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Abstract 

Rapid estimation of the coseismic fault model for medium-to-large-sized earthquakes is key for disaster response. To 
estimate the coseismic fault model for large earthquakes, the Geospatial Information Authority of Japan and Tohoku 
University have jointly developed a real-time GEONET analysis system for rapid deformation monitoring (REGARD). 
REGARD can estimate the single rectangular fault model and slip distribution along the assumed plate interface. The 
single rectangular fault model is useful as a first-order approximation of a medium-to-large earthquake. However, in 
its estimation, it is difficult to obtain accurate results for model parameters due to the strong effect of initial values. To 
solve this problem, this study proposes a new method to estimate the coseismic fault model and model uncertain-
ties in real time based on the Bayesian inversion approach using the Markov Chain Monte Carlo (MCMC) method. 
The MCMC approach is computationally expensive and hyperparameters should be defined in advance via trial and 
error. The sampling efficiency was improved using a parallel tempering method, and an automatic definition method 
for hyperparameters was developed for real-time use. The calculation time was within 30 s for 1 × 106 samples using 
a typical single LINUX server, which can implement real-time analysis, similar to REGARD. The reliability of the devel-
oped method was evaluated using data from recent earthquakes (2016 Kumamoto and 2019 Yamagata-Oki earth-
quakes). Simulations of the earthquakes in the Sea of Japan were also conducted exhaustively. The results showed an 
advantage over the maximum likelihood approach with a priori information, which has initial value dependence in 
nonlinear problems. In terms of application to data with a small signal-to-noise ratio, the results suggest the possibil-
ity of using several conjugate fault models. There is a tradeoff between the fault area and slip amount, especially for 
offshore earthquakes, which means that quantification of the uncertainty enables us to evaluate the reliability of the 
fault model estimation results in real time.
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Introduction
Rapid understanding of the magnitude of large earth-
quakes and their associated fault area is crucial for 
disaster response. Numerous studies have shown the 
advantages of the high-rate (typically 1  Hz sampling) 
Global Navigation Satellite System (GNSS) as a broad-
band sensor that can directly measure displacement 
without saturation (Larson et al. 2003; Ohta et al. 2006; 
Larson 2009). Using onshore high-rate GNSS data 

Open Access

*Correspondence:  yusaku.ohta.d2@tohoku.ac.jp
1 Research Center for Prediction of Earthquakes and Volcanic Eruptions, 
Graduate School of Science, Tohoku University, 6‑6 Aza‑Aoba, Aramaki, 
Aoba‑ku, Sendai 980‑8578, Japan
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4818-477X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-021-01425-0&domain=pdf


Page 2 of 18Ohno et al. Earth, Planets and Space          (2021) 73:127 

enables the rapid estimation of earthquake magnitude 
and tsunamigenic potential within a short period (Ble-
witt et  al. 2006, 2009). The 2011 Tohoku-Oki earth-
quake (Mw 9.0) and its associated tsunami reaffirm the 
importance of accurate tsunami early warning systems 
(Ozaki 2011). Numerous studies conducted to rapidly 
determine the size of the earthquake based on real-time 
GNSS data followed this event (Crowell et al. 2012; Ohta 
et al. 2012, 2015; Melgar et al. 2012; Ohta 2016; Tanaka 
et al. 2019). Melgar et al. (2012) proposed a new method 
called fastCMT (fast Centroid Moment Tensor) to deter-
mine the moment tensor and centroid location of earth-
quakes using real-time GNSS data. Crowell et al. (2012) 
investigated two different methods for inverting het-
erogeneous coseismic slip distribution using real-time 
GNSS time series. One method used pre-defined fault 
planes, such as the plate interface, while the other used 
the fastCMT solution proposed by Melgar et  al. (2012), 
which estimates the CMT solution using GNSS data. 
Ohta et al. (2012, 2015) proposed an algorithm to detect 
and estimate permanent displacement due to the coseis-
mic slip from real-time kinematic GNSS (RTK-GNSS) 
time series. They applied the developed algorithm to the 
2011 Tohoku-Oki earthquake, and pointed out that the 
estimated moment release reached Mw 8.7 within five 
minutes after the origin time, which is close to the actual 
moment magnitude (Mw 9.0). Numerous other efforts 
have also shown the advantage of real-time GNSS data 
for the estimation of large events, including the studies 
of Hoechner et al. (2013), Colombelli et al. (2013), Melgar 
and Bock (2015), and Murray et al. (2019).

The Geospatial Information Authority of Japan (GSI) 
operates a continuous nationwide GNSS network, the 
GNSS Earth Observation Network System (GEONET), 
across Japan. Based on the lessons learned from the 2011 
Tohoku-Oki earthquake, the GSI and Graduate School of 
Science, Tohoku University, have jointly developed a new 
crustal deformation analysis system using GEONET data 
for quasi real-time earthquake size estimation, known 
as the GEONET analysis system for rapid deformation 
monitoring (REGARD) (Kawamoto et  al. 2016, 2017). 
This system consists of three major subsystems which 
perform the following functions: (1) real-time estimation 
of the displacement time series using real-time GNSS 
data, (2) automated extraction of displacement fields 
caused by a large event, and (3) automated coseismic 
fault model estimation via an approximated single rec-
tangular fault model and coseismic slip distribution along 
the subducting plate interface.

The single rectangular fault model is one of the simpli-
fied models that can explain coseismic fault motion. It is 
difficult to explain the complex rupture processes, such 
as inhomogeneous slip distribution, for large earthquakes 

(approximately > Mw 8.0). If only the GEONET sites (site 
spacing: 20–25  km) are used, most Mw 7 events can be 
explained by the single rectangular fault model as first-
order approximation. This model has the disadvantage of 
using a single rectangular fault patch to represent com-
plex large earthquake processes (Kawamoto et  al. 2017) 
and modeling a non-interplate earthquake (~ Mw 7.5) 
whose geometry is difficult to assume in advance (e.g., 
2016 Kumamoto and 2019 Yamagata-Oki earthquakes). 
Such events have frequently occurred in the past 20 years 
in Japan [e.g., 2004 Chuetsu earthquake (Mjma 6.6); 2007 
Noto earthquake (Mjma 6.9); 2007 Chuetsu-Oki earth-
quake (Mjma 6.9); 2008 Iwate–Miyagi Nairiku earthquake 
(Mjma 7.2); 2016 Tottori-ken Chubu earthquake (Mjma 
6.6)]. Thus, accurate and rapid estimation of the single 
rectangular fault model is highly important.

