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Linear analysis on the onset of thermal 
convection of highly compressible fluids 
with variable viscosity and thermal conductivity 
in spherical geometry: implications 
for the mantle convection of super‑Earths
Masanori Kameyama1,2*   

Abstract 

In this paper, we carried out a series of linear analyses on the onset of thermal convection of highly compressible 
fluids whose physical properties strongly vary in space in convecting vessels either of a three-dimensional spheri-
cal shell or a two-dimensional spherical annulus geometry. The variations in thermodynamic properties (thermal 
expansivity and reference density) with depth are taken to be relevant for the super-Earths with ten times the Earth’s 
mass, while the thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, 
respectively. Our analysis showed that, for the cases with strong temperature dependence in viscosity and strong 
depth dependence in thermal conductivity, the critical Rayleigh number is on the order of 108–109, implying that the 
mantle convection of massive super-Earths is most likely to fall in the stagnant-lid regime very close to the critical 
condition, if the properties of their mantle materials are quite similar to the Earth’s. Our analysis also demonstrated 
that the structures of incipient flows of stagnant-lid convection in the presence of strong adiabatic compression are 
significantly affected by the depth dependence in thermal conductivity and the geometries of convecting vessels, 
through the changes in the static stability of thermal stratification of the reference state. When the increase in thermal 
conductivity with depth is sufficiently large, the thermal stratification can be greatly stabilized at depth, further induc-
ing regions of insignificant fluid motions above the bottom hot boundaries in addition to the stagnant lids along 
the top cold surfaces. We can therefore speculate that the stagnant-lid convection in the mantles of massive super-
Earths is accompanied by another motionless regions at the base of the mantles if the thermal conductivity strongly 
increases with depth (or pressure), even though their occurrence is hindered by the effects the spherical geometries 
of convecting vessels.
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Introduction
Super-Earths are extra-solar planets which have small 
masses (compared to that of Jupiter) and high mean den-
sity larger than 5000 kg/m3 (Howard et  al. 2010). Since 
the first discovery of such massive terrestrial planets 
(Rivera et al. 2005), a growing effort has been devoted to 
the studies in the internal (radial) structure (e.g., Seager 
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et al. 2007; Valencia et al. 2007b; Sotin et al. 2007; Wag-
ner et  al. 2011), the thermal evolution (e.g., Papuc and 
Davies 2008; Kite et al. 2009; Korenaga 2010; Gaidos et al. 
2010; Tachinami et al. 2011; Čížková et al. 2017) and the 
habitability (e.g., Noack et al. 2017; Tosi et al. 2017; Foley 
2019) of super-Earths. During the last decades, the stud-
ies on mantle dynamics have been playing an important 
role in addressing these issues (e.g., Shahnas et al. 2018; 
van den Berg et al. 2018).

It can be intuitively understood that, because of their 
large sizes, the convection in the mantles of massive 
super-Earths is most likely to occur in a quite different 
manner from those in the Earth and smaller terrestrial 
planets. For example, the variations of physical properties 
of mantle materials are expected to be larger in the much 
thicker mantles of super-Earths than in the Earth’s (e.g., 
Karato 2011). Indeed, the effects of strong spatial varia-
tions in physical properties (such as viscosity and ther-
mal conductivity) on the convecting flow patterns have 
been widely studied so far, under the assumption that the 
effects of other physical mechanisms such as compress-
ibility can be minor (e.g., Kameyama and Ogawa 2000; 
Miyauchi and Kameyama 2013). In particular, the effects 
of strong temperature dependence in viscosity have been 
intensively studied by numerical models of convection 
in three-dimensional spherical geometry (e.g., Yao et al. 
2014; Yanagisawa et al. 2016; Guerrero et al. 2018).

On the other hand, it has been well acknowledged that 
the effect of adiabatic compression affects the nature of 
thermal convection (Jarvis and McKenzie 1980; King 
et al. 2010; Liu and Zhong 2013). This effect is expected 
to be of great importance in the convection in the thick 
mantles of massive super-Earths, considering that the 
pressure can reach on the order of terapascals in their 
interiors (Tsuchiya and Tsuchiya 2011). Indeed, our ear-
lier studies (Kameyama and Kinoshita 2013; Kameyama 
et  al. 2015; Kameyama 2016) showed that the nature of 
thermal convection in the thick mantles of massive super-
Earths is strongly affected by the interplay between the 
effects of adiabatic compression and those of spatial vari-
ations in physical properties of mantle materials. How-
ever, in these studies, the effects of spherical geometries 
of planetary mantles have been thoroughly ignored, since 
the analyses had been carried out using the convecting 
vessels with the Cartesian (planar) domains. It is there-
fore very important to estimate the effects of the strong 
adiabatic compression and those of strong variations in 
physical properties of mantle materials on the convecting 
flow structures in spherical geometries, in order to gain 
the fundamental insights into the mantle convection of 
massive super-Earths.

In this study, we carry out a series of linear analyses on 
the thermal convection in spherical domains of a highly 

compressible fluid with the spatial variation in physi-
cal properties, to investigate how the spherical geom-
etries of planetary mantles can affect the critical state 
and condition of thermal convection in the presence of 
the interplay between the adiabatic compression and 
spatial variations in physical properties such as viscos-
ity and thermal conductivity. In particular, we will focus 
on the influences of adiabatic changes in temperature 
on the incipient convection, by using a simple 1D model 
of a basally heated fluid. By further comparing the pre-
sent results with our earlier one in the Cartesian (pla-
nar) model (Kameyama 2016), we aim at deepening the 
insights into the thermal convection in the mantles of 
massive terrestrial super-Earths both from the thermo-
dynamic and fluid-dynamic aspects.

