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Abstract 

In the present study, we propose a new approach for determining earthquake hypocentral parameters. This approach 
integrates computed theoretical seismograms and deep machine learning. The theoretical seismograms are gener-
ated through a realistic three-dimensional Earth model, and are then used to create spatial images of seismic wave 
propagation at the Earth’s surface. These snapshots are subsequently utilized as a training data set for a convolutional 
neural network. Neural networks for determining hypocentral parameters such as the epicenter, depth, occurrence 
time, and magnitude are established using the temporal evolution of the snapshots. These networks are applied 
to seismograms from the seismic observation network in the Hakone volcanic region in Japan to demonstrate the 
suitability of the proposed approach for locating earthquakes. We demonstrate that the determination accuracy of 
hypocentral parameters can be improved by including theoretical seismograms for different earthquake locations and 
sizes, in the learning data set for the deep machine learning. Using the proposed method, the hypocentral parameters 
are automatically determined within seconds after detecting an event. This method can potentially serve in monitor-
ing earthquake activity in active volcanic areas such as the Hakone region.
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Introduction
Currently, the machine learning technique is widely 
exploited in disciplines of science and technology includ-
ing seismology (Maggi et  al. 2017; Rouet-Leduc et  al. 
2017; Malfante et al. 2018; Nakano et al. 2019; Seydoux 
et  al. 2020). Specifically, combining numerical seismo-
grams and pattern recognition for earthquake loca-
tion was proposed by Käufl et  al. (2014, 2015, 2016a, 
b). According to these studies, the technique can be 
applied for determining fault parameters. In this study, 

we propose a different technique for earthquake location 
and determining its magnitude. The proposed approach 
is based on theoretical seismograms from a realistic 
Earth model and a deep learning-based convolutional 
neural network (CNN). The approach relies on spatial 
images of seismic wave propagation at the Earth’s surface.

The spectral element method (SEM) is used for numer-
ical modeling of seismic wave propagation in a realistic 
three-dimensional (3D) Earth model. The 3D SEM was 
initially employed in seismology to perform local and 
regional simulations (Faccioli et  al. 1997; Komatitsch 
1997; Komatitsch and Vilotte 1998), and later adapted 
for wave propagation at the Earth scale (Komatitsch 
and Tromp 2002a; b; Komatitsch et  al. 2005; Tsuboi 
et al. 2003, 2016; Carrington et al. 2008; Rietmann et al. 
2012). In the present study, the SEM is used to simulate 
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a regional scale seismic wave propagation problem. The 
surface propagation of seismic waves at each time step is 
calculated for different earthquake locations and sizes, 
and the values are differentiated to obtain the seismic 
wave propagation in terms of the velocity. These seismic 
wave propagation and temporal evolution images are 
then utilized as training data for a deep machine learning 
CNN. Considering that setting any number of hypocent-
ers or earthquake magnitude is possible, creating a large 
volume of training data is easy. Therefore, deep machine 
learning is expected to improve the hypocenter determi-
nation accuracy.

A CNN is a deep learning model that has attracted 
attention in computer visualization because of the accu-
racy of its high image recognition tasks, such as in the 
ImageNet’s large scale visual recognition challenge (Vail-
lant et  al. 1994; Krizhevsky et  al. 2012; Simonyan and 
Zisserman 2014; Szegedy et  al. 2015). Artificial neural 
networks are commonly used for classifying seismo-
grams (Wang and Teng 1995, 1997), and recently, CNNs 
have been employed for earthquake detection (Perol 
et al. 2018; Ross et al. 2018; Zhu and Beroza 2019). In this 
study, theoretical seismograms computed for different 
earthquake locations and magnitudes are utilized for cre-
ating images of seismic wave propagation at the Earth’s 
surface. These snapshots then serve as training data in 
the training phase of the CNN to estimate the hypocenter 
location, earthquake occurrence time, and earthquake 
magnitude.

