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Abstract 

Ringwoodite and wadsleyite are the high-pressure polymorphs of olivine, which are common in shocked meteorites. 
They are the major constituent minerals in the terrestrial mantle. NWA 8705, an olivine-phyric shergottite, was heavily 
shocked, producing shock-induced melt veins and pockets associated with four occurrences of ringwoodite: (1) the 
lamellae intergrown with the host olivine adjacent to a shock-induced melt pocket; (2) polycrystalline assemblages 
preserving the shapes and compositions of the pre-existing olivine within a shock-induced melt vein (60 μm in 
width); (3) the rod-like grains coexisting with wadsleyite and clinopyroxene within a shock-induced melt vein; (4) the 
microlite clusters embedded in silicate glass within a very thin shock-induced melt vein (20 μm in width). The first 
two occurrences of ringwoodite likely formed via solid-state transformation from olivine, supported by their mor-
phological features and homogeneous compositions (Mg# 64–62) similar to the host olivine (Mg# 66–64). The third 
occurrence of ringwoodite might fractionally crystallize from the shock-induced melt, based on its heterogeneous 
and more FeO-enriched compositions (Mg# 76–51) than those of the coexisting wadsleyite (Mg# 77–67) and the host 
olivine (Mg# 66–64) of this meteorite. The coexistence of ringwoodite, wadsleyite, and clinopyroxene suggests a post-
shock pressure of 14–16 GPa and a temperature of 1650–1750 °C. The fourth occurrence of ringwoodite with compo-
sitional variation (Mg# 72–58) likely crystallized from melt at 16–18 GPa and 1750–1850 °C. The presence of the four 
occurrences of ringwoodite was probably due to their very fast cooling rates in and/or adjacent to the thin shock-
induced melt veins and small pockets. In addition, the higher Fa-contents of the host olivine (Fa35–39) in NWA 8705 
than those in ordinary chondrites (Fa16–32) makes the olivine–ringwoodite transformation prolong to a lower pressure.
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Introduction
Meteorites commonly experienced various degrees of 
shock metamorphism, and some of them contain shock-
induced melts and numerous high-pressure minerals 
(e.g., Stöffler and Keil 1991; Binns et  al. 1969; Gillet  et 
al. 2000; Xie et  al. 2002; Langenhorst and Poirier 2000; 

Tschauner, 2014; Beck et al. 2004; Tomioka and Miyahara 
2017; and references therein). The high-pressure poly-
morphs of olivine [(Mg, Fe)2SiO4], ringwoodite (γ-(Mg, 
Fe)2SiO4) and wadsleyite (β-(Mg, Fe)2SiO4), are of par-
ticularly important, because they are the major constit-
uents of the Earth’s mantle transition zone (Ohtani and 
Sakai 2008). Previous studies of ringwoodite/wadsleyite 
in meteorites suggested that they were mainly produced 
via solid-state transformation from olivine and crystalli-
zation from shock-induced melts (Miyahara et  al. 2008; 
Walton and McCarthy 2017; Chen et al. 2004). Studying 
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the transformation mechanisms of ringwoodite is not 
only helpful to understand the Earth’s interior dynamic 
process (Kerschhofer et al. 1996; Mohiuddin et al. 2020), 
but also important to determine the post-shock P–T–t 
conditions and the related sizes of the impactors (e.g., 
Hu and Sharp 2016; Ozawa et  al. 2010; Sharp and De 
Carli 2006; Ohtani et al. 2004; Beck et al. 2005; Fritz et al. 
2005).

Three occurrences of ringwoodite in heavily shocked 
meteorites have been reported, i.e., fine-grained ring-
woodite in shock-induced melt vein matrix (Xie et  al. 
2006a; Miyahara et  al. 2008), lamellar ringwoodite 
intergrown with the host olivine (Miyahara et  al. 2010; 
Greshake et al. 2013; Chen et al. 2006), and polycrystal-
line ringwoodite assemblages with pseudomorph of oli-
vine (Ozawa et  al. 2010; Ohtani et  al. 2004; Chen et  al. 
1996). The first occurrence of ringwoodite crystallized 
from shock-induced melt (Xie et  al. 2006a; Fritz and 
Greshake 2009), whereas the other two occurrences were 
probably produced via solid-state phase transforma-
tion from olivine, including homogeneous intracrystal-
line nucleation throughout the olivine (Chen et al. 1996), 
heterogeneous intracrystalline nucleation at defect sites 
(fractures and stacking faults) of the olivine (Kerschhofer 
et al. 1996, 2000; Miyahara et al. 2010; Chen et al. 2006, 
2007), and grain boundary nucleation and growth mech-
anism (Liu et al. 1998; Kerschhofer et al. 1998). In some 
cases, the ringwoodite lamellae have a crystallographic 
relationship of {111}Rwt//(100)Ol with the host olivine, 
indicating a coherent nucleation process of ringwoodite 
(Miyahara et al. 2010, 2016). In terms of chemical com-
positions, some ringwoodite lamellae and polycrystalline 
grains have almost identical compositions to the original 
olivine, indicating an interface-controlled growth pro-
cess (Xie and Sharp 2007; Mosenfelder et al. 2001; Ohtani 
et al. 2004; Chen et al. 1996) in which the growth of ring-
woodite is controlled by the rate of short range diffusion 
across the interface between the two phases (Sharp and 
De Carli 2006). Some polycrystalline ringwoodite rims 
surrounding the olivine show a Fe–Mg diffusion-con-
trolled growth process (Walton and McCarthy 2017; Yin 
et  al. 2018; Pittarello et  al. 2015) with Fe preferentially 
partitioned to ringwoodite, leading to a higher FeO con-
tent of ringwoodite compared with the residual olivine.

Many high-pressure minerals have been identified 
within and adjacent to shock-induced melt veins and 
pockets in Martian basaltic meteorites as Tomioka and 
Miyahara (2017) have summarized. Of these high-pres-
sure polymorphs, ringwoodite was reported in Tissint, 
EETA 79001, DaG 670, NWA 8159, NWA 7755, Chas-
signy, RBT 04261, NWA 1068, and LAR 12095 (Wal-
ton 2013; Ma et  al. 2016; Greshake et  al. 2013; Fritz 
and Greshake 2009; Wang et al. 2017; Sharp et al. 2019; 

Takenouchi et  al. 2018). It occurs as lamellae and poly-
crystalline grains in the host olivine (Walton 2013; Ma 
et al. 2016; Greshake et al. 2013; Sharp et al. 2019; Wal-
ton et al. 2014; Takenouchi et al. 2018), or as submicron-
sized grains in the melt veins (Walton, 2013; Fritz and 
Greshake 2009; Sharp et  al. 2019). Discovery of more 
occurrences of ringwoodite would be helpful to under-
stand its formation mechanisms and to clarify impact 
history of the Martian meteorites (Wang et  al. 2017; 
Miyahara et al. 2016).

NWA 8705 is a Martian olivine-phyric basaltic mete-
orite found recently (Irving et  al. 2017). It experienced 
strong shock metamorphism with the presence of shock-
induced melt veins and pockets, making it ideal to study 
the phase transformation of ringwoodite and wadsley-
ite from olivine in Martian meteorites. In this study, we 
found four occurrences of ringwoodite in NWA 8705, 
and conducted a comprehensive petrographic, mineral-
chemical and crystallographic analyses to clarify their 
formation mechanisms, constrain the post-shock P–T 
conditions, and to shed light on the impact history of the 
NWA 8705.

