
four target earthquakes in the learning period occurred 
within 4 years of the quiescence of Tq = 9  years. Hence, 
most of the optimized models adopt relatively short Ta 
of 4 or 5  years to avoid excessive f. In contrast, EQ#1, 
in the evaluation period, occurred 6 years after a 9-year 
quiescence and is missed by all the learning-period elites 
except model 2–2, which adopts Ta = 6 years. This can be 
said to be over-fitting, if mild.
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Fig. 6  ROC diagram for the learning period of Experiment 2. Four 
earthquakes having 7.5 ≤ Mw < 8.5 that occurred in 1995.0–2015.0 
were used in calculating r for each of the 210 models tried. The 
marker shape denotes the p-value. Large red markers are used for 
optimal models (p < 15% and r > 0.5), listed in Table 3. The three blue 
curves are identical to those in Fig. 4; that is, they correspond to (f, 
r) that would yield p = 5%, 10%, and 15% if there were eight target 
earthquakes
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However, when we look at G, learning-period elites 
perform equally well (G ~ 2) in the evaluation period (red 
markers in Fig.  8a). This is largely explained by the fact 

that f was generally lower in the evaluation period, being 
70–80% of the value in the learning period (Tables 3 and 
4). This cancels the adverse effect of the ~ 25% drop in r. 
Overall, we may say that there is no severe over-fitting in 
Experiment 2.

Furthermore, the (Tq, R, Ta) range of the optimal mod-
els in Experiment 1, the main experiment of the pre-
sent paper, resembles that in Experiment 2 (Table 3). As 
described above, the optimal models in Experiment 2 do 
not seem to involve severe over-fitting like in Experiment 
3 (“Experiment 3” section). Hence, the favorable results 
(G ~ 2) of Experiment 1, even though the same data are 
used for learning and evaluation, are probably not due 
to over-fitting. We thus surmise (but not prove, unfortu-
nately) that the favorable performance (G ~ 2) of Experi-
ment 1 is likely achieved by decent optimization and it 
may be taken as an encouraging result.

Experiment 3
We conduct another cross-validation experiment, 
Experiment 3, where the learning period and evalu-
ation period are flipped relative to those in Experi-
ment 2. Figure  9 is the ROC diagram for the learning 
period (i.e., the first half ) of Experiment 3. For con-
sistency with Experiment 2, we regard models that 
achieve p < 15% and r > 0.5 (Table  5) as optimal and 
highlight them using large red symbols, though quite a 
few (nine) of them achieve p < 5%. Moreover, the ROC 
for the learning period of Experiment 3 (Fig.  9) looks 
far better than those for Experiments 1 and 2, yielding 
higher G often exceeding 3. Table 5 shows that models 

Table 3  Learning-period performance for the learning-period elite models (p < 15% and r > 0.5 in the learning period) in Experiment 2
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Fig. 7  ROC diagram for the evaluation period of Experiment 2. Four 
earthquakes having 7.5 ≤ Mw < 8.5 that occurred in 1988.0–1995.0 
were used in calculating r for each of the 210 models tried. The 
marker shape denotes the p-value in the learning period. Large red 
markers are used for learning-period elites (p < 15% and r > 0.5 in 
the learning period), listed in Tables 3 and 4. The three blue curves 
are identical to those in Figs. 4 and 6; that is, they correspond to (f, 
r) that would yield p = 5%, 10%, and 15% if there were eight target 
earthquakes
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with higher Tq perform particularly well in Experiment 
3. In other words, this superb learning-period perfor-
mance of Experiment 3 is due to many of the target 
earthquakes being preceded by particularly prolonged 
quiescence, allowing the slashing of f through strin-
gent anomaly selection. This strategy does not sacri-
fice r in the learning period because as many as three 
earthquakes (EQ#2, 3, 4) were preceded by quiescence 
anomalies as strong as Tq ≥ 12 years (see models 3–30 
through 3–39).

Figure  10 is the ROC diagram of Experiment 3 for 
the evaluation period. Large red symbols highlight the 
learning-period elites (Table 5). Table 6 lists their perfor-
mances in the evaluation period, which are considerably 
worse than those in the leaning period. Figure  8b (red 
markers) compares G of respective learning-period elites 
between learning and evaluation periods; all these mod-
els show a drop, often severe, in G during the evaluation 
period, implying serious over-fitting in Experiment 3, in 
contrast with the case of Experiment 2 (Fig. 8a).

Table 4  Evaluation-period performance for the learning-period elite models (p < 15% and r > 0.5 in the learning period) in Experiment 
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Let us take a closer look. Results (red markers) in 
Fig. 8b may be divided into three clusters (groups A, B, 
and C in Fig. 8b). Group-A models have the most severe 
performance drop; G in the evaluation period is often 
below unity. In terms of the group-averaged G, Group 
A is the best in the learning period but is the worst in 
the evaluation period. In contrast, Group C is the worst 
in the learning period but is the best in the evaluation 
period. We examine Tables 5 and 6 in detail below to find 
specific mechanisms of over-fitting in Experiment 3.