Model descriptions
The onset of thermal convection is considered for a 
highly compressible fluid of infinite Prandtl number, as 
a model of mantle convection of a super-Earth with ten 
times the Earth’s mass. The numerical model is the same 
as those of our earlier one (Kameyama 2016) except that 
the convecting vessels are taken to be either a three-
dimensional (3D) spherical shell or a two-dimensional 
(2D) spherical annulus whose inner and outer radii are 
rmin and rmax , respectively, and rmin/rmax = 0.5 . The tem-
perature T of the fluid layer is fixed to be T = Ttop and 
Tbot ( > Ttop ) at the top and bottom boundaries, respec-
tively. In order to keep the present analysis as simple 
as possible, we ignored the effects of internal heating 
and spatial variations in specific heat Cp of the fluid and 
the gravity g throughout the layer. In addition, we fixed 
Ttop/�T = 0.1 (where �T ≡ Tbot − Ttop is the tempera-
ture difference across the layer), indicating that the tem-
perature at the top surface of the planet is similar to the 
Earth’s.

Physical properties of modeled compressible fluid
As a model of pressure dependence in thermodynamic 
properties of mantle materials of massive super-Earths, 
we employ the same variations in thermal expansivity 
α and reference density ρ with depths as in our earlier 
works (Tachinami et al. 2014; Miyagoshi et al. 2014, 2015; 
Kameyama 2016; Kameyama and Yamamoto 2018). The 
thermal expansivity α decreases with depth, and its radial 
profile is taken to be similar to that estimated for MgO 
from an ab  initio calculation (Tsuchiya and Tsuchiya 
2011) for the mantles of super-Earths with ten times 
the Earth’s mass. That is, the value of α(r = rmin) ≡ αbot 
at the bottom boundary is as small as about 1/14 of the 
value α(r = rmax) ≡ αtop ( = 4 × 10−5 K−1 ) at the top sur-
face, and the value of its average αave is taken to be
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On the other hand, the reference density ρ is assumed 
to linearly increase with depth, yielding the value 
of ρ(r = rmin) at the bottom boundary larger than 
ρ(r = rmax) ≡ ρtop at the top surface by about 3.17 
(Valencia et  al. 2006). We note that the linear increase 
in ρ assumed here is not likely to spoil the significance 
of the present analysis despite its geophysical unsound-
ness, since the vertical profile of (reference) density has a 
very minor effect on the nature of critical states of ther-
mal convection of highly compressible fluids (Kameyama 
et al. 2015).

In addition to the variations in thermodynamic prop-
erties ( α and ρ ), we also assume the spatial variations in 
transport properties. In this study, the thermal conduc-
tivity k is taken to be exponentially dependent on depth 
as,

where ktop is the thermal conductivity at r = rmax , 
and rk is a dimensionless constant equal to the ratio of 
k(r = rmin) ≡ kbot to ktop . For a geophysical significance, 
we restrict ourselves to the cases where rk ≥ 1 ; the ther-
mal conductivity k increases with depth for rk > 1 . 
According to the recent estimates both by theoretical cal-
culations (Dekura et al. 2013; Dekura and Tsuchiya 2017, 
2019) and by laboratory experiments (Haigis et al. 2012; 
Ohta et al. 2012, 2017; Lobanov et al. 2017), the thermal 
conductivity of mantle materials can increase by up to 
about one–two orders of magnitude across the mantles 
of super-Earths. In this study, we varied rk up to 100.

On the other hand, the viscosity η is assumed to be 
exponentially dependent on temperature T as,

where ηbot is the viscosity for T = Tbot , and rη is a dimen-
sionless constant given by rη = η(T = Ttop)/η(T = Tbot) . 
In (3), for simplicity, we ignored the dependence on pres-
sure (or depth) in viscosity, since it is still highly contro-
versial if the viscosity of mantle materials increases or not 
as the pressure increases up to the levels relevant to the 
interior of super-Earths (Stamenković et al. 2011; Karato 
2011; Wagner et al. 2012; Tackley et al. 2013; Noack and 
Breuer 2014). In this study, we restrict ourselves to the 
cases where rη ≥ 1 ; the viscosity η decreases with temper-
ature for rη > 1 . Using this assumption, we will focus on 
the effects of the reduction of viscosity in the deep man-
tle of the super-Earths proposed in several earlier studies 

(1)
αave

αtop
=

1

rmax − rmin

∫ r=rmax

r=rmin

α(r)

αtop
dr ≃ 0.1574.

(2)k(z) = ktop exp

[

ln(rk)×
rmax − r

rmax − rmin

]

,

(3)η(T ) = ηbot exp

[

ln(rη)×
Tbot − T

Tbot − Ttop

]

,

(Karato 2011; Stein et al. 2011; Wagner et al. 2012; Tack-
ley et al. 2013).

Here, some comments are necessary on the depth 
dependence in thermal conductivity k in this study. First, 
the exponential increase in k with depth given by (2) is 
chosen simply from analytical and numerical convenience 
as in our earlier studies (Kameyama and Kinoshita 2013; 
Kameyama 2016; Kameyama and Yamamoto 2018) and, 
in other words, may not be necessarily supported by stud-
ies on mineral physics conducted so far (e.g., Dalton et al. 
2013; Hsieh et al. 2017, 2018; Deschamps and Hsieh 2019). 
Second, it is well acknowledged that the thermal conduc-
tivity k depends not only on depth (or pressure) but also on 
other parameters such as composition and temperature. 
For example, the thermal conductivity k of ferro-periclase 
is much higher and more sensitive to pressure (about a fac-
tor of 10 increase in the pressure range of the Earth’s man-
tle) than that of bridgmanite. Similarly, the values of k of 
both minerals are sensitive to the iron content. In addition, 
the temperature dependence in k is expected to compen-
sate for the increase in k with depth, since high tempera-
tures tend to reduce the contributions of heat transport by 
lattices (or phonons). In short, the present study may over-
estimate the values of rk ≡ kbot/ktop in silicate mantles of 
super-Earths by ignoring the dependence of k on composi-
tion and temperature.