Here we apply our proposed technique to seismograms 
from the seismic observation network in the Hakone vol-
canic region in Japan to demonstrate the suitability of the 
proposed approach for locating earthquakes.

Theoretical seismograms
The SPECFEM3D program package (Komatitsch and 
Tromp 2002a, b; Komatitsch et  al. 2005; Tsuboi et  al. 
2003) was used to generate theoretical seismograms for a 
realistic Earth model using the SEM. The theoretical seis-
mograms were synthesized using 48 × 48, yielding 2304 
slices. Each slice was allocated to a CPU core of a parallel 
supercomputer, and then subdivided into 768 × 768 grid 
points, thereby enabling generation of theoretical seismo-
grams with an accuracy of 5.6 s and longer (e.g., Tsuboi 
et  al. 2016). To generate a mesh for the computation, 
the surface topography and attenuation were included. 
A 3D seismic wave speed model of the Hakone region 
constructed by Yukutake et  al. (2015) was also consid-
ered. Three-component displacement seismograms, 
lasting 30  s, were synthesized at seismographic stations 
operated by the Hot Springs Research Institute of the 
Kanagawa Prefecture using a sampling interval of 0.1  s. 
A map showing the stations in this network is shown in 

Fig. 1. The theoretical seismograms were then differenti-
ated once to create velocity seismograms. Subsequently, 
32 × 32 images occupying the seismic network shown in 
Fig. 1 were generated from the seismograms synthesized 
for seismic stations. To create the training data set, the 
hypocenter was set in the Hakone region using a spatial 
distance of 0.02° to produce the seismic wave propaga-
tion images (Fig.  2). The hypocentral depth was varied 
over a vertical distance of 2 km, and the maximum depth 
was set at 10 km. The moment magnitude (Mw) was also 
randomly altered between approximately 2.2 and 4.5, 
to create images for the training data required for deep 
learning of the CNN. The moment tensor of the source 
can be varied while creating the training data; however, 
this was not performed in the present study. A typical 
reverse fault mechanism was assumed for the region, and 
was not expected to affect the estimation accuracy. An 
example of a wave propagation image versus time is dis-
played in Fig. 3. Among the 1998 earthquakes involved, 
80% of the events were included in the training data set. 
Consequently, about 600,000 images of seismic-wave 
propagation at the surface were generated, with a 32 × 32 
and time interval of 0.1 s.

Convolutional neural network
In the present study, two types of CNNs were tested. 
First, the test using an ordinary CNN is described. A 
32 × 32 image served as the input, and hypocentral 
parameters including the latitude, longitude, depth, 
occurrence time, and magnitude, were estimated 

Fig. 1  Map of station location used to create learning data set. Open 
triangle is the stations operated by Hot Spring Research Institute. 
Closed triangles are those operated by JMA and NIED
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through regression. The network architecture employed 
was similar to that in previous studies (LeCun et  al. 
1999; Onishi and Sugiyama 2017). As the convolu-
tional layer, a set of learnable filters were applied to the 
input image to extract the characteristic features, while 

a pooling layer was used to reduce sensitivity associ-
ated with the location of the characteristic feature. The 
fully connected layer conducted the reasoning based on 
the output from the convolutional and pooling layers. 
These layers were sequentially connected to produce a 
CNN capable of associating an input image to a specific 
hypocenter parameter. TensorFlow was employed as 
the framework to establish a LeNet-based CNN (LeCun 
et al. 1999).