Sample and methods
The Martian meteorite NWA 8705 (6.2 g) was found in 
Morocco in 2014 and classified as an olivine-phyric sher-
gottite (Irving et al. 2017). One polished section was used 
in this study, with a surface of ~ 1 × 0.7 cm2.

The section was observed with a field emission scan-
ning electron microscope (FE-SEM) of FEI Nava 
NanoSEM 450 FE-SEM equipped with an Oxford 
X-MAXN 80 mm2 energy dispersive spectrometer (EDS) 
at the Institute of Geology and Geophysics, Chinese 
Academy of Sciences (IGGCAS). The FE-SEM was oper-
ated under a condition of 15 kV accelerating voltage and 
1.6–3.2 nA beam current.

Raman spectra were acquired using a confocal Raman 
microscope (LabRAM HR Evolution system) equipped 
with 1800 g/mm gratings and a liquid nitrogen-cooled 
CCD detector, operating with an Nd: YAG laser of 
532 nm wavelength at the National Astronomical Obser-
vatory, Chinese Academy of Sciences (NAOCAS). The 
laser power was ~ 3.7  mW, and the spatial resolution 
was ~ 1  μm. The spectrum was calibrated with the peak 
of the silicon standard at 520.7 ± 1 cm–1, and each spec-
trum was integrated twice for 30  s per time from 50 to 
1500 cm–1.

Quantitative analysis of minerals was conducted with a 
JEOL JXA-8100 electron probe microanalyzer (EPMA) at 
IGGCAS. An accelerating voltage of 15  kV and a beam 
current of 20 nA were used for all analyses with a beam 
diameter ranging from 1 to 5  μm. Data were corrected 
using a modified ZAF correction procedure. Synthetic 
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and natural minerals were used as the calibration stand-
ards: hematite for Fe, synthetic rutile for Ti, Cr2O3 for Cr, 
San Carlos olivine for Mg, diopside for Si and Ca, rho-
donite for Mn, apatite for P, nickel oxide for Ni, albite for 
Na and Al, and orthoclase for K. The detection limits are 
0.01 wt% for K2O and Al2O3, 0.02 wt% for MgO, Cr2O3, 
MnO, TiO2, SiO2, CaO, and Na2O, 0.03 wt% for FeO and 
NiO, 0.04 wt% for P2O5.

Ultra-thin (~ 100  nm; ~ 10 × 3  μm2 in area) regions of 
interest on the polished meteorite section were prepared 
using a focused ion beam (FIB) of a Zeiss Auriga Com-
pact dual-beam instrument equipped with an Omni-
probe Auto Probe 200 micromanipulator at IGGCAS. 
A Ga+ beam current of 200 pA (30  kV) and a 50 pA 
(5  kV) were applied for final thinning and polishing, 
respectively. The FIB slices were then analyzed using a 
transmission electron microscope (TEM) of JEM-2100 
equipped with an EDS operated at 200  kV at IGGCAS. 
The microstructures were studied using the high-resolu-
tion TEM imaging (HRTEM) and the selected area elec-
tron diffraction (SAED) followed the methods described 
by Gu et al. (2022) and Tang et al. (2020). Elemental map-
ping was performed using a FEI Tecnai F30 type of high-
angle annular dark-field scanning TEM (HAADF-TEM) 
equipped with four windowless X-ray detectors at 300 kV 
at the Peking University.

Results
Petrography and mineral chemistry
NWA 8705 is an olivine-phyric shergottite, consisting 
of large (up to 2 mm) olivine phenocrysts embedded in 
the fine-grained groundmass (Fig.  1). The modal min-
eral abundance is 15 vol% olivine, 55 vol% pigeonite, 5.8 
vol% augite and 20.5 vol% plagioclase (maskelynite), and 
3.7 vol% accessory phases including chromite, ilmenite, 
sulfide, and phosphate. The olivine and pyroxene grains 
are highly fractured (Fig. 1a), whereas plagioclase grains 
have smooth surfaces with few cleavages (Fig. 1b, c). The 
Raman spectra indicate that many plagioclase grains have 
been converted into maskelynite (Fig. 1; Figure S1, #1, see 
Additional file 1 for details). Several shock-induced melt 
veins (< 60  μm in width) and pockets (< 400 × 250µm2 
in area) were found in the section. Ringwoodite and/
or wadsleyite were observed within or adjacent to the 
shock-induced melt veins and pockets (Figs. 2, 4 and 7). 
The detailed occurrences of ringwoodite and wadsleyite 
are depicted in the following subsection.

Most of olivine gains (< 1  mm in length) have homo-
geneous compositions, with a range of the Fa-content of 
35–39 (Fa = molar 100 × Fe/(Fe + Mg)) among grains. A 
few larger olivine crystals (~ 2 mm in length) are chemi-
cally zoned, with the Fa-content increasing from 29.4 
in the cores to 37 at the rims (Table  S1, see Additional 

file  2 for details). MnO and CaO contents in olivine 
range from 0.55 to 0.68 wt% and from 0.14 to 0.38 wt%, 
respectively. Pigeonite occurs as elongated prismatic 
or oval grains with a length of 0.2–1.0  mm. Individual 
pigeonite grains also show the core–rim zonings, with 
the Fs-contents (Fs = molar 100 × Fe/(Fe + Mg + Ca)) 
increasing from 23.6 mol% in the cores to 31.3 mol% at 
the rims. The overall chemical compositions of pigeonite 
are in a range of Fs22.8–33.1En59.7– 69.6Wo6.6–12.6. The minor 
elements are Al2O3 (0.4–1.4 wt%), Cr2O3 (0.2–0.9 wt%) 
and TiO2 (0.03–0.8 wt%). Augite typically occurs either 
at the margins of pigeonite (Fig.  1b, c) or as separate 
grains with sizes of 50–100  μm. The individual augite 
grains are relatively homogeneous in chemical compo-
sition, while showing significant variation among dif-
ferent grains (Fs15.2–29.1En44.5–58.9Wo18.3–38.6). The minor 
elements are Al2O3 (1.4–2.3 wt%), Cr2O3 (0.1–1.0 wt%) 
and TiO2 (0.2–1.0 wt%). Maskelynite is subhedral lath-
shaped (0.8–1.3 mm in length) and interstitial to pyrox-
ene and olivine. The composition of the maskelynite 
is An50–67Ab49–33Or0–1, while a few grains display zon-
ing features, e.g., with An61Ab38Or1 in the cores to 
An52Ab47Or1 at the rims. The representative chemical 
compositions of these minerals are listed in Table S1 and 
S2 (see Additional file 2 for details).