The estimation of a single rectangular fault model is 
a nonlinear problem, because all components should 
be estimated simultaneously. To solve this problem, 
the REGARD system adopts the maximum likelihood 
approach with a priori information (Matsu’ura and 
Hasegawa, 1987) based on tectonic background. For the 
2016 Kumamoto earthquake (Mw 7.0), REGARD success-
fully estimated the single rectangular fault model auto-
matically in real time (Kawamoto et al. 2016). However, 
a problem that required a solution appeared during the 
estimation process. To estimate the single rectangular 
fault model, the REGARD system should provide initial 
values of the unknown parameters. For the 2016 Kuma-
moto earthquake, REGARD assumed a strike-slip fault 
model as the initial model with conjugated fault param-
eters and required a long convergence time to obtain a 
reliable coseismic fault model (Kawamoto et  al. 2016). 
Since the estimation strongly depends on the a priori 
information of the fault model, estimating the uncertain-
ties of the coseismic fault model is difficult but necessary 
for the initial response of decision makers, such as gov-
ernmental agencies.

Recently, numerous geodetic studies have adopted 
Bayesian approaches (Ito et al. 2012; Dettmer et al. 2014; 
Minson et  al. 2014a, b; Jiang and Simons 2016; Ohno 
and Ohta 2018). These studies have also utilized those 
approaches for uncertainty estimation. The uncertain-
ties of unknown parameters should contain both the 
observations and the modeling errors and be estimated 
without a priori constraints. To realize the Bayesian 
modeling, many previous studies adopted the Markov 
Chain Monte Carlo (MCMC) method, which produces 
a correlated sample for estimating expectations with 
respect to a target distribution. However, most previous 
studies could not use the MCMC in real time, because 
it is computationally expensive and requires hyperpa-
rameters to be set up in advance via trial and error. In 
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contrast, Minson et  al. (2014a, b) investigated an inver-
sion strategy capable of using real-time high-rate GNSS 
data to simultaneously solve for a distributed slip model 
and fault geometry in real time. By adopting an analyti-
cal Bayesian approach, they solved the complex inversion 
problem (including calculating the uncertainties) in real 
time. Their method first determines the fault geometry 
(strike and dip of fault plane) and then estimates the slip 
distribution. It efficiently estimates the fault geometry 
and fault slip simultaneously, although it mainly focuses 
on the slip distribution and its uncertainties on the “most 
likely” fault geometry. Since moderate-sized non-inter-
plate earthquakes frequently occur in Japan and some of 
them occur along the blind fault (e.g., 2008 Iwate–Miyagi 
Nairiku earthquake; Ohta et  al. 2008), the geometry of 
the earthquake faults should not be assumed in advance. 
Furthermore, the uncertainties of the fault geometry 
and other unknown parameters, such as the rake angle 
and slip amount, will be traded-off between them. Thus, 
accurate estimation of a single rectangular fault model 
that includes uncertainties associated with fault model 
geometry is still required.

In this study, a new method was developed to rapidly 
predict the parameters of a coseismic single rectangu-
lar fault, along with the associated uncertainties, in real 
time using a full Bayesian approach. The algorithm was 
developed to replace the pre-existing fault model estima-
tion function of REGARD. In the remainder of the paper, 
we first describe how to overcome the problems in the 

MCMC method for real-time estimations. Then, we pre-
sent the application of the proposed method to past and 
simulated events. Finally, we discuss the utilization and 
significance of the obtained uncertainties.

Methods
We developed a new algorithm for the quantitative 
assessment of the estimated coseismic single rectangular 
fault model using a Bayesian approach in real time. Our 
algorithm used MCMC to obtain a probability density 
function (PDF) of fault parameters. To reduce the cal-
culation time and accelerate the automatic adjustment 
of the hyperparameters for real-time prediction, we 
adopted a multi-stage approach with a parallel tempering 
technique. We refer to this new algorithm as the “Real-
time automatic uncertainty estimation of the coseismic 
single rectangular fault model based on GNSS data” 
(hereafter, RUNE) and describe it in detail in this section.

Bayesian inversion
Let θ be a model parameter vector that contains fault 
parameters of a single rectangular fault model (Okada 
1992) and d be a permanent displacement data vector 
with three components (horizontal and vertical compo-
nents) based on real-time GNSS observations and analy-
sis. We define latitude and longitude as the center of the 
fault and depth as the top of the fault. Bayesian estima-
tion of the unknown model parameters conditional to the 
observations is based on Bayes’ theorem:

where p(d) is the PDF of the observations, p(θ) is the 
prior PDF of the model parameters (i.e., conditional 
PDF), p(d|θ) is the likelihood function, and p(θ |d) is the 
posterior PDF of the model parameters. Note that p(d) 
is constant, because observations are fixed values, and 
hence, the posterior PDF is proportional to the product of 
the prior PDF and the likelihood function. The likelihood 
function measures the degree of fit between observed 
d and calculated data d̂(θ) . The residuals are given by 
r(θ) = d̂(θ)− d . Given that the number of stations is 
N  , the dimension of d is 3N  . Assuming that the estima-
tion error follows a normal distribution function and 
standard deviations σi(i = East(E),North(N ),UD(U)) at 
each GNSS station are identical for each horizontal (EN) 
and vertical (U) component, the likelihood function is 
defined as follows:

where Li(θ , σi) indicates the likelihood functions sepa-
rated into horizontal and vertical components, and T 
indicates the transposition. The prior PDF p(θ) repre-
sents priori information about the model parameters, 
assuming a uniform distribution in each assumed search 
range. Bayes’ theorem (Eq. (1)) states that the prior PDF 
is updated to the posterior PDF by considering the obser-
vational data in the form of a likelihood function. By 
sampling the posterior PDF with the MCMC sampler, the 
fault parameter estimations can be obtained as PDFs.

The basic Metropolis–Hasting (M–H) method was 
adopted (Metropolis et al. 1953; Hastings 1970) for sam-
pling in this study. Specifically, sampling is performed by 
repeating the following procedures:

Step 1: Generate a transition candidate, θnew(= refer-
ence θ  + perturbation �θ).

(1)p(θ |d) =
p(d|θ)p(θ)

p(d)
,

(2)p(d|θ) = LEN (θ , σEN )LU (θ , σU ) = 1√
(2πσEN 2)

2N
exp

(
− 1

2σEN 2 rEN
TrEN

)
1√

(2πσU 2)
N
exp

(
− 1

2σU 2 rU
TrU

)
,
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Step 2: Calculate d̂(θ)and d̂
(
θ
new

)
 based on Okada’s 

method (1992) and calculate an acceptance prob-
ability, α.
Step 3: Update the reference θ to θnew with a prob-
ability α . If probability α is not satisfied, the old θ is 
used.

We assume that perturbation �θ is a uniform random 
number with ±�θ

max/2 as the maximum step size. In the 
M–H method, the acceptance probability α is defined as 
follows:

In addition to the fault parameters, the stress drop 
value and variance reduction (VR) defined by Eqs.  (4)) 
and (5) were also calculated as supporting information:

where c , µ , D , and A denote geometrical factor, rigid-
ity, slip amount, and fault area, respectively. Here, 
we assume that c and µ are 0.5 and 30 GPa, respec-
tively. The VR corresponds to an index that shows the 
degree of coincidence between the observed and cal-
culated values. Thus, a high VR value indicates a high 
likelihood.