The input image data created using the seismic wave 
propagation at the Earth’s surface comprised 32 × 32 
pixels. The convolutional layer map and the input 
image were utilized to generate an output image using 
convolutional filters. The dimensions of the convolu-
tional filters used were 3 × 3 × n or 7 × 7 × n, and can 
be represented as follows, where both nW and nH = 1 
for 3 × 3 × n and 3 for7 × 7 × n:

where ui,j,k and zi,j,k are the (i, j)-th pixel of the k-th chan-
nel in the output and input images for the layer, respec-
tively. The weights wi′,j′,k ′,k constitute a filter that was 
applied to the k′-th channel of the input image, bk is the 
bias for the k-th channel, and n is the number of channels 
in the input layer. In this study, as only the vertical seis-
mogram component was used, the number of channels 
(n) is 1. Considering f (x) , a ReLU function which is com-
monly used for regression analysis in neural networks, 
this can be expressed as follows:

Zero padding was not utilized on the input image, 
and the output image size was reduced by four pix-
els in two directions. The pooling layer was processed 
using max pooling with a 2 × 2 filter and a stride of 2, 
thereby downsampling the image size from h × h × n to 
h/2 × h/2 × n through the following expression:

In the final connected layer, to avoid overfitting, 
a 50% dropout was applied. Dropout is a procedure 
for avoiding overfitting by creating a pattern without 
updating the neural network weight of a designated 
layer. A modified stochastic gradient descent (Kingma 
and Ba 2015) served as the optimizer while the learning 
proceeded using a batch size of 50 and epoch of 250. 
The calculated root mean square error (RMSE) for the 
learning data was then employed as a loss function.

(1)
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Fig. 2  Red dots are the earthquakes used for learning and blue 
dots are the earthquakes used for testing. The size of the dots is 
proportional to the magnitude. Crosses are epicenters of observed 
earthquakes. The total number of earthquakes used is 2632 and we 
used 2236 events as the training data set. Some of the earthquakes 
are removed from the data set due to apparent numerical problems 
during the simulation

Fig. 3  Map of example propagation image used for learning process. 
Colors indicate vertical displacement from − 1.4e−6 m to 1.4e−6 m 
as they change from blue to red
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Batch normalization was applied (Ioffe and Szegedy 
2015) before calculating the activation function. This 
process renders characteristic features uncorrelated 
by converting the mean and standard deviation of any 
selected batch to 0 and 1, respectively.

The mean and standard deviation for a batch 
B = {u1 · · ·um} were calculated as follows:

The normalized data yi can be obtained using 
the learned parameters γ and β from the following 
equations:

where ε is a constant error term added for numerical 
stability.

Bayesian optimization (Shahriari et  al. 2015) was 
used to search for optimized hyperparameters for the 
proposed learning model to avoid manual tuning via 
trial and error. A grid search was unsuitable because of 
the high number of combinations for the search target. 
The Bayesian optimization is a technique for efficiently 
searching hyperparameters. These parameters are esti-
mated at high resolution using approximate loss distribu-
tion functions, and assuming that the loss distribution of 
the hyperparameters learning model is Gaussian. Follow-
ing the examination of each case, a highly accurate model 
was produced using few parameters. The loss function 
for the Bayesian optimization was the RMSE estimated 
for the validation data. The hyperparameter search 
involved the following conditions: the convolution layers 
varied between 1 and 5; the fully connected layers ranged 
between 0 and 3; the convolution filter size was between 
3 and 9; the fully connected nodes varied between 50 and 
1000; max pooling was applied to each convolution layer; 
the dropout was between 0 and 50%; and batch normali-
zation was applied on ReLU.

Validation and testing for 2DCNN
The model was then constructed after operating 20 GPUs 
for approximately 2 days. Amplitude ratios of the short-
time average (STA) computed for 0.5 s (for 5 images) to 
the long-time average (LTA) computed for 5  s (for 50 
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∑

i=1

ui,

(4)σ 2
B

=
1

m

m
∑
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xi − µ
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σ 2
B

+ ε
,

yi = γ x̂i + β .

images) were determined, and hypocentral parameters 
estimation was started when STA/LTA exceeded 4.