Four occurrences of ringwoodite
Ringwoodite lamellae
Olivine grains (Fig. 2a, b) that are located within and/
or adjacent to the shock-induced melts often appear 
heterogeneous in contrast in BSE images, with one to 
three sets of brighter lamellae (< 3 μm in width) inter-
grown with the host olivine (Fig. 2c). It is noticed that 
the lamellae also develop at the olivine margin in con-
tact with melt and disappear away from it (Fig.  2d). 
Laser Raman analysis confirms that these lamellae 
are ringwoodite, with the diagnostic peaks at 792–
795 cm−1 and 842 cm−1 (R2 and R3 in Fig. 3a). In addi-
tion, additional peaks at 213–217  cm−1 and 586  cm−1 
correspond to ringwoodite (Walton and McCarthy 
2017; Acosta-Maeda et al. 2013). The peak at 697 cm−1 
may also be derived from ringwoodite, which is similar 
to the peak at 692  cm−1 of ringwoodite in LAR 12095 
(Takenouchi et al. 2018). Raman analyses without sig-
nificant peaks indicate the presence of olivine glass 
(R4 in Fig. 3a; Fa35.9, Additional file 2: Table S3) adja-
cent to the melt (Fig.  2c). The texture of olivine glass 
is similar to the glass depicted in NWA 4468 (Boonsue 
and Spray 2012). The Mg#-numbers of the ringwood-
ite lamellae (Mg# 64.2–62.7; Mg# = 100*Mg/(Mg + Fe)) 
are very similar to those of the host olivine (Mg# 
65.4–64; Table  S3, see Additional file  2 for details). 
The TEM observations of the FIB section (FIB-slice 
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#1) prepared from the region marked in Fig.  2c show 
ringwoodite platelets with width ranging from ~ 10 
to ~ 100 nm (Fig. 2e, f ). The selected area electron dif-
fraction (SAED) patterns show the crystallographic 

orientation between ringwoodite lamellae and the host 
olivine: {111}Rwt//(100)Ol (Fig. 2f ).

Fig. 1  BSE images of NWA 8705. a BSE mosaic map of NWA 8705. Shock-induced melt veins and pockets are indicated by yellow dotted lines 
and arrows. b, c are the enlarged BSE images of NWA 8705 marked as white boxes in a. Augite (Aug) occurs as the margin of pigeonite (Pig) or as 
individual grains (outlined by dotted lines). Note abundant fractures of olivine and pyroxene, in comparison with the smooth surface of maskelynite. 
#1 is the position of a Raman analysis of maskelynite (Msk). Other abbreviations: Rwt ringwoodite, Chr chromite, Mer merrillite, Ilm ilmenite, Sul 
sulfide
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Polycrystalline ringwoodite aggregates with pseudomorph 
of pre‑existing olivine fragment
The olivine fragments within the shock-induced melt vein 
(60 μm in width) have been transformed to polycrystal-
line ringwoodite aggregates (Fig. 4b, c). These fragments 
(3–20  µm in width) preserve pseudomorphs of olivine, 
but appear cloudy under high magnification BSE images 

(Fig. 4b, c, and f ), distinguished from the homogeneous 
surface of the host olivine away from the melts. Raman 
spectra of the fragments have two strong characteristic 
peaks at 794 and 842  cm−1 and one weak characteristic 
peak at 292 cm−1 (Fig. 3b, R8) indicative of ringwoodite. 
Additional peaks near 585  cm−1 and 660  cm−1 (Fig. 3b, 
R8) have been documented from ringwoodite and olivine, 

Fig. 2  BSE images of ringwoodite lamellae. a shock-induced melt pocket (SMP) outlined by the dotted line. The grain labeled “b” and the white 
box labeled “d” are shown in b and d, respectively. b High magnification image of grain “b”, showing significant heterogeneity. Raman analyses were 
conducted on the adjacent pyroxene (#2 px-gl) and on the lamellae (R3). c Enlarged image of white box “c” in b reveals ringwoodite (Rwt) lamellae 
intergrown with the host olivine (Ol). R1, R2, and R4 are the analyses positions of Raman spectra. The yellow box indicates the position of FIB-slice 
#1. d Enlarged image of white box “d” in a shows that the olivine in contact with the glass phase (Gl) has been transformed into ringwoodite 
lamellae. e Bright-field (BF) TEM image from the FIB-slice #1. The lamellae parallel to each other. f Enlarged BF-TEM image of the white box “f” in e. 
The SAED pattern of region 1 shows olivine viewed along the crystal zone axis [01 3 ]. The SAED pattern of region 2 shows that crystallographic 
relationship {111}Rwt//(100)Ol exist. SMP shock-induced melt pocket, Ap apatite; others are the same as above
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respectively (Walton and McCarthy, 2017; Acosta-Maeda 
et  al. 2013). The peak at 697  cm−1 may also be derived 
from the ringwoodite, similar to the peak at 692 cm−1 of 
the ringwoodite (Takenouchi et al. 2018). In addition, the 
pigeonite fragments (Fig.  4c) in the shock-induced melt 
vein have not been transformed to high-pressure poly-
morphs or glass based on Raman analysis (Figure S1, #3, 
see Additional file 1 for details). The Mg#-numbers of the 
ringwoodite are 64.1–62.4, comparable with the host oli-
vine (Table S4, see Additional file 2 for details).

TEM observations of the polycrystalline ringwood-
ite aggregates (FIB-slice #2, Fig.  5b) confirm that these 
assemblages are nano-sized ringwoodite with the size 
of 100 to 500 nm and 120° conjunction. The TEM–EDS 
spot analysis (Additional file  2: Table  S6) and element 
mapping images (Fig. 6a–c) show that the Mg#-numbers 
of ringwoodite grains are relatively homogeneous (Mg# 
64.8–61.8), which are consistent with the EPMA analy-
ses data (Mg# 64.1–62.4, Additional file 2: Table S4). The 
TEM observations show that the nano-sized ringwoodite 
has various crystallographic orientations.

Submicron‑sized rod‑like ringwoodite coexisting 
with the wadsleyite in shock‑induced melt vein matrix
The matrix of the shock-induced melt vein in touch 
with the polycrystalline ringwoodite fragments con-
sists mainly of submicron-sized rod-like grains, with 
the presence of abundant sulfide spheres (Fig.  4b–f). 
The presence of ringwoodite, wadsleyite, and pyroxene 
in the matrix was confirmed by Raman analyses (Fig. 3, 
R9–R11). The Raman spectra show strong characteris-
tic peaks of ringwoodite at 785/792 and 842 cm−1; weak 
characteristic peaks of pyroxene at 334, 400, 534, 542, 
and 1005  cm−1; and weak peaks of wadsleyite at 917 
and 717 cm−1. Electron probe analyses with a defocused 
beam of the ringwoodite–wadsleyite–pyroxene assem-
blages show slightly more enriched in SiO2 (41.7–44.5 
wt%), Al2O3 (1.57–3.74 wt%), Cr2O3 (0.29–0.41 wt%), and 
CaO (2.02–3.31 wt%) than the polycrystalline ringwood-
ite aggregates (Table S4, see Additional file 2 for details).

The TEM observations of the fine-grained melt matrix 
(FIB-slice #2, Fig.  5c–f) depict in detail the microstruc-
tures and the corresponding chemical compositions of 

Fig. 3  Raman spectra of various polymorphs of olivine (Ol). a Raman spectra of olivine (R1), lamellar ringwoodite (R2–R3), olivine glass (R4), 
polycrystalline, and ringwoodite microlite clusters (R5–R6). b Raman spectra of olivine (R7), polycrystalline ringwoodite aggregates (R8), rod-like 
ringwoodite, wadsleyite, and pyroxene (R9–R11). Wad wadsleyite, Px pyroxene; others are the same as above
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the ringwoodite, wadsleyite, and clinopyroxene. Accord-
ing to the BF-TEM images and SAED patterns, some rod-
like ringwoodite (100–300  nm in size) (Fig.  5d, e) with 
the length-to-width ratio of ~ 3 and the wadsleyite (100–
200  nm in width) (Fig.  5c, d) are distributed randomly. 
TEM–EDS analyses of the ringwoodite and wadsleyite 

crystals reveal highly heterogeneous compositions (Addi-
tional file 2: Table S6 and Fig. 6d–f) and the wadsleyite 
(Mg# 77.5–67.2) is Fe-depleted than the coexisting ring-
woodite (Mg# 76.2–35.5). TEM–EDS elemental mapping 
images (Fig. 6f ) and TEM–EDS spot analyses (Additional 
file 2: Table S6) show that the interstitial regions between 