Basic equations
Under the truncated anelastic liquid approximation 
(TALA), the basic equations can be written in a dimension-
less form as:

where the quantities with overbars denote those of ref-
erence state which vary only in the radial direction, 
and the nondimensionalization is carried out with the 
length scale of d ≡ rmax − rmin , time scale of d2/κtop 
(where κtop = ktop/ρtopCp is the value of thermal dif-
fusivity at the top surface), and temperature scale of 
�T ≡ Tbot − Ttop . Here, ⊗ stands for the tensor product 
of vectors, v ⊗∇ is the transpose of ∇ ⊗ v , I is the iden-
tity tensor, er is the unit vector in radial direction posi-
tive outward, v is the velocity vector, vr ≡ (v · er) is the 
velocity in the radial direction, p is pressure, and ε̇II is the 
second invariant of strain rate tensor. In the right-hand 
side of (6), the first, second, and third terms represent the 

(4)0 = ∇ · (ρv),

(5)

0 = −∇p+

{

η

[

∇ ⊗ v + v ⊗∇ −
2

3
(∇ · v)I

]}

· ∇ + Raρ αTer ,

(6)
ρ
∂T

∂t
= ∇ ·

(

k∇T − ρvT
)

− Diρ α Tvr +
Di

Ra
η(ε̇II )

2,
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effects of apparent heat transport (advection plus con-
duction), adiabatic temperature change, and viscous dis-
sipation (frictional heating), respectively.

The present formulation includes two nondimensional 
parameters. The first one is the dissipation number Di of 
the modeled fluid defined by,

The second one is the Rayleigh number Ra of thermal 
convection defined by,

Note here that, as indicated by (3), the viscosity is scaled 
by the value ηbot at the bottom boundary while for other 
properties the reference values are those at the top sur-
face. The values of Di and Ra for the mantles of terrestrial 
planets are expected to increase with the mass M of the 
planets, coming from the increase in the mass, gravity, 
and the mantle thickness of the terrestrial planets whose 
composition is similar to the Earth’s (e.g., Seager et  al. 
2007; Valencia et al. 2007a; Wagner et al. 2011). Accord-
ing to the scaling relationship [ g ∝ M0.5 and d ∝ M0.28 ; 
Valencia et  al. (2007a)] together with Di ∼ 0.7 and 
Ra = O(107) for the Earth’s mantle (Schubert et al. 2001), 
one can estimate Di ∼ 5 and Ra =  O (108–109) for the 
mantles of super-Earths whose mass is ten times larger 
than the Earth’s (Tachinami et al. 2014; Miyagoshi et al. 
2014, 2015, 2018). In the present study, we fixed Di = 5 , 
while the values of Ra estimated above can be compared 
with those of the critical Rayleigh numbers derived from 
the linear stability analysis.

In the linear stability analysis presented in this paper, we 
solve for the temporal evolution of an infinitesimal pertur-
bation superimposed to a reference state described by a 
stationary (motionless) state with steady one-dimensional 
heat conduction in the radial direction. In the following, 
the quantities with overbars and primes denote those of 
reference state and perturbation, respectively. The dimen-
sionless equations for the reference state are written as,

(7)Di ≡
αtopgd

Cp
.

(8)Ra ≡
ρtopαtop�Tgd3

ηbotκtop
.

(9)v = 0,

(10)
∇·

(

k∇T
)

= 0, T (r = rmax) = Ttop,

T (r = rmin) = Tbot = 1+ Ttop,

while those for infinitesimal perturbations are given by,

In deriving these equations, the second-order terms of 
infinitesimal (primed) quantities are ignored. This is the 
reason why the effect of viscous dissipation is eliminated 
in (14).

At the top and bottom boundaries, we kept the per-
turbations in temperature T ′ and the radial velocity v′r to 
be zero. For the horizontal velocity at the boundaries, 
on the other hand, we assumed a free-slip condition.

Numerical method
The equations for infinitesimal perturbations (12) to 
(14) are recast into the one-dimensional differential 
equations in the radial direction, by applying the spec-
tral expansion in the horizontal planes using either the 
spherical harmonics or sinusoidal function depending 
on three- and two-dimensional spherical geometries. 
The derived one-dimensional differential equations 
are discretized with an eighth-order accuracy in space 
using equally spaced 257 grid points. The eigenvalue 
problem for a given condition (such as the spherical 
harmonic degree ℓ or the horizontal wavenumber K 
of perturbations) is solved for a critical Rayleigh num-
ber Rac as well as the radial profiles of eigenfunctions 
for infinitesimal perturbations by a numerical method 
developed in Kameyama et  al. (2015). By increasing 
the values of ℓ or K, we search the one which yields 
the absolute minimum of the critical Rayleigh num-
ber Rac0 and the values of ℓc0 or Kc0 corresponding to 
Rac0 . See Appendix for the detailed descriptions for the 
derivation and solution of one-dimensional differential 
equations.

Results and discussion
Static stability of thermal stratification for reference 
(steady) states
We first see how the structure and static stability of 
the thermal stratification of the reference state vary 
depending on the model geometries and on the depth 

(11)
k = exp [ln(rk )× (rmax − r)], η = exp

[

ln(rη)×
(

Tbot − T
)]

,

(12)0 = ∇ ·
(

ρv′
)

,

(13)0 = −∇p′ +

{

η

[

∇ ⊗ v
′ + v

′ ⊗ ∇ −
2

3
(∇ · v′)I

]}

· ∇ + Raρ αT ′
er ,

(14)
∂T ′

∂t
=

1

ρ
∇ ·

(

k∇T ′
)

−
dT

dr
v′r − Diα Tv′r .
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dependence in thermal conductivity k  . By the solid lines 
in Fig. 1a, we show the radial profiles of reference tem-
perature T (r) derived from Eq. (10) for different model 
geometries and various values of rk . [Note that the tem-
perature dependence in viscosity η affects neither the 
thermal state nor its static stability of the reference state 
given by Eq. (10)]. Figure 1b shows the magnitude of its 
radial gradient |dT/dr| . To further highlight the effects of 
model geometries, we also show in Fig. 1 the similar plots 
of T  and its vertical gradient dT/dz for the Cartesian 
geometry derived in our earlier work (Kameyama 2016).