The 600,000 training data images were divided into 
training data (80%) and validation data (20%) and the 
hypocentral parameters are determined. In partition-
ing the training data, earthquakes involved in validation 
were excluded from the testing (Fig.  2). The network 
parameters were optimized for estimating the hypocen-
tral parameters by minimizing discrepancies in the train-
ing data set. After the optimization, these were verified 
using the validation data set. To estimate the earthquake 
occurrence time, the time for the ith image was desig-
nated ti and the occurrence time t0 was estimated from 
each image. Considering that one network was used 
for five hypocentral parameters, some parameters such 
as the magnitude, demonstrated that the loss function 
apparently was not improved at certain stages, indicating 
overfitting. Therefore, the use of at least two networks; 
one for the longitude and latitude and another for the 
depth, magnitude, and occurrence time seems neces-
sary to prevent overfitting. The network construction to 
suit each hypocentral parameter requires further analy-
sis. Each seismic wave propagation image requires hypo-
central parameters output, so that the evolution of the 
estimates can be observed as the images are sorted. The 
hypocentral parameter values obtained after 8 s duration 
were considered the estimates. The errors associated with 
the estimated values are comparable to those from the 
validation data set, and the calculated magnitudes for all 
earthquakes used for validation are presented in Table 1.

The ConvNetQuake (Perol et  al. 2018), a CNN used 
for classifying earthquakes, was also tested for estimat-
ing hypocentral parameters. The results from the Con-
vNetQuake presented in Table 1 include regression data 
for hypocentral parameters from the learning stage. The 
results reveal that although hypocentral parameters can 
be adequately determined, the precision values are infe-
rior to those from the 3D CNN examined subsequently.

3D convolutional neural network
Seismic wave propagation with time was tested using 
6  s images corresponding to a 32 × 32 × 10 event as the 
input. Hypocentral parameters such as the latitude, lon-
gitude, depth, occurrence time, and magnitude were then 
estimated through regressions. The architecture of the 
3D CNN used in the present study is displayed in Fig. 4, 
with 3D CNN reflecting an extension of 2D CNN (Tran 
et al. 2015). This involves using a time series event (e.g., 
3D structure from x × y × t shown in Fig. 4) as input for 
learning and estimation. 3D CNN has been used for 
action recognition in movies and for learning time series 
data. The 3D CNN learning may involve pretraining 
using an existing data set for human action recognition 
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such as the Kinetics data set (Carreira and Zisserman 
2017). However, such a data set for human activities and 
materials is unsuitable for the present study. Therefore, 
pretraining was not conducted, but rather, a small 3D 
CNN was used to construct the model experimentally. 
A 2DConv + LSTM model (Donahue et  al. 2015) com-
bining 2D CNN and long short-term memory (LSTM) 
models for time series learning is available. In addition, 
a two-stream model (Carreira and Zisserman 2017) that 
extracts motion characteristics and learns RGB simul-
taneously for time series learning also exists. Searching 
for optimal parameters using these models should be 
considered in future research. Hypocentral parameter 
estimation starts when the STA/LTA ratio is higher than 
4 as in the ordinary CNN. A duration of 6 s (60 images) 
was employed, with estimates performed 20 times (up 
to 2  s after event detection) using 60 snapshots images, 
thus, yielding hypocentral parameters 8  s after an event 
detection.

A 3D CNN model generally involves a longer learn-
ing time compared to a 2D CNN. In the present study, 
we realized that this was linked to the I/O random 
access, instead of the GPU performance. To handle this 
problem, the complete training data set was loaded to 
the memory, thereby shortening the learning time to 1 
epoch in 54  min which amounts to 108 GPU h for 120 
epochs involving the learning of 5 parameters. Owing to 
the learning time for a model exceeding the resources of 

available computers, parallel GPUs will be required to 
search models in the future.

In addition, time series modeling using 3D CNN 
appears to overfit the learning data when input data, 
such as the duration, is increased. Therefore, overfitting 
should be avoided by introducing a generalization tech-
nique, and this can be considered for future studies.