Fig. 4  BSE images of polycrystalline ringwoodite, rod-like ringwoodite and the coexisting wadsleyite in the shock-induced melt vein. a Low 
magnification BSE image shows a partially melted region (outlined with dotted line) with the presence of ringwoodite (Rwt) and matrix (Mtx). b 
Enlarged image of the white box “b” in a shows the polycrystalline ringwoodite with olivine (Ol) fragment pseudomorph. The yellow box is the 
position of FIB-slice #2. R7 and R8 are Raman analysis positions. c Higher magnification BSE image of the partially melted region in a, showing the 
presence of ringwoodite fragment and matrix. Pigeonite fragments (analyzed by Raman spectrum #3) are indicated by the white arrow. d Enlarged 
image of white box “d” in b. Raman spectra (R9 and R10) the intergrowth of ringwoodite, wadsleyite (Wad) and pyroxene (Px). The white spheres are 
sulfide (Sul). e Enlarged image of the white box “e” in c shows the texture of the shock-induced melt. The presence of ringwoodite was confirmed 
by Raman analysis, and the white spheres are sulfide. f Enlarged image of the white box “f” in c shows the intergrowth of rod-like ringwoodite, 
wadsleyite, and pyroxene in the matrix and the polycrystalline ringwoodite fragment. The small white grains are sulfide. Other abbreviations are the 
same as above
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the ringwoodite and wadsleyite contain 48.8–54.5 wt% 
SiO2, 1.9–2.2 wt% Al2O3, 3.8–6.9 wt% CaO, 19.2–22.4 
wt% FeO, and 15.7–21.8 wt% MgO. From the interstitial 
region, the existence of clinopyroxene (Fs34En51Wo15) 
was confirmed based on the SAED patterns (Fig. 5f ) and 
TEM–EDS analyses (Table  S6, see Additional file  2 for 
details).

Ringwoodite microlite clusters in the shock‑induced melt vein
The microlites of ringwoodite cluster together as small 
grain-like assemblages in the glassy matrix of a shock-
induced melt vein (20 μm in width) cutting through the 
host olivine phenocryst (Fig. 7). Raman spectra of these 
microlites show the peaks of ringwoodite at 795 and 
842  cm−1 (Fig.  3a, R6). It is also noticed that the grain 
sizes of the ringwoodite microlites are larger at the 
center of the shock-induced melt vein than those at the 

Fig. 5  BF-TEM images, SAED patterns of polycrystalline ringwoodite, rod-like ringwoodite and the coexisting wadsleyite. a SE image of FIB-slice #2 
consists of two parts. b Enlarged BF-TEM image of the white box “b” in a. SAED pattern of grain 1 corresponds to ringwoodite. c, d Enlarged BF-TEM 
images of the white box “c” and “d” from a in the matrix. SAED patterns of representative grains indicate that they are troilite, ringwoodite, and 
wadsleyite, respectively. The white dotted-line box represents the TEM-EDS elemental mapping region. e Enlarged BF-TEM images of the white box 
“e” in c. The rod-like ringwoodite was identified from the SAED pattern. f clinopyroxene was identified by SAED pattern and TEM–EDS. Tr troilite, Cpx 
clinopyroxene, others are the same as above
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Fig. 6  TEM–EDS elemental mapping images of Mg, Fe, and Ca of polycrystalline ringwoodite and matrix (Mtx). a–c Elemental mapping images 
of Fe, Mg, and Ca for polycrystalline ringwoodite in Fig. 5b show the homogeneous composition distribution. d–f Elemental mapping images of 
Fe, Mg, and Ca in the matrix from white dotted-line box in Fig. 5d shows that the distributions of Fe, Mg, and Ca are heterogeneous. Between the 
ringwoodite and wadsleyite, there exists Ca-rich interstitial material

Fig. 7  BSE images of the granular ringwoodite. a A shock-induced melt vein (~ 20 μm in width), cutting through olivine. The regions marked by 
white boxes “b”, “c”, and “d” are shown in b, c, d, respectively. b Submicron-sized ringwoodite grains embedded in a Si-rich glass (Gl). Note larger 
ringwoodite grains in the center than those adjacent to the rims. The olivine walls in contact with the vein have been transformed into ringwoodite 
too. c Similar texture of b. The yellow box shows the position of FIB-slice #3. Two Raman analyses are marked as R5 and R6. d Ringwoodite microlite 
clusters and an augite in the melt vein. Raman spectrum #4 confirms the augite. Chr chromite; others are the same as above
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rims (Fig.  7b). A few tiny grains of sulfide (Fig.  7c) and 
one augite grain (Fs17.1–19.3En48.1–50.3Wo30.4–34.8 analyzed 
by EDS) (Fig. 7d, Figure S1, #4, see Additional file 1 for 
details) were also found in the shock-induced melt vein. 
Because of the small size of ringwoodite in the shock-
induced melt vein, EPMA analyses on these submicron 
ringwoodite crystals have unavoidably overlapped nearby 
glass. The bulk composition of the shock-induced melt 
vein was determined with a defocused beam of EPMA, 
with 44.6–46.7 wt% SiO2, 2.30–2.86 wt% Al2O3, 3.20–
3.66 wt% CaO, and 0.29–0.34 wt% Na2O (Table  S4, see 
Additional file 2 for details).

The SE image (Fig.  8a) of the whole FIB-slice #3 
(marked in Fig. 7c) shows the olivine, the ringwoodite 
adjacent to the melt vein, and the shock-induced melt 
vein (ringwoodite microlite clusters and glass) from 
left to right. The BF-TEM images depict the ringwood-
ite microlites (100–500  nm in size) clumping together 
embedded in glassy matrix. A few small sulfide spheres 
can be noticed in the glassy matrix too (Fig. 8c and f ). 
The weak streaks around the diffraction spot in the 
SAED pattern (Fig. 8d) of the ringwoodite indicate the 
presence of stacking faults on (110). The TEM–EDS 

results reveal heterogeneous compositions of the 
ringwoodite microlites, with the Mg#-numbers rang-
ing from 72 to 58 (Table  S7, see Additional file  2 for 
details). In addition, the TEM–EDS spot analyses show 
that the glassy matrix interstitial to the ringwoodite 
microlites is rich in SiO2 (52.3–69.7 wt%), Al2O3 (2.0–
4.6 wt%), and CaO (0.3–6.9 wt%) (Table  S7, see Addi-
tional file 2 for details).

Additionally, it is noted that the point of contact 
between the olivine and the shock-induced melt vein 
appears brighter than the interior of the host olivine 
in BSE image (Figs.  7b and c). Laser Raman spectra 
confirm that the contact interface which we refer to 
below as ‘walls’ is ringwoodite (Fig.  3a, R5). Based on 
the observations of TEM, the lamellar ringwoodite 
walls at the contact between the olivine and melt vein 
consist of polycrystalline ringwoodite grains (Figure 
S2b, see Additional file  1 for details). EPMA analyses 
of the lamellar ringwoodite (Mg# 64.9) show identical 
chemical compositions (Table  S4, see Additional file  2 
for details) to the host olivine (Mg# 64.6). Away from 
the melt vein, the ringwoodite platelets have a crystal-
lographic relationship of {111}Rwt//(100)Ol with the host 
olivine (Figure S2c, see Additional file  1 for details). 