From the plots in Fig. 1a, b, we can see that the radial 
profiles of reference temperature T  are significantly 
affected by the values of rk as well as by the model geom-
etries. The comparison of the plots for different rk and 
given geometries shows that the values of T  in the fluid 
layer are higher for larger rk . The increase in T  for large rk 
comes from the changes in the radial profiles of |dT/dr| 
within the fluid layer depending on rk [see also Eq. (10)]: 
a larger increase in k  with depth induces a larger decrease 
in |dT/dr| with depth. This in turn makes |dT/dr| larger 
in the shallow cold part and smaller in the deep hot 
part of the fluid layer (see Fig.  1b), which consequently 
raises T  in the entire layer (see Fig. 1a). The comparison 
of the plots of T  for 3D and 2D spherical geometries, on 
the other hand, shows that for a given rk the values of T  
in the fluid layer are lower in 3D geometry than in 2D 
geometry. The difference in T  due to the model geom-
etries comes from the difference in the changes in the 
surface area with depth. The decrease in the surface area 
with depth is more significant in 3D cases ( ∝ r−2 ) than in 
2D cases ( ∝ r−1 ). Owing to this effect, the magnitude of 
|dT/dr| in the shallow part of fluid layer is smaller in 3D 
cases than in 2D cases and, at the same time, the magni-
tude in the deep part is larger (see Fig. 1b). This results in 
lower T  in the entire layer for 3D cases than in 2D cases. 
The effect of the changes in the surface area with depth 
can be further confirmed from the comparison with the 
Cartesian cases (Kameyama 2016). Among the three 
model geometries presented in Fig. 1, indeed, the values 
of T  for given rk are the highest for Cartesian cases where 
the effect of the changes in the surface area with depth is 
absent.

To see the static stability of the thermal stratification 
more clearly, we show in Fig.  1c the radial profiles of 
potential temperature Tpot of the reference states. Here, 
Tpot at the dimensionless position r is calculated by

We also show by thick gray lines the ranges of depths 
where Tpot increases with height. Note that in these 

(15)Tpot(r) = T (r) exp

[

−Di

∫ r′=rmax

r′=r
α(r′)dr′

]

.

regions the thermal stratification given by T  is stable, as 
is inferred from the Brunt–Väisälä frequency N: Here the 
dimensionless value of N is given in the present numeri-
cal configuration by

where a nondimensionalization is carried out by a fre-
quency scale of 

√

g/d , and (dT/dr)s is the adiabatic tem-
perature gradient whose dimensionless value is defined 
by

In the regions where N 2 > 0 (i.e., N is real), the thermal 
stratification is stable against an imposed infinitesimal 
displacement of fluid parcels in the direction of gravity. 
Indeed, by differentiating (15) with respect to r we get

which indicates that dTpot/dr is positive when 
|dT/dr|s > |dT/dr| and, hence, N 2 > 0 . In addition, the 
static stability of thermal stratification is stronger for 
larger N 2 and dTpot/dr.

The comparison between the plots in Fig.  1c clearly 
shows that the static stability of the thermal stratifica-
tion is affected not only by the values of rk but also by the 
geometries of fluid layer. For both 3D and 2D spherical 
geometries, regions of stable thermal stratification with 
dTpot/dr > 0 emerge in the deeper part of the fluid layer 
when rk ≥ 30 . This is because a large rk reduces the mag-
nitude of |dT/dr| in the deeper part and, hence, enhances 
the static stability of thermal stratification [see also Eq. 
(18)]. These regions become thicker and the thermal 
stratification there becomes more stable for larger rk . We 
note, on the other hand, from the comparison between 
3D and 2D cases that for given rk ≥ 30 the regions of 
stable stratification are thinner for 3D cases than those 
for 2D cases. This is again due to the difference in the 
changes in the surface area with depth. For 3D cases, the 
magnitude of |dT/dr| in the deeper part of the fluid layer 
becomes larger than in 2D cases, which in turn reduces 
the static stability of thermal stratification at depths. The 
effect of model geometries on the static stability can be 
further confirmed from the comparison with the Car-
tesian cases (Kameyama 2016) where the emergence of 
regions of stable stratification is greatly enhanced with 
respect to that with spherical cases.

We will conclude this subsection by estimating the 
condition under which the regions of stable stratification 

(16)N 2(r) = α(r)

{∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

s

−

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

}

,

(17)
(

dT

dr

)

s

≡ −Diα T .

(18)
dTpot

dr
=

{∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

s

−

∣

∣

∣

∣
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∣

∣

∣

∣

}

Tpot

T
,



Page 6 of 17Kameyama ﻿Earth, Planets and Space          (2021) 73:167 

Fig. 1  Thermal state in the fluid layer of different model geometries estimated for various values of rk in the range of 1 ≤ rk ≤ 100. a Plots against 
height from the bottom surface of the reference temperature T  . Also shown by thin dashed lines for comparison are the plots of several adiabats 
against height. b Plots against height of the magnitude of the gradient of temperature |dT/dr| (or |dT/dz| ) in the radial (vertical) directions. c Plots 
against height of the potential temperature Tpot . Also shown by thick gray lines are the ranges of depths where the thermal stratification given by T  
is stable owing to the increase in Tpot with height
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emerge at the bottom of the fluid layer. This condition is 
given by 

∣

∣dT/dr
∣

∣

s
>

∣

∣dT/dr
∣

∣ at r = rmin . Using (17), this 
inequality can be further rewritten as

In Table 1, we summarize the values of 
∣

∣dT/dr
∣

∣

r=rmin
 cal-

culated for several rk and 3D spherical shell geometry 
with rmin/rmax = 0.5 (see Fig.  1a, b), together with the 
resulting values of Dithres . In calculating Dithres we used 
αbot ∼ 1/14 and Tbot = 1.1 in dimensionless units. In 
Table  1 we also show the values of the threshold mass 
Mthres of planets above which Di > Dithres in their man-
tles, based on the scaling relationship of Di ∝ gd ∝ M0.78 
described in the previous section. Note, however, that in 
these estimates we employed the same decrease in ther-
mal expansivity α with depth as that for M = 10ME 
(where ME is the Earth’s mass). That is, these estimates 
may not be very accurate for the cases with M  = 10ME . 
In particular, the values of Dithres and Mthres are most 
likely to be smaller than those estimated here for the 
cases with M < 10ME , where both αave/αtop and 
αbot/αtop are expected to be larger than those for 
M = 10ME and, in other words, the effects of adiabatic 
compression are more significant.