Validation and testing for 3DCNN
The 600,000 training data images were divided into train-
ing data (80%) and validation data (20%). In partitioning 
the training data, earthquakes involved in validation were 
excluded from the testing in the same manner as those in 
2DCNN (Fig. 2). The network parameters were optimized 
for estimating the hypocentral parameters by minimizing 
discrepancies in the training data set. After the optimi-
zation, these were verified using the validation data set. 
One network was used for the estimation of five hypo-
central parameters. Each seismic wave propagation image 
requires hypocentral parameters output, so that the evo-
lution of the estimates can be observed as the images are 
sorted. The testing of each hypocentral parameter during 
the 3D CNN validation process is shown in Fig.  5. The 
hypocentral parameter values obtained after 8 s duration 
were considered the estimates. The errors associated with 
the estimated values are comparable to those from the 
validation data set, and the calculated magnitudes for all 
earthquakes used for validation are presented in Table 1. 
According to the results, the estimates from the 3D CNN 
exhibit higher precision compared to those from the 
ordinary CNN. This indicates that seismic wave propaga-
tion evolution images are important for estimating hypo-
central parameters using neural networks.

Generalization for real data
Subsequently, we attempted to generalize the devel-
oped neural network for real seismographic data. Seis-
mograms recorded in stations operated by the Hot 

Table 1  Root Mean Square Errors (RMSE) of hypocentral parameters estimated by various networks

a ConvNetQuake (Perol et al. 2018) is a task to classify earthquake location into specific regions. The results show in this table for ConvNetQuake is obtained by added 
our task to perform regression to locate hypocentral parameters during the learning stage

Method Training Estimation Root Mean Square Error (RMSE)

Longitude 
(degree)

Latitude (degree) Depth (km) Time (s) Magnitude

1DCNN (ConvNetQuakea) Simulation data (80%) Simulation data (20%) 0.0406 0.0365 1.679 – 0.0930

2DCNN Simulation data (80%) Simulation data (20%) 0.0213 0.0184 1.3267 0.5002 0.1018

3DCNN Simulation data (80%) Simulation data (20%) 0.0100 0.0078 0.6208 0.2095 0.0371

Observed data 0.0301 0.0291 1.3062 1.3816 0.5830

3DCNN + CUTOUT Simulation data (80%) Simulation data (20%) 0.0075 0.0091 0.5298 0.2444 0.0311

Observed data 0.0167 0.0313 1.7504 0.9427 0.6063

Fig. 4  Network architecture used for the 3D convolutional neural 
network
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Springs Research Institute of the Kanagawa Prefecture, 
the National Research Institute for Earth Science and 
Disaster Resilience, and Japan Meteorological Agency 

were obtained. The data were examined and 159 earth-
quakes with magnitude of approximately 2.0, which 
occurred in the Hakone region, Japan, between 2015 

Fig. 5  Examples of hypocenter estimation in the verification phase for one earthquake (top left, a) Seismic wave propagation images starting at 
approximately 6 s after the origin time. The time evolution of the estimated hypocenter parameters is shown for magnitude (top right, b), longitude 
(middle left, c), latitude (middle right, d), depth (bottom left, e) and origin time (bottom right, f). The horizontal axis of each panel represents the 
time in seconds, and the estimation starts at approximately 6 s after the origin time when the absolute amplitude exceeds 1.0e−7 m/s. The dotted 
line in each figure represents the parameter to be estimated by each snapshot. The gray line in each figure shows the value estimated using each 
snapshot. The colored line shows the average of the estimated value up to each time instant. It should be noted that in the verification of the 
latitude, shown in d, the estimated value is in agreement with the actual value, and the overlap of the three lines indicates that no differences exist.
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and 2019 were selected. The data obtained from the sta-
tions were 1  min three-components velocity seismo-
grams associated with the earthquakes. The original 
100/200  Hz sampled accelerograms were converted to 
velocity seismograms, decimated to 10  Hz, and utilized 
for generating a 32 × 32 image for each time step. Since 
the accuracy of the synthetic seismograms is 5.6  s, 10 
images per second represents an appropriate number of 
images for estimating the hypocentral parameters. The 
32 × 32 images were employed as inputs for neural net-
work to estimate the parameters. The RMSE between 
the estimated parameters and those reported by the 
Hot Springs Research Institute of the Kanagawa Pre-
fecture for these earthquakes are presented in Table  1. 
According to comparisons of the results in Figs.  6 and 
7, the proposed neural network provides good results. 
However, for several earthquakes, significant discrepan-
cies emerged between the results from our method and 
those reported by the Hot Springs Research Institute of 
the Kanagawa Prefecture. These discrepancies are likely 
because some stations within the seismic network were 
impacted by noise, as discussed in the next section. The 
data in Table  1 show that estimates of the hypocenter 
depth involve higher errors compared to those of the 
epicenter. This is probably because the learning data set 
for the epicenter was larger than that for the hypocenter 
depth in the learning stage. Therefore, all possible param-
eter ranges must be included in the learning stage for the 