Fig. 8  BF-TEM images of FIB-slice #3 of the ringwoodite microlite clusters. a SE image of FIB-TEM-slice #3. b, c Enlarged BF-TEM images of the yellow 
rectangle “b” and “c” in a. BF-TEM image and SAED pattern indicate that the ringwoodite grains are distributed in glass matrix. d Enlarged BF-TEM 
image of the yellow rectangle “d” in c. SAED pattern of grain 3 shows that the ringwoodite has one set of weak stacking fault on (110)
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TEM–EDS spot analyses indicate that the ringwoodite 
platelets (Mg# 58.8) are a little more iron-rich than the 
coexisting olivine (Mg# 68.4) (Table S7, see Additional 
file 2 for details).

Discussion
Formation mechanisms of ringwoodite in NWA 8705
Solid‑state transformation of ringwoodite lamellae
The olivine grains retained in or adjacent to the shock-
induced melt pocket were partially transformed into 
ringwoodite lamellae (Fig. 2). The low-frequency Raman 
spectral peak of the ringwoodite lamellae at ~ 212–
217  cm−1 (Fig.  3) is unusually strong, similar to that of 
ahrensite (Fa > 50) in Dhofar 1970 and Tissint (Ma et al. 
2016; Walton and McCarthy 2017). Nevertheless, the 
Fa-content of the ringwoodite lamellae in NWA 8705 
is ~ 36  mol%, much lower than that of ahrensite. There-
fore, this low-frequency spectral peak may not be directly 
related to the high Fa-content, but could be attributed 
to the Fe–Mg rearrangement at the (M1, M2) positions 
(Kleppe et  al. 2002; Walton and McCarthy 2017). Ring-
woodite lamellae adjacent to the shock-induced melt in 
NWA 8705 (Figs.  2c–d) seem to be composed of small 
crystals rather than being single ones and are orientated 
along specific orientations, which is similar to the lamel-
lae in texture and morphology reported in other Martian 
meteorites (Greshake et  al. 2013; Walton 2013). These 
ringwoodite lamellae were proposed to form via hetero-
geneous incoherent nucleation process as proposed in 
other meteorites (Greshake et al. 2013; Walton 2013). In 
addition, the Mg#-numbers of the ringwoodite lamellae 
(Mg# 64.2–62.7) here are relatively constant and similar 
to that of the host olivine (Mg# 65.4–64; Table  S3, see 
Additional file  2 for details), suggestive of no fractiona-
tion between both phases and an interface-controlled 
growth process (Sharp and De Carli 2006). Meanwhile, 
the single set of oriented lamellae was found in the inte-
rior of olivine (Fig. 2c), which is similar to those observed 
in Yamato 791,384 and Tissint (Miyahara et  al. 2010, 
2016; Walton et al. 2014). TEM observations (Fig. 2e, f ) 
suggest that this single set of ringwoodite lamellae are 
thin in width (10–100 nm) and depict coherent crystallo-
graphic orientation with the host olivine {111}Rwt//(100)Ol 
(Miyahara et  al. 2010). It is known that coherent phase 
transformation occurs in two stages (1) a stacking fault 
develops in an original olivine grain by lattice plane slip-
ping on (100)Ol; (2) coherent nucleation and growth of 
ringwoodite platelets occur on the stacking faults (Ker-
schhofer et  al. 1996, 1998). The ringwoodite lamellae in 
NWA 8705 have a specific crystallographic relationship 
with the host olivine {111}Rwt//(100)Ol (Fig. 2e, f ), which 
is the evidence for a coherent phase transformation 
mechanism (Tomioka and Miyahara 2017; Miyahara et al. 

2010). In addition, the Mg#-numbers of the ringwoodite 
lamellae (Mg# 63–60) are relatively constant and similar 
to that of the host olivine (Mg# 62.4–60.9) (Tables S5, see 
Additional file  2 for details), suggestive of no composi-
tional fractionation between them and consistent with an 
interface-controlled growth mechanism (Sharp and De 
Carli 2006; Kerschhofer et al. 1996).

The thin ringwoodite lamellae adjacent to the melt vein 
also have a crystallographic relationship of {111}Rwt//
(100)Ol with the host olivine (Figure S2c, see Additional 
file 1 for details), suggestive of a coherent nucleation pro-
cess (Miyahara et al. 2010; Walton et al. 2014). However, 
differences in chemical compositions between the host 
olivine (Mg# 69.9–66.3) and the ringwoodite (Mg# 63.2–
54.4) were detected (Tables S7, see Additional file  2 for 
details), implying a Fe–Mg exchanging with Fe preferen-
tially partitioned to ringwoodite. Thus, the growth of the 
ringwoodite lamellae was Fe–Mg diffusion-controlled as 
proposed by Sharp and De Carli (2006).

Solid‑state transformation of polycrystalline ringwoodite 
aggregates
The polycrystalline ringwoodite aggregates (Fig.  4b, c) 
were transformed from the pre-existing olivine frag-
ments with rounded outlines. The TEM observations 
(Fig. 5b) of the polycrystalline ringwoodite (100–500 nm) 
reveal random crystallographic orientation of the crys-
tals with triple junctions. The random orientations and 
homogeneous distributions of the polycrystalline ring-
woodite, similar to that of some shocked meteorites (Xie 
and Sharp 2007; Chen et al. 1996; Putnis and Price 1979; 
Wang et al. 2017), may indicate a solid-state homogene-
ous nucleation throughout the olivine fragment (Sharp 
and De Carli 2006; Xie and Sharp 2007). STEM-EDS 
mapping images (Fig.  6a–c), TEM-EDS (Table  S6, see 
Additional file  2 for details), and EPMA spot analyses 
(Table S4, see Additional file 2 for details) show that the 
Mg#-numbers of the polycrystalline ringwoodite (Mg# 
65–62) are relatively constant and close to that of the 
adjacent olivine (Mg# 66–64), implying that there was 
no Fe–Mg interdiffusion during transformation. It is pos-
sible that the polycrystalline ringwoodite was produced 
via the interface-controlled growth process as proposed 
by previous studies (Kerschhofer et al. 1998; Mosenfelder 
et  al. 2001; Miyahara et  al. 2010; Sharp and De Carli 
2006).

In addition, the lamellar ringwoodite walls in contact 
with the very thin shock-induced melt vein (Fig.  7c, d) 
are composed of polycrystalline ringwoodite with ran-
dom crystallographic orientations (Additional file  1: 
Figure S2) and there is no specific crystallographic orien-
tation between original olivine and ringwoodite, indicat-
ing of an incoherent nucleation (Tomioka and Miyahara 
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2017). Mg#-numbers (Mg# 68–64) of ringwoodite here 
are comparable with the host olivine (Mg# 69.9–66.3) 
(Additional file  2: Table  S7), manifesting an interface-
controlled growth mechanism (Sharp and De Carli 2006; 
Xie and Sharp 2007) as discussed above.