Linear stability analyses for the onset of thermal 
convection
Next we carry out linear stability analyses for the onset 
of thermal convection of highly compressible fluids in the 
presence of spatial variations in physical properties (tem-
perature dependence of viscosity η and depth depend-
ence in thermal conductivity k) in the convecting vessels 
with different geometries. In particular, we compared the 
changes in the critical states and structures of incipient 

(19)Di > Dithres ≡
1

αbotTbot

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

r=rmin

.

flows with those in the static stability of thermal strati-
fication for the reference state, to investigate how the 
nature of incipient convection of compressible fluids with 
spatial variations in physical properties is affected by the 
adiabatic temperature change and, in other words, the 
occurrence of regions of stable stratification.

In Fig. 2, we show the plots against the viscosity con-
trast rη across the fluid layer of (a) the absolute minimum 
value of critical Rayleigh number Rac0 and (b) the spheri-
cal harmonic degree ℓc0 or the horizontal wavenumber 
Kc0 corresponding to Rac0 , obtained for different model 
geometries and various values of rk . Figure 2a shows that 
in general the values of Rac0 become larger for larger rη 
and rk , which can be intuitively understood from an over-
all increase in viscosity and thermal conductivity with rη 
and/or rk . Figure  2b shows, on the other hand, that the 
values of ℓc0 and Kc0 rapidly increase with rη for rη � O 
(103–104), regardless of the model geometries and the 
values of rk . This increase in ℓc0 or Kc0 with rη has been 
recognized by the transition of “stagnant-lid” regime of 
thermal convection (Stengel et al. 1982; Kameyama et al. 
2013). Taken together with the plots in Fig.  2a, the val-
ues of Rac0 for the stagnant-lid regime and rk ≥ 30 are as 
large as  O (108–109), which is very close to the estimate 
of the Rayleigh number of mantle convection of super-
Earths whose mass is about ten times the Earth’s. This 
suggests that in massive super-Earths the stagnant-lid 
type of mantle convection may occur under the condi-
tions very close to the critical ones. In addition, among 
the three geometries presented here, the 3D spherical 
geometry needs the largest values of rη for the transi-
tion into “stagnant-lid” regime, which is consistent with 
an earlier finding by linear (Kameyama et  al. 2013) and 
nonlinear (Guerrero et al. 2018) studies on the effects of 
curvature of fluid layer.

We next focus on the nature of critical conditions for 
strong temperature dependence in viscosity ( rη �  O 
(103–104) where the thermal convection falls in the stag-
nant-lid regime. For both the 2D and 3D spherical geom-
etries, the changes in Rac0 and those in ℓc0 and Kc0 with 
rη are different depending on whether rk ≤ 10 or rk ≥ 30 
and, hence, whether the regions of stable thermal stratifi-
cation occur or not in the reference state (see also Fig. 1). 
For the cases with rk ≤ 10 lacking in stable regions, the 
values of Rac0 become almost independent of rk for large 
rη (Fig. 2a), and the values of ℓc0 and Kc0 are smaller for 
larger rk (Fig. 2b). For the cases with rk ≥ 30 in the pres-
ence of stable regions, by contrast, the values of Rac0 are 
always larger for larger rk , and the values of ℓc0 and Kc0 
are smaller for larger rk . We also note from the plots for 
the Cartesian geometry that the similar changes in Rac0 
and Kc0 with rη occur depending on whether rk ≤ 10 or 

Table 1  The values of the temperature gradient |dT/dr|r=rmin 
at the bottom of the fluid layer of 3D spherical shell of 
rmin/rmax = 0.5 calculated with several values of rk = kbot/ktop , 
the threshold values of dissipation number Dithres and planetary 
mass Mthres divided by the Earth’s mass ME above which regions 
of stable thermal stratification occur at the bottom of the fluid 
layer

rk

∣

∣

∣

dT/dr

∣

∣

∣

r=rmin

Dithres Mthres/ME

1 2.000 26.14 83.34

3 1.246 16.28 45.43

10 0.6593 8.616 20.09

24.24 0.3826 5 10

30 0.3327 4.348 8.360

100 0.1429 1.867 2.829
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Fig. 2  The plots against rη of a the absolute minimum value of critical Rayleigh number Rac0 and b the spherical harmonic degree ℓc0 or 
horizontal wavenumber Kc0 of perturbation corresponding to Rac0 , obtained for different model geometries and various values of rk in the range of 
1 ≤ rk ≤ 100
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rk ≥ 30 and, in other words, whether the regions of stable 
thermal stratification exist or not.

To see how the depth dependence in thermal con-
ductivity k affects the critical states of stagnant-lid con-
vection, we show in Fig.  3 the schematic illustration on 
two-dimensional planes of the incipient flows obtained 
for several values of rk and various model geometries 
together with rη = 108 . (For the cases in 3D spherical 
geometry, we show the flow structures in meridian planes 
assuming the incipient flows occurring with only zonal 
components whose spherical harmonic order is m = 0 .) 
Shown in color are the distributions in the perturbations 
in temperature T ′ whose color scales are indicated at the 
bottom of the figure. Shown by solid lines are the con-
tours of a “potential” ψ of the mass flux ρv′ which satisfies

where en is the unit vector perpendicular to the plane. 
(Note that the function ψ is a generalization of the 
stream function for the Boussinesq or extended Bouss-
inesq approximation where ρ = 1 .) As can be seen from 
Fig.  3a, the incipient flows for rk = 1 occur as a well-
known stagnant-lid convection. Indeed, thick lids of cold 
and highly viscous fluid develop along the top surface 
where the fluid motion is insignificant. The convection 
occurs only beneath the thick and stagnant lids, which 
results in a small vertical extent of convection cells. The 
horizontal extent of convection cells also becomes much 
smaller than the thickness of entire layer, in accordance 
with the reduction in their vertical extent. This results 
in large ℓc0 and Kc0 of the infinitesimal perturbation (see 
also Fig. 2b).