Parallel tempering
Using just a single Markov chain entails a significantly 
long mixing time to obtain a reliable posterior PDF. To 
accelerate the sampling efficiency to achieve real-time 
predictions, we introduced a parallel tempering tech-
nique (Geyer 1991; Jasra et al. 2007). Let 

{
pj(d|θ)

}
j=1,2,...,n

 
be a family of PDFs defined as follows:

where subscript j is the “chain number” and Tj

( j = 1, 2, . . . , n ) are the temperatures that satisfy 
1 = T1 < T2 < · · · < Tn . In this study, we used eight par-
allel chains (n = 8). Note that T1 corresponds to the target 
PDF such that the functional form of the PDF becomes 
smoother with an increasing chain number or tempera-
ture. The parallel tempering technique involves the fol-
lowing steps:

Step 1: Obtain the next sample θ j in each chain using 
the M–H method described in "Bayesian inversion" 
Section,

(3)α = min
(
1,

p(d|θnew)p(θnew)
p(d|θ)p(θ)

)
.

(4)�σ = 2cµD/
√
A,

(5)VR = 100
(
1− rTr/dTd

)
,

(6)pj(d|θ) = p
(
d|θ j

)1/Tj ,

Step 2: Randomly select four temperature values with-
out overlap ( Tj and Tj

′ ;Tk and Tk
′),

Step 3: Exchange the current samples between 
Tj and Tj

′ with a probability, β . Repeat this step for 
Tk and Tk

′.The exchange occurs with one pair per step. 
However, two pairs per step can be exchanged to pro-
mote exchange in real time. Exchange probability 
β between Tj and Tj

′ is defined as follows:

Each temperature was set using a geometric progres-
sion ( Tj = 100j−1/7 ) based on the idea that σi is multi-
plied by 10 at the maximum temperature.

Sampling flow for real‑time use
To use the method described in "Parallel tempering" Sec-
tion, we assume several hyperparameters in advance, 
i.e., the initial model sample ( θ int ), standard deviations 
of the likelihood functions ( σEN , σU ; Eq.  (2)), maximum 
step size ( �θ

max ), and the number of Markov chains. The 
values of the hyperparameters strongly depend on the 
size of the earthquake, coverage of the GNSS stations, 
and the distance from the fault to a GNSS station. Thus, 
automatic adjustment of the hyperparameters is essential 
for real-time predictions. For this purpose, an “automatic 
hyperparameter setting phase” was introduced before the 
main sampling phase to automatically determine the val-
ues of hyperparameters. Figure  1 shows an overview of 
the sampling flow including the automatic hyperparam-
eter setting phase. The following are the details of each 
phase and its preparations.

Initial parameter settings
In Japan, an earthquake early warning (EEW) can be 
issued by the Japan Meteorological Agency (JMA) based 
on the short-period seismometer data that cover the 
entire Japanese territory. Thus, the EEW was adopted as a 
priori information for the expected coseismic fault model 
as the initial value of the MCMC approach. Table 1 lists 
the settings of the initial values and search ranges for 
the fault parameters. For the fault area and slip amount 
assumption in the expected coseismic fault model, we 
used the scaling law proposed by Utsu (2001). As a pri-
ori information for the location of the fault, we set the 
prior PDFs for the latitude, longitude, and depth as the 
normal distribution based on the EEW information with 
pre-determined variances that depend on the fault length 
and width. There was no information on the fault mech-
anism for the timing of the EEW. Thus, possible fault 

(7)β = min



1,
p
�
d|θ

j
′
�1/Tj

p(d|θ j)
1/T

j
′

p(d|θ j)
1/Tj p

�
d|θ

j
′
�1/T

j
′



.
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geometries such as the fault strike, dip, and rake angles 
could be assumed. This information was derived and sim-
plified from a tectonic stress pattern database at 10 and 
40 km in depth, as reported in Terakawa and Matsu’ura 
(2009), whose data are identical to those in the current 
REGARD system (Kawamoto et  al. 2017). Furthermore, 
for a more efficient unknown parameter search, only the 
results in the range of 0.2–21.2  MPa were accepted for 
the stress drop based on the empirical rule (Kanamori 
and Anderson 1975). These lower and upper limits were 
determined based on the stress drop value calculated 
with Eq.  (4) using [LENM+1,WIDM+1, SLIPM−1] and 
[LENM−1,WIDM−1, SLIPM+1] for the lower and upper 
limits, respectively. Here, LENM , WIDM , and SLIPM 

denote values based on the scaling law proposed by 
Utsu (2001). The scaling law can translate from M to the 
fault length ( LENM ), width ( WIDM ), and slip amount 
( SLIPM ) of single rectangular faults. Here, LENM+1 
and LENM−1 denote that the fault length expected 
from the scaling law is assumed to be the magnitude 
estimated by EEW plus one and minus one, respec-
tively. Therefore, [LENM+1,WIDM+1, SLIPM−1] and 
[LENM−1,WIDM−1, SLIPM+1] correspond to the small-
est and largest stress drop values, respectively. The lower 
and upper limits of the stress drop do not depend on M, 
because the scaling law by Utsu (2001) adopts a uniform 
stress drop value. For the same reason, with the con-
straint on the stress drop value, only the samples that 

Fig. 1  Sampling flow of the new method, RUNE. NP denotes the “Nodal Plane” of the fault. Calculation time denotes the approximate calculation 
time at the end of the stage using a typical LINUX server

Table 1  Initial parameter settings for the analysis. Maximum step sizes are adjusted from these values in the Burn-in phase

LAT, LON, DEP, M: values estimated by EEW

LENM, WIDM, SLIPM: values based on scaling law by Utsu (2001). The units are converted for each line

NP1, NP2: Nodal planes based on Terakawa and Matsu’ura (2009)

Initial value θint Maximum step size �θ
max Prior PDF

Latitude [°] LAT
√
LENM ∗WIDM∗0.1 N (LAT, 

√
LENM-1 ∗WIDM-1

2
)

Longitude [°] LON
√
LENM ∗WIDM ∗ 0.1 N (LON, 

√
LENM-1 ∗WIDM-1

2
)

Depth [km] DEP 1 N (DEP, 202)

Strike [°] NP1, NP2 10 U (0, 360)

Dip [°] NP1, NP2 10 U (0, 90)

Rake [°] NP1, NP2 10 U (-180, 180)

Length [km] LENM LENM*0.1 U (0, ∞)

Width [km] WIDM WIDM*0.1 U(0, ∞)

Slip amount [m] SLIPM SLIPM*0.1 U (0, ∞)
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satisfy “fault length > fault width” were accepted based 
on the relationship between fault length and width (e.g., 
Wells and Coppersmith 1994).

