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EXPRESS LETTER

Shallow tectonic tremor activities 
in Hyuga‑nada, Nankai subduction zone, based 
on long‑term broadband ocean bottom seismic 
observations
Yusuke Yamashita1*  , Masanao Shinohara2 and Tomoaki Yamada2 

Abstract 

The study of slow earthquake activity, which occurs in the shallow and deep sides of seismogenic zone, is crucial for 
understanding subduction zones, including variations in frictional properties with depth and interplate coupling. 
Observations at the seafloor are necessary, particularly for shallow slow earthquakes occurring in offshore areas; 
however, few observations of such activity have been made. We conducted long-term seismic observations on the 
seafloor in the Hyuga-nada region, located at the western end of the Nankai Trough, to characterize shallow low-
frequency tremor activity from 2014 to 2017. Although these observations lasted for only a few years, the occurrence 
frequency of shallow tremors in Hyuga-nada was lower than that of deep tremors in the Nankai Trough, and major 
activity involving migration occurred only once every two or more years. In contrast, minor activity with a duration 
of a few days occurred several times a year. Major activities in 2015 were accompanied by migration similar to those 
in 2013. The tremors in 2013 were characterized by south to north migration at a rate of 30–60 km/day. However, 
the tremors in 2015 were characterized by west to east migration, and the activity area extended further to the east. 
The migration rates were also much slower (several to 20 km/day) than in 2013. These different migration properties 
likely reflect the state of interplate coupling in the down-dip side of shallow slow earthquake area. Minor activity was 
identified, including tremors triggered by the 2015 Nepal and 2016 Kumamoto earthquakes. Activity occurred mainly 
in the focal regions of major activities. Very-low-frequency earthquakes (VLFEs) occurred concurrently with tremors, 
and their epicenters coincided within the margin of error. However, the VLFEs were mostly peripheral to the shallow 
tremor concentration zones. This indicates that minor heterogeneities in frictional properties are present along the 
shallow plate boundary.
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Introduction
During the last two decades, different slow earthquakes, 
including tectonic low-frequency tremors, very-low-
frequency earthquakes (VLFEs), and episodic slow slip 

events (SSEs), have been observed on the downward seg-
ments of the seismogenic megathrust boundaries in sub-
duction zones (hereafter termed deep slow earthquakes) 
(e.g., Obara and Kato 2016; Schwartz and Rokosky 2007). 
These earthquakes revealed the transition between shal-
low brittle failure and deep creeping motion. At shallow 
plate boundaries, VLFEs have been reported in land-
based observations (e.g., Obara and Ito 2005). In recent 
years, seafloor observations have also been conducted 
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and cable-based seafloor monitoring systems have been 
constructed, thereby enabling the observation of shallow 
slow earthquakes (Annoura et al. 2017; Araki et al. 2017; 
Ito et al. 2015; Nishikawa et al. 2019; Obana and Kodaira 
2009; Ohta et al. 2019; Plata-Martinez et al. 2021; Tanaka 
et al. 2019; Todd et al. 2018; Tonegawa et al. 2020; Wal-
lace et al. 2016; Yamashita et al. 2015).

Yamashita et al. (2015) investigated the detailed prop-
erties of shallow low-frequency tremors (shallow trem-
ors) in the Hyuga-nada region at the western end of the 
Nankai Trough, Japan, using ocean bottom observations 
of seismicity near the trench (Fig.  1). Complete epi-
sodes of shallow tremors that lasted up to a month were 
detected that exhibited migration properties similar to 
those of deep tremors. This activity was also linked to 
shallow VLFE activity, as shown by data acquired using 
a land-based broadband seismic network. Tremors 
and VLFEs often coincide, and their migration patterns 
resemble deep tremors during episodic tremor and slip 
(ETS) events (e.g., Ito et al. 2007). This similarity suggests 
that tremors at this shallow plate boundary are coupled 
with VLFEs and short-term SSEs (Yamashita et al. 2015). 
Analyses of 2010 activity by Asano et al. (2015) revealed 
a similar migration pattern for shallow VLFEs in the 
Hyuga-nada region. According to both studies, the shal-
low and deep slow earthquake activity occurred repeat-
edly in the same area.