The comparison of Fig. 3b and c with 3a clearly shows 
that the structures of incipient flows of stagnant-lid con-
vection are significantly affected by the increase in rk , 
particularly through the changes in the flow strength 
not only in uppermost part but also in the lowermost 
part of fluid layer. On the one hand, the changes in the 
flow strength in the uppermost part is characterized by 
the thinning of stagnant lids along the top surface by the 
increase in rk . This is because for larger rk the tempera-
ture T  of the reference state is higher (see also Fig.  1a) 
and, hence, the regions of high viscosity η become 

(20)ρv′ = ∇ × (ψen),

thinner owing to the strong temperature dependence in 
viscosity. On the other hand, the change in the lowermost 
part can be seen as an emergence of the regions of insig-
nificant fluid motion just above the bottom boundary 
when rk is as large as 100. The emergence of such distinct 
regions for very large rk results from the changes in the 
static stability of thermal stratification for the reference 
state. As can be seen from Fig. 1c, thick regions of stable 
thermal stratification occur above the bottom boundaries 
for rk = 100 , while no such regions occur for rk ≤ 10 . 
The insignificant fluid motion at depth is consistent with 
our earlier studies based on the linear (Kameyama 2016) 
and nonlinear (Kameyama and Yamamoto 2018) analyses 
in Cartesian geometry.

The comparison of Fig. 3b and c with 3a also suggests 
that the changes in the values of ℓc0 and Kc0 with increas-
ing rk for large rη in Fig. 2b can be understood from the 
changes in the vertical extent of incipient convection 
cells. For example, the increase in rk from 1 to 10 makes 
the stagnant lids along the top surface thinner and, hence, 
the convection cells beneath the lids taller. This in turn 
increases the horizontal extent of convection cells and, in 
other words, decreases ℓc0 and Kc0 of infinitesimal per-
turbations. Increasing rk from 10 to 100, by contrast, not 
only leads to thinner stagnant lids along the top surface 
but also thickens the regions of insignificant fluid motion 
above the bottom boundary. Owing to these combined 
effects, the vertical extent of convection cells becomes 
smaller as rk increases to 100, leading to an increase in ℓc0 
and Kc0 of infinitesimal perturbations.

In Fig. 4, we show the variations in the radial profiles 
of eigenfunctions for radial velocity V for the critical 
states as functions of rη obtained for the various model 
geometries and several values of 1 ≤ rk ≤ 100 . Shown 
in colors and by thin contour lines in each plot of Fig. 4 
are the values of V normalized by their maxima Vmax for 
given rη , while indicated by the green lines are the heights 
at which V = Vmax for given rη . In the cases where the 
regions of stable thermal stratification occur above the 
bottom boundary, we show by the thick gray lines the 
heights below which the thermal stratification is stable. 
Fig. 4 shows that a cold and stagnant lid develops along 
the top surface for sufficiently large rη , regardless of the 

(See figure on next page.)
Fig. 3  Schematic illustrations on two-dimensional planes of the structures of incipient flows obtained for the cases with strong 
temperature-dependent viscosity rη = 108 and various model geometries together with the values of a rk = 1 , b rk = 10 and c rk = 100 . Note 
that for the cases with 3D spherical geometry we showed the flow structures in meridian planes assuming the incipient flows occurring with only 
zonal components (i.e., the spherical harmonic order m = 0 ). Shown in color are the distributions of infinitesimal perturbations in temperature T ′ 
normalized by their maxima �max . For the color scale for the distribution of T/�max , see the scale bar at the bottom of the figure. Shown in solid 
lines are the contour lines of a “potential” ψ of the mass flux ρv ′ . The contour lines are drawn for 0.1 ≤ |ψ/ψmax| ≤ 0.9 with the interval of 0.1, where 
ψmax is the maximum of |ψ |
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Fig. 3  (See legend on previous page.)
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values of rk and model geometries. Indeed, all the plots in 
Figure 4 show that the regions with very small V develop 
near the top surface when rη is sufficiently larger than 
the threshold around O (103–104). In addition, for the 
cases with rk = 100 in 3D and 2D spherical geometries, 
the regions with very small V develop near the bottom 
boundary when rη is sufficiently large. The occurrence of 
such regions reflects the emergence of thick regions of 
stable thermal stratification above the bottom bounda-
ries, and is consistent with the results of the Cartesian 
cases where such regions develop for rk ≥ 30.

Moreover, from a detailed comparison of the location 
of the maxima in vertical velocity V between the cases 

with different rk in Fig. 4, we can see that the static stabil-
ity of thermal stratification in the fluid layer exerts strong 
controls on the structures of incipient flows. For the cases 
where regions of stable thermal stratification are absent 
in the fluid layer ( rk ≤ 10 for 3D and 2D spherical geom-
etries, and rk ≤ 3 for Cartesian geometry), the locations 
of the maxima in V shift downward with increasing rη , 
which approach to the bottom boundary for asymptoti-
cally large rη . For the other cases where regions of stable 
stratification exist, by contrast, the locations of the max-
ima in V, which shift downward with rη for small rη , do 
not reach the bottom boundary even when rη is asymp-
totically large. Instead, the asymptotic height of the 

Fig. 4  The radial profiles of the velocity perturbations V against rη in the fluid layer of different model geometries obtained for the cases with a 
rk = 1 , b rk = 3 , c rk = 10 , d rk = 30 and e rk = 100 . In each diagram, the vertical axis indicates the dimensionless height, while the horizontal 
axis indicates log10 rη . Shown in color and thin solid contours are the amplitudes of radial velocity perturbations V normalized by their maxima 
Vmax for given rη . For the color scale for the distribution of V/Vmax , see the scale bar at the bottom of the figure. The contour lines are drawn for 
0.1 ≤ |V/Vmax| ≤ 0.9 with the interval of 0.1. The green lines indicate the heights which yield V = Vmax for given rη . In some cases where regions of 
stable thermal stratification exist, we also show by thick gray lines the heights below which the thermal stratification is stable



Page 12 of 17Kameyama ﻿Earth, Planets and Space          (2021) 73:167 

maxima in V for very large rη is equal to that at the top 
surface of the stable stratification indicated by the thick 
gray lines in the figure. In short, the incipient convection 
cells tends to shrink in the radial direction around the 
height of the top surface of the stable stratification with 
increasing rη , in response to the thickening of stagnant 
lids along the top surface and that of regions of insignifi-
cant fluid motion above the bottom boundary.