All Group-A models adopt a high value of Tq, as high 
as 12 years, meaning stringent anomaly selection, which 
helps slash f. Additionally, values of Ta are mostly 7 years 
for Group-A models and shorter than Ta of 8  years 
adopted by the other models with Tq = 12  years, which 
belong to Group B. Shorter Ta also helps suppress f. In 
the learning period, three (out of four) earthquakes 
occurred within 7  years of strong quiescence anomalies 
lasting at least 12  years. Hence, Group-A models could 
achieve good r (3/4 = 75%) despite their restrictive alert-
ing policy. However, in the evaluation period, only one 
earthquake (out of four) was preceded by such strong 
quiescence, resulting in r = 1/4 and G ~ 1. Similar over-
fitting occurred in Group-B models, which mostly adopt 
the same stringent Tq of 12 years as do Group-A models. 
The performance drop is less severe because, thanks to 

the adoption of Ta = 8 years instead of 7 years, Group-B 
models did not miss EQ#7 that occurred 7.5 years after 
the recognition of the quiescence of Tq = 12 years, so that 
r in the evaluation period is 2/4 instead of 1/4 for Group 
A.

Note the above difference in quiescence behavior 
between the learning and evaluation periods cannot be 
ascribed to the plausible dependence of the quiescence 
duration on the main shock magnitude (Additional file 2), 
because only one (EQ#3) of the three earthquakes hav-
ing Mw ≥ 8.0 occurred in the learning period. Instead, the 
superb performance in the learning period of Experiment 
3 arises from pure luck that the quiescence anomalies 
preceding two (EQ#2 and #4) of the three earthquakes 
having Mw < 8 in the learning period happened to have 
particularly prolonged durations of at least 12 years. We 
thus conclude that most (i.e., groups A and B) learning-
period elites commit a classical over-fitting. They became 
too picky in anomaly detection because they mistook 
mere apparent features introduced by natural fluctuation 
as a universal property of the precursory quiescence.

Although G drops in the evaluation period also for 
Group-C models, we do not recognize obvious over-fit-
ting. Group-C models, being the least selective among 
the learning-period elites of Experiment 3, have r = 3/4 
or 4/4 in both learning and evaluation periods. The 
observed mild drop in G is mostly attributable to higher f 
in the evaluation period (Fig. 3).

In conclusion, Experiment 3 involves severe over-
fitting. This is pretty much expected, given the limited 
number of learning data (i.e., only four target earth-
quakes in the learning period). Specifically, over-fitting 
occurred because our optimization tried to slash f too 
aggressively, using apparent features that arose by pure 
luck. Of course, there is no way to tell that these features 
are not a real property until cases lacking these features 
are learned; optimization using a sufficient number of 
target earthquakes would ease the problem.

We, however, emphasize that the overly stringent pol-
icy in anomaly detection adopted by Experiment 3 was 
not preferred in Experiment 1, the main experiment of 
the present paper. Its optimal models (Table 2) mostly use 
Tq = 9 years, and only one of the 15 adopts Tq = 12 years. 
Given the insights from Experiment 3, we may say high 
Tq was not much preferred in Experiment 1 because 
securing a high r is more important than suppressing f to 
achieve a sufficiently small p, which is our primary cri-
terion in choosing optimal models. We therefore believe 
that the modest (G ~ 2) but still favorable performance 
of Experiment 1 is unlikely to be a ghost arising from 
over-fitting.

Although the present cross-validation tests failed 
to confirm it formally, we would say, as an optimistic 
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Fig. 9  ROC diagram for the learning period of Experiment 3. Four 
earthquakes having 7.5 ≤ Mw < 8.5 that occurred in 1988.0–1995.0 
were used in calculating r for each of the 210 models tried. The 
marker shape denotes the p-value. Large red markers are used for 
optimal models (p < 15% and r > 0.5), listed in Table 5. The three blue 
curves are identical to those in Fig. 4; that is, they correspond to (f, 
r) that would yield p = 5%, 10%, and 15% if there were eight target 
earthquakes
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Table 5  Learning-period performance for the learning-period elite models (p < 15% and r > 0.5 in the learning period) in Experiment 3
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conjecture, that there is a good chance that the earth-
quake-preceding tendency of long-term quiescence will 
be proven one day by having a higher number of target 
earthquakes for trial forecasts, maybe several times more. 
As an example, if the number of target earthquakes dou-
bles in the future (i.e., 16 in total), the learning and evalu-
ation periods can use eight earthquakes each. With eight 
earthquakes, a p-value less than 5% can be shown for 
the modest (G ~ 2) performance we saw in Experiments 
1 and 2 and for group C in Experiment 3. To give some 
numbers, p < 5% is attained by G ≥ 1.75 (r ≥ 7/8) if f is 
50%, and by G ≥ 2.5 (r ≥ 5/8) if f is 25%.