Stage 1: Auto setting phase
In the previous stage, we assumed the appropriate ini-
tial value of the coseismic fault model using the EEW 
issued by the JMA as well as empirical information. 
In the subsequent stage, we attempted to automati-
cally determine the appropriate values of σEN , σU , and 
�θ

max . Based on the assumption in Eq.  (2), the likeli-
hood function can be simplified and used to derive the 
maximum likelihood estimates, i.e., σ̂i(i = EN ,U), by 
setting ∂Li/∂σi = 0 and solving for σi . After substitut-
ing σ̂EN =

√
rENTrEN /2N and σ̂U =

√
rUTrU/N into 

Eq.  (2), the likelihood function can be described as fol-
lows (Dosso and Wilmut 2006; Dettmer et al. 2014):

In the auto setting phase, Eq. (8) is used as a likelihood 
function for sampling, while σ̂i is calculated. This proce-
dure is equivalent to assuming that the estimation error 
is the residual mean square, allowing us to determine an 
implicit value of σi in real time. To ensure that the set-
ting does not only depend on the EEW and temperature 
of each chain, the �θ

max values of all eight chains were 
automatically adjusted such that the acceptance rate is 
between 30 and 40% (Roberts and Rosenthal 2001). If 
the acceptance rate is smaller than 30%, �θ

max performs 
constant multiplication at 10% decrease. Otherwise, if 
the acceptance rate exceeds 45%, �θ

max performs con-
stant multiplication at 5% increase. This auto-adjustment 
procedure occurs at every 1000 steps. Note that the ratio 
of �θ

max between each fault parameter depends on the 
initial decision, because �θ

max is adjusted by multiply-
ing the whole unknown parameters. To evaluate the end 
of the auto setting phase, the following regulations were 
introduced: when the median value of the VR samples at 
every 1× 104 steps (i.e., “1 batch” in this study) is larger 
than 90%, or if 10 batches are sampled, the auto setting 
phase is terminated to move on to the next stage. We 
refer to the last batch of stage 1 in T1 as the “seed batch” 
for the next stage (Fig. 1).

Stage 2: Main sampling phase
In stage 2, stable sampling of the posterior PDF was 
performed based on the information from stage 1. To 
obtain a stable sampling result, σi(i = EN ,U) was fixed 
to the sample median value of the seed batch, σ̂medi

i  . The 
median and mode values for θ ( θmedi and θmode ) of the 

(8)p(d|θ) = LEN (θ)LU (θ) ∝ exp
(
− 2N

2 loge
(
rEN

TrEN
))

exp
(
−N

2 loge
(
rU

TrU
))

.

“seed batch” were assigned to eight chains as the initial 
fault parameters in stage 2 (Fig. 1). For �θ

max , the opti-
mization was continued based on the results of stage 1 
until the end of the first batch in stage 2. After the first 
batch in stage 2, the �θ

max value was fixed for the follow-
ing batches. In general, because the result of the initial 
part of the chain strongly depends on the initial value of 
the unknown parameters, the chain eliminates these val-
ues (i.e., "Burn-in"). In our algorithm, we assumed that 
Burn-in occurs in stage 1 until the end of the initial batch 
in stage 2. Sampling was terminated when 100 batches 
( 1× 106 steps) were obtained. Thus, 99 batches obtained 
in this stage were used for rendering the posterior PDFs 
(Fig. 1).

Computation time
Typically, MCMCs consume a large amount of computa-

tional resources to increase the number of samples; thus, 
they are not suitable for real-time analysis. In this study, 
all the programs were coded in Fortran90, the memory 
access speed was increased using single precision for 
unnecessary components, and the code was parallelized 
using OpenMP (open multiprocessing) with multiple 
CPUs. For parallel computing, eight parallel chains were 
assigned to each thread and calculated with eight threads. 
The non-interfering loop calculations were also parallel-
ized. The computation time depended on the computer 
performance, number of threads, amount of parallel tem-
pering, number of MCMC samples, and the number of 
observation sites.

The computation time required for RUNE is 30 s when 
a Xeon Gold 6126 (2.6 GHz) processor is used with eight 
fixed parallel chains and 1.1× 106 samples (i.e., the case 
for a maximum number of samples in stage 1 and 2). As 
the number of observation points used in this study was 
100 or 200 when using 8 threads, the calculation was 
completed in less than 30 s: 15 s for 100 stations and 18 s 
for 200 stations (Additional file 1: Figure S1).

Results
To evaluate the performance of the proposed algorithm, 
we applied it to actual RTK-GNSS displacement data, 
which recorded several past non-interplate large earth-
quakes, e.g., the 2016 Kumamoto (Mw 7.0) and 2019 
Yamagata-Oki earthquakes (Mw 6.4). For these events, 
we used the actual RTK-GNSS displacement data esti-
mated by the REGARD system. We also conducted 60 



Page 7 of 18Ohno et al. Earth, Planets and Space          (2021) 73:127 	

numerical simulations of the earthquakes of Mw 6.7–7.8, 
which occurred in the Sea of Japan.

2016 Kumamoto earthquake (Mw 7.0)
The 2016 Kumamoto earthquake (Mw 7.0) occurred at 
16:25:05 UTC on April 15, 2016. REGARD was operated 
in real time during the earthquake to automatically esti-
mate the single rectangular fault model. The estimated 
fault model was consistent with the post-earthquake 
results based on the Interferometric synthetic-aperture 
radar (InSAR) and GNSS data. Kawamoto et  al. (2016), 
however, identified a problem that required a solution for 
the inversion component based on the occurrence of this 
event. In the current REGARD system, the maximum 
likelihood estimation was adopted to estimate the single 
rectangular fault model. To estimate the model, includ-
ing the fault geometry, the REGARD system assumes 
the initial values for unknown parameters for the inver-
sion analysis, because it is a nonlinear problem. Thus, the 
obtained result depends on these initial values. For the 
2016 Kumamoto earthquake, REGARD assumed a nodal 
plane opposite to the actual direction based on the focal 
mechanism database. Due to this erroneous assumption, 
a long convergence time was required for this event. By 
applying RUNE to this large inland event, we evaluated 
its magnitude and characteristics, but determining the 
fault location and geometry was difficult. We used 200 
stations near the epicenter for the analysis. We estimated 
the displacement at each observation point at 5  s inter-
vals from actual 1  Hz RTK-GNSS time-series data (dif-
ference between the average of 1  min before the event 
and the average of the 20  s travel time window), and 
applied RUNE to the data independently. This procedure 
of repeated displacement estimation is similar to that 
of REGARD, and it is important for dealing with large 
earthquakes whose displacement evolves over time. On 
the other hand, the application presented in this paper 
is for relatively small events whose displacements do not 
evolve over time; however, we also used the repeat esti-
mation for comparison with REGARD.