We will conclude this section by demonstrating the 
similarity between the results of linear analysis and those 
of nonlinear one. In Fig. 5 we show the overall structure 
of stagnant-lid convection with large rk ( = 30 ) obtained 
in our earlier numerical experiments (Kameyama and 
Yamamoto 2018). Because of the large increase in thermal 
conductivity k with depth, the temperature gradient in 
the vertical direction is greatly reduced at depth (Fig. 5a, 
b), and it eventually becomes smaller than the adiabatic 
gradient near the bottom boundary (Fig. 5c). This leads to 
an emergence of a region of stable thermal stratification 

at the bottom of the layer (Fig. 5d, e), although its dimen-
sionless thickness ( ∼ 0.25 ) is smaller than that expected 
from the static stability of the reference conductive state 
( ∼ 0.37 ; Fig. 1c). In this region, the fluid motion is indeed 
insignificant particularly in the vertical direction (Fig. 5f ). 
From this figure, we can confirm that the insignificant 
fluid motion in the basal region is largely due to the the 
stable thermal stratification there.

Conclusion
In this paper, we carried out a series of linear analyses 
on the onset of thermal convection of highly compress-
ible fluids whose physical properties strongly vary in 
space in convecting vessels of either a three-dimensional 
(3D) spherical shell or a two-dimensional (2D) spherical 
annulus, by extending our earlier work in the Cartesian 
geometry (Kameyama 2016): the variations in thermo-
dynamic properties (thermal expansivity and reference 
density) with depth are taken to be relevant for the 

Fig. 5  An overall structure of the stagnant-lid convection of Ra = 109 , rk ≡ kbot/ktop = 30 and rη ≡ ηtop/ηbot = 107 obtained in the numerical 
experiments of Kameyama and Yamamoto (2018). a The distributions of temperature T. The contour interval is 0.05. The color scale is indicated 
at the bottom of the figure. b Plots against dimensionless height z of the horizontally averaged temperature 〈T 〉 (thick red line) at the height of 
z. Also shown for comparison by thin black lines are the plots of several adiabats against z, while by dotted black lines are the vertical profiles of 
temperature T  given by steady one-dimensional heat conduction in the vertical direction. c Plots against z of the magnitude of vertical gradient of 
〈T 〉 (red solid line) at the height of z. Also shown for comparison by blue dashed line is the magnitude of adiabatic temperature gradients given by 
〈T 〉 at z. d The distributions of potential temperature Tpot . The color scale is indicated at the bottom of the figure. The contour lines for Tpot are shown 
at the interval of 0.005 only in the range of Tpot ≥ 0.49 . e Plots against z of the horizontally averaged potential temperature 〈Tpot〉 at the height of z. f 
Plots against z of the root-mean-squares of the magnitude of the velocity vector 

√

〈v2〉 (red solid line) and the vertical velocity 
√

〈v2z 〉 (blue dashed 
line) at the height of z 
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super-Earths with ten times the Earth’s mass, while the 
thermal conductivity and viscosity are assumed to expo-
nentially depend on depth and temperature, respectively. 
One of the major finding in our analyses is that, for the 
cases with strong temperature dependence in viscos-
ity and strong depth dependence in thermal conductiv-
ity, the critical Rayleigh number is on the order of 108 
to 109 , which is close to the values of Rayleigh number 
of the thermal convection in the mantle of super-Earths 
with ten times the Earth’s mass extrapolated from that in 
the Earth’s mantle. This suggests that the mantle convec-
tion of massive super-Earths is most likely to fall in the 
stagnant-lid regime very close to the critical condition, if 
the properties of their mantle materials are quite similar 
to the Earth’s.

Our analyses also demonstrated that the structures 
of incipient flows of stagnant-lid convection in the 
presence of strong adiabatic compression are strongly 
affected by the depth dependence in thermal conduc-
tivity and the geometries of convecting vessels, through 
the changes in the static stability of thermal stratifica-
tion of the reference (conductive) state. For example, 
the increase in thermal conductivity with depth tends 
to enhance the stability at depth in the fluid layer, by 
raising the temperature and reducing the gradient in 
temperature in the radial direction at depth. When 
the increase is sufficiently large ( rk ≡ kbot/ktop ≃ 100 ), 
regions of stable thermal stratification can occur in the 
deep mantles of super-Earths with a mass ten times 
that of the Earth. The occurrence of stable thermal 
stratification in the deep mantle strongly prevents the 
incipient cells of stagnant-lid convection from extend-
ing down to the bottom boundary, leading to the for-
mation of “deep stratospheres” of insignificant fluid 
motions above the bottom hot boundaries in addition 
to the stagnant lids along the top cold surfaces. The 
occurrence of such motionless regions above the bot-
tom boundaries is consistent with our earlier fully 
dynamic numerical experiments in Cartesian geometry 
(Kameyama and Yamamoto 2018). On the other hand, 
the spherical geometries of convecting vessels tend to 
suppress the occurrence of “deep stratospheres” above 
the bottom boundaries. This is because the reduction 
of surface area with depth in the spherical geometries 
steepen the gradient in temperature in the radial direc-
tion at depth. Furthermore, the increase in thermal con-
ductivity k may not necessarily be so large as assumed 
here in silicate mantles of real super-Earths (e.g., Dal-
ton et  al. 2013; Hsieh et  al. 2017, 2018; Deschamps 
and Hsieh 2019), and the temperature dependence in 

k is likely to alter the nature of stagnant-lid convection 
(Deschamps 2021). Our analyses showed, however, that 
the regions of insignificant fluid motion can be formed 
above the bottom boundaries even in the three-dimen-
sional spherical geometry in the presence of a factor 
of about 100 increase in the thermal conductivity with 
depth. We can, therefore, speculate that the stagnant-
lid convection in the mantles of massive super-Earths 
is accompanied by another motionless regions at the 
base of the mantles if the thermal conductivity of their 
mantle materials strongly increases with depth (or 
pressure).