Melt crystallization of submicron‑sized rod‑like ringwoodite 
coexisting with the wadsleyite
The fine-grained matrix of the shock-induced melt vein 
consists mainly of ringwoodite, wadsleyite, clinopyrox-
ene, and a few metal-sulfide spheres (Fig. 4). As in other 
shocked meteorites (Hu and Sharp 2016; Xie et al. 2006a; 
Martinez et al. 2019), this mixture in the shock-induced 
melt vein is inferred to represent immiscible silicate 
and metal-sulfide liquids that were rapidly quenched 
although the mineral assemblages are different. Addi-
tionally, the bulk compositions of the matrix (Table  S8, 
see Additional file 2 for details) are relatively rich in SiO2, 
Al2O3, and CaO compared with the olivine fragments, 
indicating that the shock-induced melt vein matrix was 
mainly mixed with olivine, some pyroxene, and prob-
ably plagioclase. The TEM observations indicate that 
ringwoodite and wadsleyite grains have random crystal-
lographic orientations and they are distributed randomly 
(Fig. 5c, d). The results of elemental mapping images and 
STEM–EDS spot analyses show that the fine-grained 
matrix is heterogeneous (Fig. 6d–f) and there exist large 
compositional ranges between the coexisting ringwood-
ite (Mg# 76.2–35.5) and wadsleyite (Mg# 77.5–67.2) 
(Additional file  2: Table  S6) with the ringwoodite more 
FeO-enriched than the coexisting wadsleyite. Two dif-
ferent Raman spectrum peaks of ringwoodite at 785 and 
792 cm−1 also indicate the large compositional ranges of 
ringwoodite (Feng et al. 2011), although the correspond-
ing Fa-contents of ringwoodite (Fa24.8–64.5) are slightly 
lower than the reports (Fa72 and Fa48) of Feng et  al. 
(2011). The inconsistency in the Fa-contents here com-
pared with that of the reports (Feng et al. 2011) may be 
related to the uncertainty or influence by the underlying 
material of TEM–EDS point analyses. The observed dif-
ference in composition between the sub-micron rod-like 
ringwoodite and the coexisting wadsleyite is consistent 
with Fe–Mg partition between them during the crystal-
lization from the shock-induced melt (Miyahara et  al. 
2008, 2009), indicative of the fractional crystallization 
of ringwoodite and wadsleyite from the shock-induced 
melt.

Melt crystallization of the ringwoodite microlite clusters
The ringwoodite microlite clusters in the glass matrix 
of the very thin melt vein (Fig. 7) show a large range of 
composition (Mg# 72–58) and different crystallographic 

orientations (Fig.  8). The glass matrix is rich in SiO2, 
CaO, and Al2O3 compared to the coexisting ringwoodite 
(Table S7, see Additional file 2 for details), indicating that 
the shock-induced melt vein was not mono-olivine melt, 
but mixed with some plagioclase and probably pyroxene 
too. This is confirmed by the bulk composition of the 
shock-induced melt vein (Table S8, see Additional file 2 
for details). The heterogeneous compositions of the ring-
woodite and the presence of the glass matrix convinc-
ingly suggest that the ringwoodite crystallized from melt, 
different from the common coexistence of ringwoodite 
with wadsleyite, clinopyroxene and other phases in typi-
cal shock-induced melt veins depicted above and in other 
meteorites (Xie et  al. 2006a, 2011; Fritz and Greshake 
2009; Hu and Sharp 2016). It is also observed that the 
ringwoodite grains become smaller from the center of 
the vein towards the rim (Fig. 7b). This is a typical feature 
of crystallization of shock-induced melt veins because of 
a faster cooling rate at the rim, further confirming the 
crystallization of ringwoodite. In addition, some ring-
woodite grains developed a set of stacking fault observed 
with TEM (Fig. 8d), which is probably due to the stress 
induced by the deformation of the crystals during seg-
mentation or growth defects (Miyahara et  al. 2008; Pit-
tarello et al. 2015).

Post‑shock P–T conditions constrained by ringwoodite 
in NWA 8705
As discussed above, the lamellar and polycrystalline ring-
woodite were produced by the solid-state transformation 
of olivine. The transformation depends on the P–T con-
dition and the chemical composition of olivine. Accord-
ing to the P–T phase diagram of olivine with Fa35 (Fig. 9) 

Fig. 9  Pressure–temperature phase diagram for olivine (Fo65) after Ito 
and Takahashi (1989), Frost (2008), Tomioka and Miyahara (2017). The 
shaded region corresponds to the ringwoodite stability field. Bdm, 
bridgmanite; Mw, magnesiowüstite; others are the same as above
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modified from the pressure–temperature–composition 
phase diagram of olivine (Tomioka and Miyahara 2017; 
Frost 2008; Ito and Takahashi 1989; Katsura and Ito 
1989), olivine and ringwoodite have coexisted in the oli-
vine grain in contact with a shock-melt vein, indicating 
that the shock pressure is 9–13 GPa or more. However, 
the pressure condition could be underestimated because 
the initiation of the solid-state transformation of olivine 
involves a breakage of the Si–O bond, which requires to 
some extent a higher pressure than the value indicated by 
the phase boundary, and the process is kinetically slug-
gish (Sharp and De Carli 2006).

Some ringwoodite or wadsleyite crystallized from 
shock-induced melts. Crystallization processes at high 
temperatures only need to overcome lower kinetic bar-
riers, requiring no pressure overstepping (Sharp and De 
Carli 2006). Consequently, in order to constrain the P–T 
condition more accurately, we adopt another phase dia-
gram (Fig.  10) built from high-pressure melting experi-
ments on the Allende carbonaceous chondrites (Agee 
et  al. 1995; Asahara et  al. 2004) which has a bulk FeO 
abundance (27 wt%) closer to the shock-induced melts 
in NWA 8705 (19–24 wt%) than the peridotite KBL-1 
(9 wt%) (Zhang and Herzberg 1994; Trønnes and Frost 
2002).

The shock-induced melt vein (Fig.  4) contains ring-
woodite, wadsleyite, and clinopyroxene, but we could 
not identify the majorite reported in other meteor-
ites (e.g., Xie et  al. 2006a, 2011; Tomioka and Miyahara 
2017; and references therein). The mineral assemblages 
with the absence of majorite in the shock-induced 
melt vein (Fig.  4) in NWA 8705 is consistent with the 
metastable crystallization of subsolidus phases from 

a supercooled liquid where nucleation of the major-
ite was inhibited (Hu and Sharp 2016; Xie et al. 2006b). 
The sulfide spheres throughout the matrix are also the 
evidence for a fast quench. Based on the Allende phase 
diagram (Fig.  10), ringwoodite, wadsleyite, and clinopy-
roxene (En51Fs34Wo15) could crystallize at a condition 
of 14–17 GPa, 1650–1750 ℃. In addition, the pigeonite 
(En67.5Fs24.5Wo8) relict fragments in the shock-induced 
melt constrain the pressure conditions of the shock-
induced melt vein to below the pyroxene–majorite phase 
boundary that is < 16 GPa at 1800 °C (Tomioka and 
Miyahara 2017; Ozawa et  al. 2010; Ohtani et  al. 1991). 
Therefore, we estimate the crystallization pressure and 
temperature of the shock-induced melt vein to be 14–16 
GPa, 1650–1750 ℃, respectively. This P–T condition is 
similar to that of LL6 chondrite NWA 757 and L6 Châ-
teau-Renard (Baziotis et  al. 2018; Hu and Sharp 2016). 
Ca-rich pyroxene (augite) in another shock-induced melt 
vein (Fig.  7d) can be stable up to 18 GPa (Oguri et  al. 
1997). The overlap in stability fields between ringwood-
ite (Fig.  9) and Ca-rich pyroxene constrains the crystal-
lization pressure of the shock vein to be 13–18 GPa. This 
pressure estimate agrees with the overlap in the pressure 
stability field of those minerals (ringwoodite + clinopy-
roxene, 16–18 GPa) at the phase diagram for Allende 
(Fig. 10). Within this pressure range, the inferred crystal-
lization temperature is 1750–1850 °C. Thus, we estimate 
that the crystallization pressure and temperature of the 
shock-induced melt vein is 16–18 GPa, 1750–1850  ℃, 
respectively.