Figure 2a, b, d shows the results for 60 and 290 s after 
the origin time (here “time” indicates the time of the 
displacement data, not the time at which the result was 
obtained) (all marginal PDFs at 60  s: Additional file  1: 
Figure S2). Figure  2c shows a comparison of the time 
history of the estimated moment magnitude for three 
different sources. Our algorithm estimated a northwest 
dipping strike-slip fault along the Futagawa fault 60  s 
after the origin time, which is consistent with the estima-
tion of the post-processed fault model (Yarai et al. 2016). 
In contrast, REGARD yielded a conjugate fault (Fig. 2b), 
which was northeast dipping because of the incorrect 
initial value assumption. The estimation condition did 

not change until 290  s after the origin time (Fig.  2c, d). 
REGARD yielded a reasonable fault model after 290  s 
from the origin time, which was similar to the results of 
RUNE. In the 2016 Kumamoto earthquake, the source 
time function was less than 30 s (Kubo et al. 2016). The 
passage of the large seismic wave around the epicenter 
also terminated in less than 60  s. The comprehensive 
permanent displacement pattern did not change in 60  s 
after the origin time. Thus, the resulting conjugate fault 
estimated by REGARD may reflect a strong dependency 
on the initial value. These results indicate the advantages 
of the algorithm developed in this study, especially the 
weaker initial value dependency than the maximum like-
lihood estimation for nonlinear problems.

2019 Yamagata‑Oki earthquake (Mw 6.4)
The 2019 Yamagata-Oki earthquake (Mw 6.4) occurred at 
14:22:20 UTC on June 18, 2019. This event was an intra-
plate earthquake that occurred off Yamagata Prefecture 
along the eastern margin of the Sea of Japan. The focal 
mechanism proposed by the JMA suggests that reverse 
fault motion occurred with a northeast to southwest 
extension axis (Fig. 3b). This earthquake triggered a tsu-
nami, which was observed by tide gauges on the coast of 
the Sea of Japan (~ 100 mm; Earthquake Research Com-
mittee 2019). Furthermore, the REGARD system auto-
matically estimated the permanent displacement and a 
fault model with southeast dipping (Fig.  3b). However, 
the width of the estimated fault was small (1.8 km), and 
the ratio of the fault length to the width was quite large. 
The estimation result strongly depends on the initial val-
ues; thus, it is difficult to determine how accurately this 
model was estimated. By applying RUNE to this event, 
we assessed whether our approach could quantify the 
estimation uncertainties of the fault parameters. We used 
50 stations near the epicenter from the same dataset used 
for REGARD estimation, considering the low signal-to-
noise (S/N) ratio.

Figure  3 shows the estimated results (all marginal 
PDFs: Additional file  1: Figure S3). Posterior PDFs have 
multiple peaks in strike, dip, and rake angle, and large 
tails in length, width, and slip amount. The median values 
suggest a reverse fault with southeast dipping. Figure 3d 
shows the normalized fault location frequency, which is 
the distribution of each sample’s fault plane normalized 
by maximum frequency. The distribution location is close 
to the location of the centroid moment tensor solution 
estimated by the JMA and has a complex shape with the 
nodes in the northwest–southeast and northeast–south-
west directions. Figure  3c shows the marginal PDFs 
between the dip, rake, and strike angles. Multiple peaks 
in each posterior PDF correspond to four clusters. These 
clusters correspond to a reverse fault with northwest 
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dipping, a reverse fault with southeast dipping, and two 
strike-slip faults perpendicular to them. The same behav-
iors were observed even when the number of samples 
was increased.

These results suggest that some fault parameters such 
as the depth, dip, and fault length and width, were not 
well-constrained for this event. Using RUNE, we showed 
that the observed data did not have sufficient resolution 

Fig. 2  Results of the 2016 Kumamoto earthquake. a Posterior PDFs at 60 s after the origin time. The ranges on the horizontal axis reflect the 
maximum search ranges. Inserted values in the upper right-hand corner denote the mean, median, and mode in the top, middle, and bottom 
positions, respectively. b, d Estimated coseismic fault model (mode value) at 60 and 290 s after the origin time, respectively. The black and white 
vectors denote the observations and calculations based on the coseismic fault model, respectively. The colors indicate the residual value between 
the calculation and observation of the vertical component. Focal mechanisms, in gray and black, represent the initial value for the analysis and the 
CMT solution issued by the JMA, respectively. The black rectangular fault model represents the coseismic fault model obtained by REGARD in real 
time. c Estimated time series of Mw at the 95% confidence interval. “EEW” shows the values from the Earthquake Early Warning systems issued by 
the JMA. The “maximum likelihood” is based on results using the actual REGARD record (Kawamoto et al. 2016)
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to reject the possibility of the four models, and the 
reverse fault with southeast dipping was superior to the 
other models. Thus, it is possible to discuss the reliability 
of the estimated results from a more diverse perspective 
by acquiring not only variance reduction but also uncer-
tainties in real time.

Simulated intraplate earthquakes in the Sea of Japan (Mw 
6.7–7.8)
In this section, the detectability of intraplate earth-
quakes was evaluated by numerical simulations using 
RUNE. The target area is the eastern margin of the Sea 

of Japan, where numerous non-interplate tsunamigenic 
earthquakes have occurred, such as the 1940 Shakotan-
Oki (Mw 7.5), 1964 Niigata (Mw 7.5), 1983 Middle Sea 
of Japan (Mw 7.9), and 1993 Hokkaido Nansei-Oki (Mw 
7.8) earthquakes (Tanioka et al. 1995). A single rectangu-
lar fault model can successfully model a non-interplate 
earthquake whose geometry is difficult to assume in 
advance.

To obtain the input coseismic fault models, we adopted 
60 fault models proposed by the Japanese govern-
ment (MLIT, CAO, and MEXT 2014: Additional file  1: 
Table S1, Figure S4a). Some of the 60 assumed scenarios 

Fig. 3  Results for the 2019 Yamagata-Oki earthquake. a Posterior PDFs. The ranges on the horizontal axis reflect the maximum search ranges. 
Inserted values in the upper right-hand corner denote the mean, median, and mode in the top middle, and bottom positions, respectively. b 
Estimated coseismic fault model. The black and white vectors denote the observations and calculations based on the coseismic fault model, 
respectively. The colors indicate the residual value between the calculation and observation of the vertical component. Focal mechanisms, in 
gray and black, represent the initial value for the analysis and the CMT solution issued by the JMA, respectively. The red rectangular fault model 
represents the estimated coseismic fault model (median value). The black rectangular fault model represents the estimated coseismic fault model 
with the REGARD system. c Marginal PDFs of strike, rake, and dip angles. The colors indicate the normalized frequency. d Normalized frequency 
distribution of the estimated coseismic fault. The colors indicate the normalized frequency of the coseismic fault plane at each point
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are composed of multiple rectangular faults (estima-
tion was performed as a single rectangular fault). The 
range of the magnitude is Mw 6.7–7.8, which is larger 
than the 2019 Yamagata-Oki earthquake that occurred 
in the same area ("2019 Yamagata-Oki earthquake (Mw 
6.4)" Section). The assumed fault models have the same 
mechanism of reverse fault slip as the 2019 Yamagata-
Oki earthquake. The input data of RUNE include the 
displacement data and EEW. We calculated the expected 
coseismic permanent displacement for 50 GEONET sta-
tions surrounding the focal area based on Okada (1992) 
by adding the expected observation error via a Gaussian 
distribution with a standard deviation of 2 and 5 cm for 
the horizontal and vertical components, respectively. For 
setting the EEW information, we used the average value 
of the constituting fault centers as latitude and longi-
tude, uniform 10  km as depth, and the closest value to 
the input in 0.5 intervals as magnitude. Then, we applied 
RUNE to the 60 cases independently.