The occurrence of stable thermal stratification in the 
mantles of massive super-Earths may strongly influ-
ence the mantle dynamics and surface environments 
of the particular terrestrial planets. For example, the 
stable region is most likely to greatly suppress the hot 
ascending plumes originating from the core–mantle 
boundary, resulting in the lack of hotspot volcanism 
on super-Earths. In addition, the stable region is most 
likely to slow down the cooling of underlying metallic 
cores, which may further imply the absence of intrinsic 
magnetic fields of super-Earths.

Our findings on the structures of incipient convec-
tion of highly compressible fluids may have strong 
impact on the studies on the evolution of massive ter-
restrial planets, in particular on the theoretical ones 
based on a parameterized convection (e.g. Tachinami 
et  al. 2011; Foley 2019). In these earlier studies, the 
efficiency of convective heat transfer and emission of 
masses (such as greenhouse gases) from the planetary 
mantles are estimated, under the assumption that the 
convection structures in the mantles of massive super-
Earths are similar to those of smaller terrestrial plan-
ets such as the Earth’s. However, the occurrence of 
“deep stratospheres” presented in this study indicates 
that this assumption can be significantly violated in 
the mantles of massive terrestrial planets owing to the 
effect of adiabatic compression, in particular when the 
transport properties (i.e., viscosity and thermal con-
ductivity) of mantle materials strongly vary in space. 
In addition, from the estimate of Rayleigh number and 
comparison with the critical value, the mantle convec-
tion of super-Earths is expected to have flow structures 
quite similar to the incipient ones presented here. We, 
therefore, conclude that the development of convection 
models which appropriately take into account the effect 
of strong adiabatic compression is of ultimate impor-
tance in deepening the understanding of the evolution 
of massive super-Earths.
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Appendix
Detail of linear analysis in two‑ and three‑dimensional 
spherical geometries
According to a general course of linear analysis (e.g., 
Chandrasekhar 1961; Kameyama et  al. 2013, 2015; 
Kameyama 2016), the evolutionary equations for pertur-
bations are solved by separation of variables into tempo-
ral, radial, and horizontal directions. Suppose that the 
temporal and spatial dependence of perturbations in 
temperature T ′ and radial velocity v′r is given by,

(21)
[

T ′(r, θ ,φ, t)
v′r(r, θ ,φ, t)

]

=

[

�(r)
V (r)

]

Y lm(θ ,φ) exp (at)

for three-dimensional (3D) spherical geometry or

for two-dimensional (2D) spherical cases. Here a is the 
growth rate, Y lm for 3D cases is the spherical harmonics 
of the degree ℓ and order m, and K for 2D cases is the 
wavenumber of perturbation in the horizontal ( θ -) direc-
tion. By substituting the above equation into (12), (13), 
and (14), and further eliminating pressure p′ and assum-
ing a = 0 , we obtain the equations for the radial profiles 
of the perturbations in temperature � and radial velocity 
V for the critical state of thermal convection. The equa-
tions for 3D spherical geometry are

(22)
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where L2 ≡ ℓ(ℓ+ 1) . The equations for 2D spherical 
geometry are, on the other hand,

In (23) and (25) we rewrote Ra with Rac.
The boundary conditions for � are

where r = rmax and r = rmin denote the top and bottom 
boundaries in nondimensional units, respectively. On the 
other hand, the boundary conditions for V are

for 3D spherical geometry, and

for 2D spherical geometry.
We study the variation in the nature of the infini-

tesimal perturbations which become unstable for the 
smallest Rayleigh number by a following strategy. 
First, for given conditions (depth dependence in k  and 
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(

1

r
+

d ln ρ

dr

)

dV

dr
at r = rmax, rmin

temperature dependence in η ), we seek for a critical 
Rayleigh number Rac of perturbations characterized by 
ℓ or K. In this procedure, we first recast the set of Eqs. 
(23) and (24) [or that of (25) and (26)] into an eigene-
quation of the form

and then solved for an eigenvalue ( 1/Rac ) together with 
eigenfunctions x (radial profiles of perturbations of tem-
perature � and radial velocity V) describing a critical 
state (i.e., growth rate a = 0 ). The numerical details on 
how to construct the matrix A can be found in Kamey-
ama et  al. (2015). The eigensystem developed thus was 
solved for all eigenvalues and eigenvectors by invoking 
the LAPACK subroutine “dgeev” designed for real non-
symmetric matrices. Among the series of eigenvalues and 
eigenfunctions in hand, we then search the ones which 
yield the absolute minimum of the critical Rayleigh num-
ber Rac0 and the degree ℓc0 or wavenumber Kc0 corre-
sponding to Rac0.

To conclude this appendix, we note that a special care 
must be taken in the final stage of the solution of the pre-
sent eigensystem. Because the matrix A is in general a non-
symmetric matrix, the eigenequation (30) has to be solved 
in a field of complex numbers, even if the matrix A is real 
(e.g., Zebib et al. 1983; Zebib 1993). In fact, we obtained a 
set of complex eigenvalues and their conjugation. In addi-
tion, the distributions of eigenvalues of A significantly 
vary depending on whether a region of stable stratification 

(30)A · x =
1

Rac
x
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occurs or not. Indeed, all the eigenvalues have positive real 
parts (i.e. A is positive definite) when a thermal stratifica-
tion is unstable in the entire layer. However, when a region 
of stable stratification occurs in the fluid layer, the eigen-
values have both positive and negative real parts (i.e. A is 
indefinite). ( Kameyama et al. (2015) further showed that 
all the eigenvalues have negative real parts (i.e. A is nega-
tive definite) when a thermal stratification is stable in the 
entire layer.) Since the eigenvalues of A whose real parts 
are negative are physically unsound (see Kameyama et al. 
(2015) for detail), we can only focus on the eigenvalues 
1/Rac with positive real parts.
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