Very thin shock-induced melt vein and melt vein mar-
gins are most rapidly quenched and most likely to contain 
crystallization products recording the shock pressure 
condition (Sharp and De Carli 2006; Hu and Sharp 2016). 
The two melt veins discussed above are thin (≤ 60  μm) 
and lower pressure mineral assemblages were not 
observed in the core from the two thin shock-induced 
melt veins, suggesting that the crystallization occurred 
during shock pressure (Xie et al. 2006b). The two shock-
induced melt veins discussed above are similar in chemi-
cal bulk compositions (Table S8, see Additional file 2 for 
details). The differences in mineralogy and micro-texture 
seem to be related to crystallization pressure and cool-
ing rate (see quench time in the following section). The 
cooling rate of the melt vein (~ 60  μm) was not rapid 
enough to quench to the glass compared with the thin-
ner shock-induced melt vein which recorded the possible 
shock pressure. The shock-induced melt vein (~ 60  μm) 
may crystallize quickly during a slight decrease in pres-
sure and did not produce core–edge zoning of miner-
als (Sharp and De Carli 2006). Therefore, the very thin 
shock-induced melt vein (20 μm) should record the shock 

Fig. 10  A simplified P–T diagram for the Allende meteorite (solid 
lines) after Agee et al. (1995) and Asahara et al. (2004), and the P–T 
diagram for the peridotite (dot-dash lines) from Zhang and Herzberg 
(1994) and Trønnes and Frost (2002)
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pressure ~ 18 GPa based on the crystallization pressure 
condition discussed above.

Constraints on quench time and shock pressure duration 
in NWA 8705
The mineral assemblages crystallizing in shock-induced 
melt veins depend on the quench time and the dura-
tion of the shock pressure (Sharp and De Carli 2006; Xie 
et al. 2006a). If the quench time is much longer than the 
shock pressure duration, crystallization will occur during 
a pressure release and we should see a difference in min-
eralogy between the vein edge and the vein center. If the 
quench time is shorter or a little longer than the shock 
pressure duration, crystallization occurred at constant 
pressure or during a slight release of pressure and we 
should see mineral assemblages of similar pressure sta-
bilities throughout a given melt vein (Walton et al. 2014; 
Walton 2013; Sharp and De Carli 2006; Xie et al. 2006b). 
The quench time (t) of a shock-induced melt vein can 
be simply calculated by a thermal conduction equation, 
t = L2/α, where L = width of the shock-induced melt vein 
in meters, α is the thermal diffusion coefficient that is set 
to10−6 m2s−1 (Greshake et  al. 2013; Fritz and Greshake 
2009; Fritz et  al. 2017). Thus, the quench times of the 
shock-induced melt veins (20–60 μm in width) in NWA 
8705 are 0.4–3.6 ms. The duration of the shock pressure 
can be constrained by using the transformation kinetic 
data for a given sample (Ohtani et al. 2004; Mosenfelder 
et al. 2001; Xie and Sharp 2007; Kerschhofer et al. 2000; 
Miyahara et  al. 2010). Using calculated growth rates 
(Mosenfelder et al. 2001) and the size of ringwoodite, we 
can estimate the time required for ringwoodite growth 
in NWA 8705 as a function of temperature and thereby 
constrain the minimum duration of the shock pressure 
as Xie and Sharp (2007) has reported. At ~ 18 GPa, if we 
expect the host olivine grains within and in contact with 
shock-induced melt veins to reach the temperature of 
1700–1800 K, the time required to grow a 500-nm ring-
woodite crystal in NWA 8705 is about 10–3.4  ms. This 
minimum shock pressure duration (10–3.4  ms) is con-
sistent with a shorter impact duration (< 100 ms) of Mar-
tian meteorites compared to that of chondrites (~ 1  s) 
(e.g., Beck et  al. 2005; Fritz and Greshake 2009; Walton 
2013; Walton et al. 2014).

Implications for the findings of ringwoodite in NWA 8705
As discussed above, there are four occurrences of ring-
woodite found within an mm-scaled region in NWA 
8705. Two conditions must be met for the formation 
and preservation of ringwoodite in the shocked mete-
orites. (1) The shock-induced formation of ringwood-
ite requires high enough temperature and pressure (Xie 

and Sharp 2007; Baziotis et al. 2013; Sharp and De Carli 
2006) to provide the rapid transformation kinetics. (2) 
After the formation of ringwoodite, rapid cooling to low 
temperature (< 900  °C) is needed to preserve the phase 
during shock compression and subsequent decompres-
sion within the ringwoodite stability field (Greshake et al. 
2013; Ming et al. 1991; Suzuki et al. 1980).

The findings of four occurrences of ringwoodite in 
NWA 8705 do satisfy the two conditions described 
above after our study. On the one hand, the four occur-
rences of ringwoodite are restricted to shock-induced 
melt veins and pockets where temperatures were high 
enough. The preservation of four occurrences of ring-
woodite within the very small region in NWA 8705 could 
be largely attributed to the very thin width of the melt 
veins (~ 20–60 µm) or small shock-induced melt pockets 
(Sharp and De Carli 2006) which have very fast cooling 
rates and short quench times as discussed above.

More occurrences of ringwoodite in NWA 8705 may 
also be related to the higher FeO-contents of olivine 
(Fa29–39). Compared with the olivine in H-type (Fa16–20), 
L-type (Fa23–26), and LL-type (Fa27–32) ordinary chon-
drites (Weisberg et al. 2006), most olivine grains in Mar-
tian meteorites are more fayalitic in composition, e.g., 
olivine-phyric shergottites, Fa23–Fa48; poikilitic sher-
gottites, Fa16–Fa40; nakhlites, Fa56–Fa85; chassignites, 
Fa21–Fa46 (McSween 1985; Treiman 2005; Hewins et  al. 
2020; Sarbadhikari et  al. 2016). The high FeO-contents 
olivine in the Martian meteorites can be transformed to 
ringwoodite or ahrensite under lower pressure in com-
parison with those in ordinary chondrites, based on 
the Mg2SiO4–Fe2SiO4 phase diagram (Presnall, 1995). 
Besides, ringwoodite with higher Fa-content could be 
preserved under relatively lower pressure. Therefore, 
ringwoodite with higher Fa-content is more likely to 
form and preserve in NWA 8705, broadening the pres-
sure stability field of ringwoodite.