accurate determination of hypocentral parameters, espe-
cially for shallow earthquakes as in the case studied. This 
can be achieved through enlargement of the training data 
set by computing theoretical seismograms for all possible 
hypocentral parameters. In addition, Fig. 7 reveals slight 
differences in the magnitudes. This is because the mag-
nitude estimated using our method is the moment mag-
nitude, which is based on the scalar moment M0 of the 
earthquake, whereas the magnitude reported by the Hot 
Spring Research Institute is the micro earthquake magni-
tude, which is associated with the maximum amplitude 
and the hypocentral distance of the seismic wave (Wata-
nabe 1971). Therefore, the scale of the differences in mag-
nitude between the two sets of results accounts for the 
shift. The results also suggest that hypocentral parame-
ters can be estimated using images of seismic wave prop-
agation evolution without considering the arrival times 
of the seismic waves at observatories. Comparison of the 
estimated errors between the observation and simulation 
data are shown in Fig. 8, including the regional depend-
ence. Apparently, the accuracies of the hypocentral 
parameters exhibit no dependence.

Effect of noise
The proposed method was generalized to estimate hypo-
central parameters using actual seismograms. Consid-
ering that actual seismograms involve different types of 
noise, examining their effects on the estimates is neces-
sary. During the generalization of our method for actual 
seismograms, some stations were noted to be associated 
with higher noise than others. The noise linked to such 
stations may adversely affect the hypocentral param-
eters estimation and account for the significant differ-
ences between our results and those reported by the Hot 
Spring Research Institute (Fig. 9). To address this prob-
lem, we introduced cutout (DeVries and Taylor 2017), 
and created the neural network by randomly selecting 
at most 3 stations and setting their amplitudes as 0. This 
procedure is also applicable for temporarily shut stations 
with no results. The hypocentral parameters were then 
estimated using the network for the test data set and the 
observed data, and the results are presented in Table  1. 
The results show that the hypocentral parameters esti-
mates improved slightly. In general, adding noise as a data 
augmentation process during the learning process may 
improve the network performance. Therefore, includ-
ing physical processes causing noise, such as the scatter 
associated with the heterogeneous structure of the crust, 
or the ambiguity of earthquake source parameters using 
seismic wave propagation simulation to improve the gen-
eralization technique may be necessary, and this can be 
investigated in future.

Fig. 6  Three-dimensional plot for differences of hypocentral 
parameters between those determined by the Hot Spring Research 
Institute and determined by the proposed technique
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Discussion
The advantage of using our technique in real time hypo-
center determination system is its speed. The learning 
procedure for creating a neural network is time-intensive, 
especially if a large training data set is involved. However, 
after establishing the neural network, the hypocentral 
parameters are efficiently estimated within 0.1  s from 
each seismic wave propagation image using GPGPUs, 
even if multiple seismic stations are involved. Consid-
ering that the creation of images from seismic stations 
requires little time, efficient hypocenter determination 
is possible through the implementation of our tech-
nique in a local seismic network. In the present study, 

the proposed technique is tested in the Hakone volcanic 
region in Japan, where earthquake swarms closely linked 
to volcanic activity are frequent. Regarding earthquake 
swarms, in 2015, for example, numerous micro earth-
quakes occurred in the region within a short duration. 
Monitoring such activities using conventional automated 
hypocenter location software is commonly challenging. 
In the present study, we demonstrate the application of 
the proposed technique for accurate and rapid micro 
earthquake monitoring in the Hakone volcanic region in 
Japan.