Figure  4 shows the estimated results for the 60 cases. 
For better visualization, Fig.  4a, b shows odd and even 
case IDs, respectively. The red rectangular faults and 
blue contours indicate the median and the normalized 

frequency distribution, respectively. In almost all cases, 
the estimations were located around the assumed fault 
models. In the case of multiple rectangular faults’ inputs, 
the coseismic faults were estimated offshore as a sin-
gle rectangular fault rather than assumed faults (F24 in 
Fig. 4b). However, the normalized frequency distribution 
varied depending on the arrangement of the observation 
stations. The uncertainty of the spread of the fault plane 
was larger for faults located offshore.

Figure 5 shows the estimated Mw as a box plot, whose 
horizontal axis is the distance to the nearest observation 
station. The larger the distance to the nearest observation 
station, the larger the estimated range of Mw. The green 
line in Fig. 5 shows the envelopes of Mw required to cause 
a horizontal displacement of 5 cm (~ maximum displace-
ment observed in the 2019 Yamagata-Oki earthquake) at 
the nearest observation station for six types of reverse 
fault mechanisms. In other words, these envelopes indi-
cate that the larger the distance from the epicenter, the 
larger the Mw required to observe a horizontal displace-
ment of 5 cm. Since the given simulated noise is uniform, 
the case closer to the envelope line suggests a smaller S/N 

Fig. 4  Results for the simulated earthquakes. a Results of odd IDs. b Results of even IDs. The red rectangular fault model represents the estimated 
coseismic fault model (median). The blue contours indicate the normalized frequency distribution of the estimated coseismic fault. The contour of 
0.9 is the outermost one and is indicated by a bold line



Page 11 of 18Ohno et al. Earth, Planets and Space          (2021) 73:127 	

ratio. Therefore, the smaller the S/N ratio of the observa-
tion data, the larger the estimated range of Mw.

Table  2 shows the σi(i = EN ,U) values of the likeli-
hood function fixed in RUNE stage 2 in each case. The σi 
values are close to the noise of the simulated observation 
data: the standard deviations of Gaussian noises are 2.0 
and 5.0  cm for the horizontal and vertical components, 
respectively. Since the same Green’s function (Okada 
1992) was used to simulate the data and to estimate the 
fault models, there were no modeling errors. Their simi-
larities indicate that the dynamic adjustment of hyperpa-
rameters in RUNE worked well. Table  2 also shows the 
median value of VR in each case. Although some cases 
have high VR values exceeding 95%, the estimated faults 
may not always reproduce the assumed fault model. For 
example, the F01 result whose VR is 97.72% cannot esti-
mate the fault plane extending to the north direction, 
where there is no station (Fig.  4a). This result suggests 
that a model with higher VR may not always be a model 
with higher accuracy.

Fig. 5  Relationship between the distance from the epicenter to the 
nearest observation station and estimated Mw. Blue dots indicate the 
assumed Mw. Each box plot indicates the result of each fault ID. The 
yellow box indicates the result of the 2019 Yamagata-Oki earthquake. 
The green line indicates the theoretical envelope of Mw required 
to cause 5 cm horizontal displacement at the nearest station. The 
insert indicates the positional relationship between the station and 
the fault. We used the scaling law of Utsu (2001) to assume the size 
and calculated theoretical displacement according to Okada (1992). 
The small step in the green line near zero on the horizontal axis 
corresponds to a change in the displacement pattern at the ground 
surface, because the assumed fault has a finite size according to the 
scaling law

Table 2  VR and standard deviation of likelihood function in 60 
simulations. VR values indicate the mode values

ID VR [%] S.D. of likelihood 
function [cm]

All Horizontal Vertical Horizontal Vertical

1 97.72 98.75 97.04 1.81 4.78

2 92.14 95.33 90.51 2.00 4.97

3 17.57 45.91 − 1.21 1.92 4.59

4 4.78 17.45 − 0.42 1.99 4.78

5 1.28 6.83 − 0.06 1.85 5.35

6 49.13 81.42 − 0.26 2.01 5.34

7 5.22 19.08 0.62 1.93 5.25

8 15.02 37.93 1.53 2.15 5.00

9 17.85 45.62 1.57 2.13 5.29

10 22.23 52.40 1.32 2.23 5.44

11 16.02 48.63 − 0.21 1.73 4.84

12 70.84 89.13 16.41 2.03 4.62

13 68.55 88.56 22.77 2.08 5.05

14 90.85 97.47 72.06 2.04 6.77

15 93.17 97.20 80.81 2.16 4.97

16 78.54 93.60 13.08 1.94 4.88

17 97.12 97.26 97.05 2.36 4.75

18 87.43 95.54 49.96 3.18 7.35

19 64.23 85.18 3.81 1.99 4.21

20 94.16 97.95 49.30 2.22 4.54

21 34.06 71.51 2.25 1.96 5.59

22 45.82 74.34 − 0.06 2.14 4.72

23 85.83 94.94 33.64 1.98 4.31

24 89.30 96.51 10.28 2.19 4.99

25 6.14 24.41 0.37 1.94 5.54

26 63.49 90.03 6.87 1.81 5.34

27 19.96 49.71 0.94 1.91 4.77

28 56.12 83.70 2.58 1.83 4.57

29 8.98 29.69 0.55 1.95 5.14

30 92.76 94.37 87.66 4.24 5.07

31 89.59 97.38 70.11 1.92 5.78

32 37.88 76.17 − 1.53 1.80 5.20

33 52.50 80.24 6.98 2.06 4.93

34 97.37 98.68 95.62 2.32 4.90

35 94.29 92.27 94.77 1.98 4.78

36 46.89 76.59 16.27 1.95 5.14

37 25.96 60.96 2.31 1.96 5.40

38 87.78 95.68 76.56 1.90 5.26

39 79.49 95.35 10.65 1.90 5.71

40 78.79 88.85 61.45 2.41 4.83

41 94.75 97.99 71.49 2.23 4.45

42 25.89 50.46 4.81 2.04 4.32

43 97.33 98.43 96.63 2.12 5.47

44 84.38 87.33 83.39 1.98 5.53

45 77.21 87.16 65.20 2.33 6.70

46 22.15 49.04 2.94 1.99 4.60

47 14.95 43.59 3.35 1.89 5.49
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Discussion
Practical use of the estimated uncertainties for real‑time 
purposes
In "Results" Section, the proposed method was applied 
to both past and synthetic intraplate events. The method 
provides a reliable coseismic fault model with the uncer-
tainty of each parameter in real time. In this section, we 
discuss using our method with the obtained uncertainties 
of the fault model in a real-time purpose.