Understanding the characteristics of shallow tremors 
is essential for understanding the spatiotemporal hetero-
geneity of interplate coupling along the shallow part of a 
plate boundary. However, few studies of shallow tremor 
activity have been conducted; thus, the characteristics of 
such activity are not well known. The characteristics of 
the shallow tremors in the Hyuga-nada region were ini-
tially reported by Yamashita et  al. (2015); however, the 
study lacked information regarding the activity history 
and cycle. This lack of information is mainly because 
the details of shallow tremor activity cannot be acquired 
using land-based observations. Such activity can only be 
elucidated using seafloor observations.

Monitoring shallow tremors can provide informa-
tion on the spatiotemporal changes in crustal activity 
along shallow plate boundaries at a kilometer scale. This 
also enables the indirect monitoring of SSEs, which are 
associated with shallow tremor activity. Thus, investigat-
ing shallow tremor characteristics is essential for under-
standing the spatiotemporal variations in interplate 
coupling. However, this requires long-term monitoring 
of shallow tremor activity, owing to a limited current 
knowledge of their regularity.

In this study, we report on continuous seafloor observa-
tions, obtained using short-period and broadband ocean 
bottom seismometers since 2014, to clarify the nature of 

shallow slow earthquakes in the Hyuga-nada region and 
to understand their universality and regional characteris-
tics. We obtained detailed source locations of the shallow 
tremors and discuss the spatiotemporal characteristics of 
their activity, as well as their relationship with VLFEs and 
interplate coupling in the Hyuga-nada region.

Observations
Long-term ocean bottom seismological monitoring in the 
focal area of shallow tremors began in March 2014. The 
monitoring network comprises pop-up-type ocean bot-
tom seismometers (OBSs), which are mainly short-period 
long-term ocean bottom seismometers (LOBS) and two 
broadband ocean bottom seismometers (BBOBS). The 
OBSs consist of a spherical titanium housing that con-
tains a sensor with a mechanical leveling unit, lithium 
batteries, a data recorder, and an acoustic transponder 
(Kanazawa et al. 2009). This system is suitable for long-
term (> 1 year) continuous observations on the seafloor. 
The three-component velocity-type sensors used in the 
LOBS and BBOBS are Lennartz LE3D-lite (natural fre-
quency = 1  Hz) and Guralp Systems CMG-3  T (natural 
period = 360  s) sensors, respectively. The seismometer 
signals were recorded continuously on a hard-disk drive 
or SD card after an analog–digital conversion using a 20- 
or 24-bit resolution and a sampling frequency of 200 Hz. 
The clock reading for each OBS was compared with that 
of a GPS clock prior to installation and after recovery, 
and the time stamps were corrected, as they had an accu-
racy less than that of the sampling frequency.

Owing to electrical power limitations, the OBSs were 
retrieved and re-deployed annually. Therefore, the obser-
vations were divided into the following periods: March 
2014–January 2015 (1st period), January 2015–January 
2016 (2nd period), and January 2016–February 2017 (3rd 
period). The number of instruments employed depended 
on the observation period. The locations of all OBS sta-
tions utilized for continuous monitoring during the study 
are shown in Fig. 1, and the OBS networks used during 
each observation period are shown in Additional file  1: 
Figure S1.

Waveform characteristic observed by LOBS and BBOBS
Signals recorded using the OBSs were all satisfactory 
and were available for analysis throughout the moni-
toring period. Example waveforms for each OBS sta-
tion during the second observation period are shown 
in Fig.  2a. The black trace shows the waveform of 
the tremor band at each station. The characteris-
tic spindle-shaped wave group is the shallow tremor. 
Two BBOBSs (OBSs 08 and 10) installed during this 
period recorded clear shallow tremor and VLFE sig-
nals, indicated by the black and red trace in Fig.  2a, 
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Fig. 1  Locations of all OBS stations used during the observation periods in the Hyuga-nada region and the simplified regional tectonic setting. Blue 
squares and numbers represent OBS station locations and numbers, respectively. Gray circles indicate shallow tremor activity in 2013 (Yamashita 
et al. 2015). Black dotted lines are depth contours of the top of the Philippine Sea Plate (Nakanishi et al. 2018). Gray shaded areas represent the 
coseismic slip area of the 1968 Hyuga-nada and 1996 earthquakes (Yagi et al. 1998, 1999). The light green bold line delineates the outer edge of the 
subducted Kyushu–Palau Ridge (Yamamoto et al. 2013)
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respectively. Each red trace was corrected for instru-
mental response, and a 0.05–0.1  Hz bandpass fil-
ter was applied. Some of the LOBSs recorded VLFE 
signals (Stations 04, 05, and 06), although these are 
short-period seismometers with a natural frequency 
of 1  Hz. A signal is observed if it sufficiently exceeds 
the instrumental noise (~ 2000  nm/s), indicating that 
under suitable conditions, tremors and VLFEs can be 
observed simultaneously by the LOBS.