Four occurrences of ringwoodite in NWA 8705 are 
within and around shock-induced melt veins and pock-
ets where pressure conditions may be almost homoge-
neous because shock-induced melt is a perfect pressure 
transmitting medium (Miyahara et  al. 2016). The differ-
ent formation mechanisms and arrangements are most 
likely due to temperatures difference at different loca-
tions within or close to the shock-induced melt veins 
and pockets (Miyahara et  al. 2016; Hu and Sharp 2016, 
2017). For instance, solid-state transformations of oli-
vine usually occur at the olivine clasts within and adja-
cent to shock-induced melt veins and pockets in NWA 
8705 and other meteorites (Miyahara et al. 2010; Ozawa 
et al. 2010; Xie and Sharp 2004) where the temperatures 
may have been high enough to overcome the nucleation 
energy barrier for incoherent and coherent nucleation 
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of ringwoodite, so they can nucleate simultaneously 
(Wang et al. 2017). Nevertheless, the kinetics data indi-
cate that the grain growth rate subsequent to nucleation 
in the incoherent process is much higher than that in the 
coherent process (Miyahara et al. 2016; Kerschhofer et al. 
2000). Thus, incoherent grains may grow immediately 
to overtake coherent grain growth, and polycrystalline 
ringwoodites dominate adjacent to the shock-induced 
melt vein (Fig.  7), similar to that in Tissint and Yamato 
791384 (Miyahara et al. 2016, 2010). With the increases 
of the distance from shock-induced melt vein and pocket, 
the ringwoodite changes from polycrystals to platelets 
(This study; Gillet and El Goresy 2013; Miyahara et  al. 
2016), which is likely because the temperatures are not 
sufficiently high to overcome the energy barrier for inco-
herent nucleation of polycrystalline ringwoodite, but 
are high enough for coherent nucleation of ringwoodite 
platelets (Wang et al. 2017; Kerschhofer et al. 2000).

The coexistence of ringwoodite and wadsleyite in 
the shock-induced melt vein here is particularly rare in 
other Martian meteorites and has only been reported in 
Chassigny (Fritz and Greshake 2009) and the poikilitic 
shergottite Asuka 12325 (Takenouchi et  al. 2019). The 
ubiquity of ringwoodite and relative scarcity of wadsley-
ite in Martian meteorites may indicate that shock pres-
sure in samples is generally well above the metastable 
olivine–ringwoodite equilibrium boundary (Fudge et  al. 
2014). In this case, olivine transforms directly to the ring-
woodite over full range of transformation temperatures. 
The coexistence of ringwoodite and wadsleyite in the 
shock-induced melt vein of NWA 8705 may suggest that 
a lower formation pressure than that of other Martian 
meteorites (e.g., Miyahara et al. 2016, 2011; Wang et al. 
2017). Additionally, the rare occurrences of the rod-like 
ringwoodite coexisting with the wadsleyite and the ring-
woodite microlite clusters within the shock-induced melt 
veins in NWA8705 seem to imply a special crystallization 
process which may widen the understanding of the for-
mation mechanism of ringwoodite.

NWA 8705 impact history
Shock-induced melt veins in NWA 8705 have recorded 
the P–T path after the impact event. The meteorite NWA 
8705 was heated heterogeneously up to a temperature 
of ~ 2000 ℃ at ~ 18 GPa (Fig.  10), producing the shock-
induced melt during the shock event. The ringwoodite 
microlite clusters crystallized from the olivine-dominant 
melt at a condition of 16–18 GPa and ~ 1800  ℃. The 
association of the rod-like ringwoodite, wadsleyite, and 
pyroxene in the shock-induced melt veins quenched at 
slightly lower pressure (14–16 GPa) and temperature 
(~ 1700 ℃).

The shock pressure duration of Martian meteor-
ites was short and has been estimated to be ~ 10  ms 
(Beck et  al. 2005; Fritz and Greshake 2009; Ma et  al. 
2016), ~ 10–20  ms (Walton et  al. 2014; Walton 2013), 
and ~ 100  ms (Sharp et  al. 2019). The shock pressure 
duration estimated from NWA 8705 is ~ 3.4–10 ms, con-
sistent with that of most other Martian meteorites. The 
impact scenario of NWA 8705 is probably similar with 
other shergottites, delivered from small craters (1.5–5 km 
in diameter) (Beck et  al. 2005; Artemieva and Ivanov 
2004). It is generally suggested that Martian impact ejec-
tion events were small because of their young CRE ages, 
the decrease in size-frequency distribution of impact cra-
ters over the history of solar system, and that there are 
too few young large impact craters on Mars to account 
for all different ejection events (Head et  al. 2002; Arte-
mieva and Ivanov 2004). The cosmic ray exposure (CRE) 
age of NWA 8705 is 1.7 Ma (Irving et al. 2017), which is 
young and similar to that of other olivine-phyric sher-
gottites within error, e.g., CRE ages from 0.6 to 1.8  Ma 
(Head et  al. 2002; Nishiizumi et  al. 2011; Eugster et  al. 
2006; Nyquist et al. 2001), suggesting that they may origi-
nate from the same small impact ejection event on Mars 
(Beck et al. 2005). In NWA 8705, the shock pressure ~ 18 
GPa estimated from the minerals assemblages within and 
adjacent to the shock-induced melt veins and pockets is 
lower compared with other olivine-phyric shergottites, 
e.g., ≥ 26–30 GPa and 26–40 GPa for Tissint (Baziotis 
et al. 2013; Walton et al. 2014), ~ 23 GPa for NWA 4468 
(Boonsue and Spray, 2012), 23–25 GPa for NWA 6162 
(El Goresy et al. 2013), > 25 GPa for DaG 735 (Miyahara 
et al. 2011). One reason may be that the lower pressure 
conditions in NWA 8075 estimated are for local hot 
spots rather than the peak shock conditions estimated 
based on the bulk shock metamorphism (Fritz et  al. 
2017). Another possibility is that its parent rock derived 
from regions outside the isobaric core (Gillet and El Gor-
esy 2013; Fritz et al. 2017), and the mineral assemblages 
in shock-induced melt veins formed at a lower shock 
pressure.

Conclusions
NWA 8705 is an olivine-phyric shergottite with large oli-
vine crystals in the finer-grained groundmass consisting 
mainly of pyroxene (pigeonite and augite) and interstitial 
maskelynite. There are four occurrences of ringwood-
ite: lamellae in the host olivine within or adjacent to 
shock-induced melt veins and pockets; polycrystalline 
ringwoodite olivine entrained in and adjacent to the 
shock-induced melt vein; rod-like ringwoodite coexisting 
with wadsleyite and pyroxene in the shock-induced melt 
vein matrix; the ringwoodite microlite clusters in a very 
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thin shock-induced melt vein across the olivine. Based 
on their textures, TEM observations, and mineral com-
positions, polycrystalline ringwoodite and ringwoodite 
lamellae within the olivine adjacent to the shock-induced 
melt were produced via solid-state transformation, 
whereas the other two occurrences of ringwoodite in the 
shock-induced melt veins crystallized from the shock-
induced melt.

The association of wadsleyite and ringwoodite in the 
matrix crystallized from the shock-induced melt vein 
limits the P–T parameters to 14–16 GPa and 1650–
1750  °C, respectively. The association of ringwoodite 
and glass in the melt vein constrains the crystallization 
pressure and temperature to 16–18 Gpa and 1750–
1850 °C, respectively. According to the P–T conditions 
constrained from the mineral assemblages within and 
adjacent to the shock-induced melt veins and pockets, 
a shock pressure of ~ 18 GPa was estimated. The cool-
ing times for the 20 and 60  μm shock-induced melt 
veins are 0.4 and 3.6  ms, respectively. The higher Fa-
contents of the host olivine in NWA 8705 makes the 
olivine–ringwoodite transformation prolong to a lower 
pressure. The presence of four types of ringwoodite 
with two different formation mechanisms within a mm-
sized scale of the same meteorite was probably due to 
a very fast cooling rate and heterogenous temperature 
within and/or adjacent to shock-induced melt veins and 
pockets.
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