Summary and conclusions
We made simple trial forecast experiments where we 
issue alarms valid for time Ta to regions within a distance 
R of the location where long-term quiescence is detected. 
We defined a quiescence anomaly as the absence of 
nearby earthquakes having mb ≥ 5 for a time duration of 
at least Tq. On the basis of these anomalies, alarm maps 
were made throughout the study area (i.e., the northwest-
ern margin of the Pacific Plate) by exhaustively scanning 
the studied spacetime. In each of our forecast experi-
ments (Experiments 1–3), alarm maps, made with a 
range of (Tq, R, Ta) values, were evaluated using a ROC 

diagram. Our main experiment (Experiment 1), targeting 
all eight earthquakes having 7.5 ≤ Mw < 8.5, found a range 
of forecast models exhibiting p-values less than 5%, and 
G of ~ 2, supporting the existence of an earthquake-pre-
ceding tendency of long-term quiescence.

These favorable results of Experiment 1, however, 
could be a ghost owing to over-fitting because we used 
the same data for training and evaluation. We therefore 
attempted cross-validation using four of the eight earth-
quakes to train forecast models and the other four earth-
quakes to evaluate the optimal models obtained from 
the learning period. We conducted two cross-validation 
experiments (Experiments 2 and 3) by flipping the data-
sets for training and evaluation. In Experiment 2, the per-
formance was similar for learning and evaluation periods. 
Additionally, optimal models and their G values were 
similar to those in Experiment 1. The above implies that 
the apparent success (G ~ 2) in Experiment 1 is unlikely 
attributable to over-fitting. However, we failed in formal 
cross-validation as none of the models achieved p < 5% 
in the learning period of Experiment 2. This is not sur-
prising, given that statistical power with only four target 
earthquakes available is likely insufficient to demonstrate 
the significance of the modest earthquake-preceding ten-
dency of G ~ 2, if any, exhibited in Experiment 1.

In the other cross-validation experiment (Experiment 
3), many models, in the learning period, yielded p < 5% 
and G much higher than that in our base experiment 
(Experiment 1). However, this was a typical over-fitting 
effect; the models fared miserably in the evaluation 
period. Close examination of Experiment 3 has revealed 
that the over-fitting occurred because the models became 
too picky in anomaly detection because they mistook for-
tuitous features only seen in the learning period as real 
properties of the precursory quiescence. Fortunately, that 
excessive selectiveness was not preferred in the optimal 
models (Table 2) in our main experiment (Experiment 1), 
again supporting the likelihood that the favorable results 
of Experiment 1 are real, though we admit that we failed 
in formal cross-validation.

In the course of the present study, we have also found 
that G is much higher if the forecasts target only earth-
quakes having Mw ≥ 8 (Experiment 5 in Additional 
file 2); G > 5 and p < 5% were easily achieved. However, 
this was a result obtained with only three target earth-
quakes, and we have nothing to say against the possi-
bility of over-fitting. Meanwhile, forecasts (Experiment 
4 in Additional file 2) targeting only five smaller earth-
quakes (7.5 ≤ Mw < 8) found a correlation weaker than 
that in Experiment 1, which targeted all earthquakes 
of 7.5 ≤ Mw < 8.5, and a p-value less than 5% was not 
obtained. Hence, we have no direct basis for claiming 
that the quiescence’s earthquake-preceding tendency 
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Fig. 10  ROC diagram for the evaluation period of Experiment 3. Four 
earthquakes having 7.5 ≤ Mw < 8.5 that occurred in 1995.0–2015.0 
were used in calculating r for each of the 210 models tried. The 
marker shape denotes the p-value in the learning period. Large red 
markers are used for learning-period elites (p < 15% and r > 0.5 in 
the learning period), listed in Tables 5 and 6. The three blue curves 
are identical to those in Figs. 4 and 9; that is, they correspond to (f, 
r) that would yield p = 5%, 10%, and 15% if there were eight target 
earthquakes
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Table 6  Evaluation-period performance for the learning-period elite models (p < 15% and r > 0.5 in the learning period) in Experiment 
3
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holds for earthquakes of 7.5 ≤ Mw < 8 as well. However, 
the (Tq, R, Ta) range for optimal models in Experiment 
4 was similar to that in Experiment 1. Hence, there 
remains a reasonable chance that long-term quiescence 
has a tendency, if weaker, to precede even these smaller 
earthquakes.
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