As mentioned in "Introduction" Section, the GSI and 
Tohoku University have developed the REGARD system 
for coseismic fault estimation in real time using GNSS 
data. One of the purposes of the REGARD system is to 
estimate an accurate moment magnitude, because GNSS 
provides unsaturated magnitude values for large events. 
This information is used by the JMA as supporting infor-
mation when issuing tsunami warnings/advisories. The 
moment magnitude is the basic starting information 
to decide whether to issue a tsunami warning/advisory. 
Real-time GNSS data can provide a relatively accurate 
moment magnitude value despite the instability of the 
other parameters. The proposed method can also provide 
the PDF of the moment magnitude (Figs. 2, 3, Additional 
file  1: Figure S5). To avoid under/overestimation of the 
tsunami warning/advisory, information on the uncer-
tainty of the moment magnitude is required.

Currently, the JMA only uses information on the 
moment magnitude from the REGARD system, but the 
GNSS can provide not only the moment magnitude value 
but also the finite fault model. In contrast, the onshore 
GNSS data cannot strictly distinguish between the fault 
slip amount and fault area. Figure  6 shows the correla-
tion between the slip amount and fault area for all four 
events with lines indicating the stress drop values. All 
events show a clear trade-off between the slip amount 
and fault area, whereas the magnitude is relatively well-
constrained. For example, the moment magnitude was 
stably estimated for the 2019 Yamagata-Oki event despite 
a relatively low VR value compared to the other events. 
The 2016 Kumamoto earthquake was also characterized 

Table 2  (continued)

ID VR [%] S.D. of likelihood 
function [cm]

All Horizontal Vertical Horizontal Vertical

48 1.91 8.71 − 0.36 1.80 4.79

49 11.11 39.30 − 0.78 1.92 5.35

50 3.57 16.42 − 0.42 1.97 5.37

51 49.18 78.17 8.26 2.08 5.07

52 74.24 82.40 72.39 3.48 13.11

53 50.50 57.61 40.69 3.96 5.86

54 71.97 85.30 55.34 2.15 10.27

55 92.73 97.58 36.78 2.06 4.38

56 53.05 78.60 6.66 2.13 4.69

57 49.69 78.71 12.14 1.94 4.90

58 39.30 73.12 − 5.68 2.17 5.40

59 92.79 97.66 62.18 2.00 4.48

60 97.90 99.25 93.27 3.13 5.74

Ave. (1σ) 56.36 
(33.01)

72.82 
(26.98)

31.37 
(35.96)

2.15 (0.48) 5.35 (1.34)

Fig. 6  Marginal PDFs between the estimated fault area and slip amount, a without 60 simulations except for simulated F16 earthquake in the Sea 
of Japan and b with 60 simulations. The contours denote the normalized frequency of the marginal PDF between 0.1 and 0.9. The thick black line 
denotes the calculated moment magnitude. The thin dashed lines denote the stress drop values calculated using Eq. (4). Gray hatched areas denote 
the non-searchable areas constrained by the stress drop value
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by a trade-off between the VR value and moment mag-
nitude. The range, however, was smaller than that for the 
other events. For the 2016 Kumamoto earthquake, sta-
tion coverage was sufficient to estimate the fault model 
compared to the other offshore events. Fault area infor-
mation is necessary to estimate an accurate initial sea 
surface distribution (Ohta et al. 2012; Tsushima and Ohta 
2014; Tsushima et al., 2014). For practical real-time mon-
itoring, a comparison with past large earthquakes in such 
figures to understand the trade-offs would be useful to 
validate the potential uncertainties in the fault area.

As mentioned in "2019 Yamagata-Oki earthquake (Mw 
6.4)" Section, the posterior PDFs of the fault parameters 
also enable us to discuss the reliability of the estimated 
results. The VR value is required for the validation of the 
estimation reliability. However, the results of the numeri-
cal simulations in "Simulated intraplate earthquakes in 
the Sea of Japan (Mw 6.7–7.8)" Section suggest that the 
VR value may not always support accuracy. Therefore, 
discussing the results together with their uncertainties 
provides new evidence, unlike discussing the results only 
with the estimated values, depending on the initial value 
and its VR.

The results of REGARD, including the single rectan-
gular fault model, were also adopted as sources to esti-
mate tsunami inundation, and resulting damage. This 
system for tsunami inundation and resulting damage has 
been developed based on the results of the “The research 
group of real-time estimation for tsunami inundation” 
(Ohta et al. 2018). The system has been adopted as part 
of the Disaster Information Systems (DIS) operated by 
Japan’s Cabinet Office (Musa et al. 2018; Ohta et al. 2018) 
and will use the generated information for initial govern-
mental response after tsunamigenic earthquakes. The 
quantitative uncertainties of the fault models are directly 
related to the uncertainties of the vertical seafloor defor-
mation and the tsunami hazard (Additional file 1: Figure 
S6). The method developed in this study for the coseismic 
fault model has the potential to enhance tsunami predic-
tion (i.e., by the addition of the uncertainty information).

In this study, we only focused on the estimation of the 
single rectangular fault model for moderate-sized earth-
quakes (~ Mw 7.5). It is still necessary to understand the 
intermediate large non-interplate earthquakes, such as 
inland and intraplate earthquakes, to obtain accurate 

real-time predictions. However, this simple model cannot 
explain more complex rupture processes, including inho-
mogeneous slip distribution. Future work should develop 
and implement a method to estimate the fault geometry 
and slip distribution simultaneously, as proposed by Min-
son et al. (2014a).

Origin of quantified uncertainties
In "Practical use of the estimated uncertainties for real-
time purposes" Section, we discussed using the obtained 
uncertainties of the fault model with our method. The 
uncertainty of each parameter includes both the obser-
vation and model errors. The adjusted hyperparameters 
( σi(i = EN ,U) and �θ

max ), a priori information, and the 
number of stations may affect uncertainties.

First, we discuss the effect of the standard deviation of 
the likelihood function σi . To obtain the standard devia-
tion in real time, we adopted Eq. (8), where the σi values 
strongly depend on the stability and size of the displace-
ments. Thus, σi cannot be identical to the typical RTK-
GNSS observation error; the difference between the 
analytical solution of Okada (1992) and the actual obser-
vation is used as σi (Eq. (8)). Figure 5 shows the compari-
son between the estimated Mw of the 2019 Yamagata-Oki 
earthquake ("2019 Yamagata-Oki earthquake (Mw 6.4)" 
Section) and the results of the numerical simulations 
("Simulated intraplate earthquakes in the Sea of Japan 
(Mw 6.7–7.8)" Section). The range of Mw of the 2019 
Yamagata-Oki earthquake is larger, although the fixed σi 
of the likelihood function is smaller ([EN, U] = [0.58 cm, 
1.12  cm], Table  2), because in the 2019 Yamagata-Oki 
Earthquake, the S/N ratio was smaller, and/or there was 
non-Gaussian local noise at each station. Furthermore, 
kinematic time series after large earthquakes are affected 
by the dynamic rupture process and seismic wave pas-
sage. Adjustment of σi with Eq.  (8) can avoid overfitting 
of such data.