Another advantage of our technique is the magni-
tude determination. The magnitude range can be set 

Fig. 7  Histograms of errors for hypocentral parameters determined by the proposed technique
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arbitrarily if the training data are generated from theoret-
ical seismograms. Therefore, any moment tensor solution 
can be employed for producing the theoretical seismo-
grams and generating the training data set. This enables 
the incorporation of high magnitude events, which rarely 
occur. The lower limit for magnitude determination 
using this technique will be determined when the system 

is implemented in a local seismic network and the S/N 
ratio is obtained by monitoring seismic activity. As pre-
viously mentioned, the images used for the training data 
set are generated via modeling of seismic wave propa-
gation using a 3D Earth model and the moment tensor 
solutions. Therefore, the magnitude estimation is also 
expected to be accurate when applied to a real seismic 

Fig. 8  Distribution of errors for hypocentral parameters determined by the proposed technique. Each column shows geographical distribution 
of errors for hypocentral parameters. Each row shows errors of origin time, longitude, latitude and depth, from top to bottom. Red symbols show 
observation and blue symbols show simulation
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network. Although the examples are of limited scope, the 
approach exhibits potential for real time monitoring of 
seismic activity.

The performance of our proposed technique depends 
on the spatial grid size of assumed hypocenters for com-
puting synthetic seismograms to be used as training data. 
We have tried to locate earthquake hypocenter using 
larger grid size to check how the grid size of the learning 

data set affects the accuracy of the hypocenteral param-
eters and have shown the results in Additional file  1: 
Table  S1. We have doubled the latitude grid size of the 
hypocenter in the learning data and found that the RMS 
errors for hypocentral parameters become worse for 
both simulation and observation data. This result dem-
onstrates that the accuracy of the estimated hypocen-
tral parameters depends on the grid size of the learning 

Fig. 9  Same as Fig. 5 but for noisy case. For details of figures see caption to Fig. 5



Page 11 of 12Sugiyama et al. Earth, Planets and Space          (2021) 73:135 	

data set. We may get much higher performance if we 
use much finer grid size. We should point out, however, 
that there still exists a limitation in the accuracy of Earth 
model to be used for the computation of synthetic seis-
mograms. Even though we may use finer grid size for the 
selection of hypocenter to be used as training data set, 
it may be difficult to get enough accuracy in the Earth 
structure model. We may not be able to get accurate 
three-dimensional Earth structure model with the reso-
lution of kilometer even for local seismic network scale, 
as we need to use seismic waves to get three-dimensional 
model. Therefore, the performance of the proposed 
approach is controlled by the accuracy of the three-
dimensional Earth model. This is the same situation as 
that of conventional approach to locate earthquake hypo-
center based on the arrival times of P and S waves. Our 
approach may be better than the conventional approach, 
because our approach handles seismic wave propagation 
rigorously even for three-dimensional Earth structure.

Summary
In the present study, we established neural networks for 
determining hypocentral parameters such as the epi-
center, depth, occurrence time, and magnitude using syn-
thetic seismograms as a training data set. The theoretical 
seismograms were synthesized based on a realistic 3D 
Earth model, and the seismograms were exploited to pro-
duce spatial images for seismic wave propagation at the 
Earth’s surface. The generalized neural network results 
for obtaining actual seismic data indicated potential for 
estimating earthquake hypocentral parameters using 
CNN trained via theoretical seismograms. Although 
more events are required to validate generalizing the 
proposed neural network, this framework is suitable for 
determining hypocentral parameters in a local seismic 
network, and has potential for seismic and volcanic activ-
ity monitoring.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
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