Although microseism noise usually conceals signals 
in the 0.1–1  Hz band, clear tremor and VLFE signals 
were observed in this range (Fig.  2b). Kaneko et  al. 
(2018) reported the first direct observation of continu-
ous broadband signals in the 0.02–8  Hz range based 
on data from the Dense Ocean floor Network System 
for Earthquakes and Tsunamis (DONET), which is 
located off the Kii Peninsula in the Nankai subduction 
zone. The shallow slow earthquakes in the Hyuga-nada 
region represent a broadband phenomenon known as 
"broadband slow earthquakes" (Kaneko et  al. 2018) 
that can be explained by the Brownian slow earthquake 
model (Ide 2008), similar to those events observed off 
the Kii Peninsula.

Data analysis
To identify the shallow tremor locations, the envelope 
cross-correlation method (e.g., Obara 2002) was used, 
as well as a procedure similar to that of Yamashita et al. 
(2015) for the Hyuga-nada region using OBS data. In 
this study, the focal depth was fixed based on the plate 
geometry model (Nakanishi et al. 2018) and a homoge-
nous structure with an S-wave velocity of 3.0 km/s was 
assumed.

A root-mean-square (RMS) envelope was created 
from the bandpass-filtered waveforms in the 2–4  Hz 
band. The RMS envelope waveform was resampled to 
20  Hz after the application of a 0.2-Hz low-pass filter. 
Cross-correlation coefficients were calculated within a 
time window of 120 s for station pairs, and lag times at 
the maximum correlation coefficients served as the rel-
ative differential time data for correlation coefficients 
greater than 0.70. The optimal value was obtained using 
a grid search method associated with step-wise grid 
interval decreases. The duration of each tremor was 
obtained using the method described by Ohta et  al. 
(2019), while the corresponding error was estimated 
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Fig. 2  Example waveform from the 2nd observation period showing: a the bandpass-filtered waveform in the tremor (2–4 Hz: black) and the 
VLFE (0.05–0.1 Hz: red) bands for 14 stations (numbers indicate the OBS stations shown in Fig. 1). The instrumental responses have been corrected. 
Red traces (VLFE band) are plotted only for stations where a signal was obtained above the noise level. Each trace was normalized based on the 
maximum amplitude and b bandpass-filtered waveforms for different bands observed by the BBOBS (OBS 10). The uppermost waveform is the raw 
data, while the others were filtered using the bands displayed to the left
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from the 1 dB area of the variance reduction (VR) based 
on the method described by Maeda and Obara (2009).

Since the events included ordinary earthquakes, dupli-
cate events were removed through comparisons with data 
from the Japan Meteorological Agency (JMA) Unified 
Earthquake Catalog. In addition, events with durations 
less than 20 s, errors greater than 15 km, and differential 
travel time residuals more than 1.5 s were also removed. 
Finally, owing to the nature of tremors, spatiotemporal 
clustering was performed (e.g., Ohta et  al. 2019), which 
included at least 5 events in a 15-km radius within 3  h 
preceding and following the event. Using these meth-
ods, false signals, including ordinary earthquake swarms, 
were removed from the catalog.

Results
Although the monitoring conducted by Yamashita et al. 
(2015) lasted for less than 4  years, the occurrence fre-
quency of shallow tremors in the Hyuga-nada region 
appears to be lower than that of deep tremors in the Nan-
kai Trough (e.g., Obara 2010). In addition, a major epi-
sode of activity that lasted for a few months and involved 
migration was recorded only once in two or more 
years, while minor activity with a duration of a few days 
occurred many times each year.

To evaluate the spatiotemporal characteristics of the 
shallow tremors, the recorded activity was partitioned 
into six episodes covering the monitoring period. Spa-
tial distributions of shallow tremors for all episodes 
recorded by the present study, as well as those described 
by (Yamashita et al. 2015), are shown in Fig. 3, while the 
distributions of each episode are shown in Fig. 4.