Second, we discuss the effect of the utilization of a 
priori information. RUNE has prior PDFs on the lati-
tude, longitude, and depth, based on the EEW value 
("Sampling flow for real-time use" Section). A normal 
distribution of the magnitude of the earthquake with a 
standard deviation is given for the epicenter (Table  1). 
This is the constraint that increases the reliability of the 
epicenter estimated from the seismic waveform data 

(See figure on next page.)
Fig. 7  Results for the simulated earthquake F16 in different EEW positions. a, c, and e Posterior PDFs. The ranges on the horizontal axis reflect the 
maximum search ranges. Inserted values in the upper right hand corner denote the mean, median, and mode in the top, middle, and bottom 
positions, respectively. Solid red and black dashed lines denote the given and initial fault parameter, respectively. b, d, and f Estimated coseismic 
fault model. The black and white vectors denote the observations and calculations based on the coseismic fault model, respectively. The colors 
indicate the residual value between the calculation and observation of the vertical component. Focal mechanisms, in gray, represent the initial 
values for the analysis. The red and black rectangular fault models represent the estimated (median value) and given coseismic fault model, 
respectively. The blue contours indicate the normalized frequency distribution of the estimated coseismic fault
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when the magnitude of the earthquake is small (the S/N 
ratio of GNSS is small or spatial coverage of the GNSS 
site is not good). In such an estimation, GNSS data do 
not have the resolution to converge the estimation to the 
assumed fault position beyond the a priori position con-
straint. Figure  7 shows the estimate results for the sim-
ulated earthquake F16 at Sea of Japan in different EEW 
positions. If the hypocenter location by the EEW is sig-
nificantly different from actual one, the estimated fault 
location is likewise estimated in a location that slightly 
deviates from actual one, although the value of VR does 
not change significantly. Although MCMC has an advan-
tage similar to that of grid search, the MCMC search 
depends on the likelihood function and the constraint. 
Therefore, it is difficult to quantify the variations in the 
parameters in one estimation and in those with a limited 
number of samples.

In RUNE, the prior PDF was designed by applying 
it to the actual data of the 2019 Yamagata-Oki earth-
quake, which was a small earthquake. One of the 
methods to solve the difficulties in search efficiency is 
the parallel tempering approach, which is also imple-
mented in RUNE. To further increase the search effi-
ciency, the parallel chains can be started from different 
initial values (latitude, longitude), and the number of 
parallel chains can be increased. Furthermore, although 
EEW data were used as a priori information in this 
study, the CMT solution based on the seismic data can 
be used without any change in the code. Moreover, 
although past estimation results with high VR were not 
applied to the time series data (the 2016 Kumamoto 
earthquake), they can be used as a priori information 
for stability.

Next, we discuss the effect of the number of stations. 
REGARD consists of three subsystems, but RUNE pre-
dicts the replacement of the fault model estimation sub-
system, and the selection of observation points to be 
used is not included in the current algorithm. However, 
owing to the tendency of MCMC to have a small initial 
value dependency and the current policy of minimizing 
the a priori constraint of RUNE, the spatial arrangement 
of used observation points affects the search behavior. 
In the application to cases, where the S/N is small, if the 
observation point arrangement is adopted unnecessarily 
far from the fault position, the fault length may unrealis-
tically increase to explain them (Fig. 4b and Table 2, fault 
ID: 48). Besides, when using Okada’s model (1992), the 
homogeneous and isotropic elastic half-space assump-
tion becomes problematic when using GNSS sites very 
far from the actual focal area. The relationship between 
the observation point selection and search behavior 
requires a future systematic study.

We can also optimize RUNE for objectives other than 
those mentioned above, because the settings affect the 
estimation results. For example, we can fix the standard 
deviations of the likelihood function in stage 2 with an 
additional parameter, i.e., σi = max

(
σ̂medi
i , Obs.erri

)
 . 

This parameter is dependent on the observation error 
and can prevent overfitting. Depending on the problem, 
it may be possible to use this parameter to effectively and 
properly define the observation error. If the time scale 
associated with estimating the observation error is much 
larger (1 day to 1 year), we can apply our approach to 
post-seismic long-time scale events. Furthermore, we can 
utilize other a priori information as prior PDF easily 
(CMT solution, distribution of aftershocks). The algo-
rithm itself can be applied to post hoc analysis without 
any changes in the code.

Finally, we discuss the contribution of the Green’s 
function. In this study, we adopted the conventional 
elastic half-space analytic solution (Okada 1992) as the 
Green’s function. The uncertainties of unknown param-
eters should contain both the observation and mode-
ling errors. However, in this study, we chose this simple 
analytic solution as the Green’s function because of its 
relatively low computational costs compared with more 
realistic solutions, such as the layered spherical earth 
(Pollitz, 1996), three-dimensional finite element (FE) 
method (e.g., Kyriakopoulos et  al. 2013), and elastic/
viscoelastic FE method (e.g., Ichimura et al. 2016). Con-
sidering future improvements in computing ability and 
other factors, these approaches are promising for obtain-
ing more reliable results in real time.

Conclusions
Uncertainties in earthquake models are significant indi-
cators of model reliability. One way to estimate uncer-
tainties in nonlinear problems is to use a full Bayesian 
inversion approach such as the MCMC. However, the 
MCMC is computationally expensive and the hyperpa-
rameters should be set up in advance via trial and error 
(initial model sample, standard deviations of the likeli-
hood function, and maximum step size). To overcome 
these problems, a new method was developed to estimate 
the coseismic fault model in real time, combined with 
the uncertainties of the obtained fault model, using a full 
Bayesian inversion approach. Efficient sampling tech-
niques were adopted using a parallel tempering method 
and a multistage approach. The first stage was only used 
to automatically estimate the optimal hyperparame-
ter values for the second stage. In the second stage, the 
algorithm focused on sampling for the posterior PDFs. 
Using a standard 1U server, the calculation time was 
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determined to be less than 30 s for 1 × 106 samples, which 
is ideal for use with a real-time system, such as REGARD.

The reliability of the method was evaluated using data 
from past earthquakes (the 2016 Kumamoto and 2019 
Yamagata-Oki earthquakes) and 60 simulated earthquakes 
in the Sea of Japan. The results showed the advantage of 
the new method over the existing one for initial value 
dependence in nonlinear problems. In applications to data 
with a small S/N ratio, the estimated results suggested the 
possibility of using several conjugate fault models. There 
was a trade-off between the fault area and slip amount, 
especially for earthquakes that occur offshore. This sug-
gests a lack of sensitivity for earthquakes generated off-
shore using only onshore GNSS data. These results imply 
that quantification of the uncertainty enables us to discuss 
the reliability of the fault model estimation in real time.

To apply the developed method to real earthquakes, 
discussion with decision makers is necessary, because 
the required information varies depending on current 
conditions. Awareness of the limitations of the estimated 
results is also required. Finally, the new method can 
be used as a tool to determine which fault parameters 
are not constrained based on the current network and 
how to optimize the new site for a more robust model 
estimation.
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