Minor ambient tremor activity (Episodes 1, 2, and 3)
Episode 1 involved activity up to a point where the trem-
ors stopped migrating northward and turned sharply 
eastward in 2013 (Fig. 4a). During Episode 2, minor activ-
ity occurred near the trench axis (Fig.  4b), while activ-
ity in Episode 3 occurred in almost the same location 
(Fig. 4c) as the activity in Episode 1. The spatial distribu-
tions of the shallow tremors during Episodes 1, 2, and 
3 were limited and characterized by unclear migration 
(Additional file 1: Figs. S3, S4, S5). Activity that occurred 
during these three episodes was not triggered by any seis-
mic event, but instead began spontaneously.

Minor triggered tremor activity (Episodes 4 and 6)
Minor activity that occurred in Episode 4 began after the 
April 25, 2015 (JST) Nepal Earthquake (Mw 7.8) (Fig. 4d) 
and converged within two days (Additional file  1: Fig. 
S6). Similarly, activity that occurred in Episode 6 began 
after the April 16, 2016 Kumamoto Earthquake (Mw 7.0) 
(Fig.  4f ), which occurred ~ 200  km from the study area. 
For both of these periods, the activity proceeded inter-
mittently for approximately 2  weeks (Additional file  1: 
Fig. S7). Despite the differences in seismicity levels, the 
distributions of shallow tremors during Episodes 4 and 6 
appeared to overlap (Fig. 4d, f ). However, the locations of 
the triggered tremors were generally limited, suggesting 
that the focal areas of Episodes 4 and 6 were very sensi-
tive to stress changes.

Although Episode 6 began on April 17 (Additional 
file  1: Fig. S7), further analysis of the waveforms at 
each OBS station revealed a tremor signal at OBS 12 at 
approximately 03:20 on April 16 (approximately 3 h after 
the main shock). However, most of the tremor signals 
were either masked or contaminated by aftershocks for 
approximately 2  days after the earthquake. In addition, 
shallow tremors occurred simultaneously in multiple 
locations. Nevertheless, because only five observation 
points were available, and because the OBS stations were 
slightly wider apart compared to other periods (Addi-
tional file 1: Fig. S1c), the observation network was inad-
equate for determining the hypocenter. Owing to the 
limited events available for hypocenter determination, 
Episode 6 could not be characterized entirely accurately.

Major ambient tremor activity (Episode 5)
Episode 5 occurred during the second observation period 
and encompassed a wider area than the other episodes 
(Fig. 4e). In comparison with the 2013 activity, events in 
Episode 5 extended farther to the east, although some 
overlap occurred between the western section of Episode 
5 and the eastern section of the 2013 activity (Additional 
file 1: Fig. S2). The area south of the monitoring network 
was excluded from the catalog because of large estima-
tion errors. According to the spatiotemporal variations in 
activity during Episode 5 (Fig. 4h), migration from west to 
east occurred. The activity initiated near the areas of Epi-
sodes 1 and 3, and stopped near the area where the 2013 
activity terminated after eastward migration (around 
OBS 08) (Fig. 4g). Following the Ogasawara Earthquake, 
a major (Mw 7.8) deep focused earthquake occurred at 

Fig. 3  Shallow tremors observed using the OBSs during the observation period showing the a epicenter distribution of all shallow tremors 
obtained in this study (red circles) and all OBS stations used for the observation period (blue squares). Other contours and symbols are the same 
as those in Fig. 1. b Spatiotemporal plot projected on the W–E line shown in a. based on JST time (UTC+9). Blue filled stars indicate the timing of 
three major earthquakes that affected the shallow tremor activity. The shallow tremor activity is divided into Episodes (ep.) 1–6 according to the 
characteristics of the activity

(See figure on next page.)
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20:24 (JST) on May 30, 2015 and activity spread eastward 
to the area off Cape Ashizuri (Fig. 4g and h).

Onshore observations were used to confirm the large-
scale migration of shallow VLFEs off Cape Ashizuri in 
2003 and 2010 (Asano et  al. 2015; Hirose et  al. 2010). 
This activity occurred synchronously with long-term 
SSE activity in the Bungo Channel, which occurs on an 
approximately 6  years cycle. However, during Episode 
5, no large-scale long-term SSEs were recorded in the 
Bungo Channel. The VLFE activity off Cape Ashizuri was 
also confirmed using onshore observations, although 
there were fewer recorded events than in 2003 and 2010 
(Uchida et  al. 2020). Therefore, activity during Episode 
5 differed from those in 2003 and 2010, which occurred 
synchronously with long-term SSE activity in the Bungo 
Channel.

Discussion
Comparison of the 2013 and 2015 migration properties
The 2013 activity migrated from south to north, then 
changed to migrate eastward, and stopped after cross-
ing the subducted Kyushu–Palau Ridge (Fig.  1). Typical 
along-strike migration rates of the 2013 activity ranged 
from 30 to 60 km/day (Yamashita et al. 2015), which are 
significantly faster than those of deep tremors (Houston 
et  al. 2011; e.g., Obara 2010), but slower than the rapid 
tremor reversal (RTR) rates of 160–400  km/d (Houston 
et al. 2011) and streak over 100 km/h in the slip direction 
(e.g., Ghosh et  al. 2010; Shelly et  al. 2007). Conversely, 
typical along-strike migration rates of the 2015 activity 
(Episode 5) were initially slow (a few km/day), then accel-
erated to ~ 20 km/day as the activity area expanded to the 
east (Fig. 4h and Additional file 1: Fig. S2), although the 
rates remained lower than those of the 2013 activity.

Migration rates reported for shallow tremors in other 
regions range from a few to 20  km/day (e.g., Annoura 
et al. 2017; Araki et al. 2017; Nishikawa et al. 2019; Ohta 
et  al. 2019; Tanaka et  al. 2019). Therefore, the migra-
tion rates associated with the active region in 2013 were 
unusually high, whereas those for the 2015 active region 
were within the range for shallow tremors. According to 
Yamashita et al. (2015), differences in interplate coupling 
in the deep portion of the shallow tremor region affect 
the extent of shallow tremor activity. Shallow VLFE activ-
ity also exhibits an anticorrelative relationship with the 
spatial distribution of the interplate coupling ratio (Baba 

et al. 2020). In the area off Cape Ashizuri, the deep por-
tion of the shallow tremor region includes a locked zone 
associated with the 1968 Hyuga-nada Earthquake (Mw 
7.5) (Fig.  1). Similar characteristics were observed off-
shore of the Kii Peninsula (e.g., Annoura et al. 2017; Araki 
et al. 2017) and in the Sanriku and Tokachi regions (e.g., 
Nishikawa et al. 2019; Tanaka et al. 2019). In contrast, the 
deep portion of the 2013 shallow tremor region is char-
acterized by a creeping megathrust (e.g., Wang and Bilek 
2014; Yamashita et al. 2012). Migration rates of the shal-
low tremors may increase in regions without a prominent 
locked zone in the deep portion (Fig.  5). Although the 
rupture velocity of a fault is theoretically and numerically 
dependent on a number of factors, including stress state, 
fault strength, and pore pressure (e.g., Ando et al. 2012; 
Luo and Liu 2021), the stress shadow effect due to the 
locked zone (e.g., Ariyoshi et  al. 2014; Bürgmann et  al. 
2005) is dominant on a regional scale.

Simulations have also suggested that shallow VLFE 
activity occurs more frequently than that of deep VLFEs 
during the pre-seismic stage of a simulated megathrust 
earthquake due to a partial weakening of the coupling 
around the locked zone (Ariyoshi et al. 2014). During this 
stage, shallow VLFEs will occur in the region where there 
is little or no VLFE activity and migrate along strike. 
Shallow tremors also exhibit this behavior. Therefore, if 
we understand the general properties of shallow tremor 
activity, the migration rates of the shallow tremors and 
the extents of their activities can be used for monitoring 
the spatiotemporal variations in interplate coupling.

Implications of triggered shallow tremor
Activity during both Episodes 4 and 6 was triggered by 
large earthquakes (Additional file  1: Figs. S6 and S7), 
which differed from spontaneous teleseismic waves asso-
ciated with deep tremors (e.g., Chao and Obara 2016; 
Miyazawa and Mori 2005; Miyazawa and Brodsky 2008), 
and continued after the teleseismic waves (Fig. 5c, d). A 
body and/or surface wave associated with a large earth-
quake likely temporarily altered the pore fluid pressures 
in the tremor source region or triggered a small-scale 
SSE, thereby maintaining the activity after the surface 
wave. A similar situation associated with SSE activity off 
the Kii Peninsula was reported after the 2016 off Mie pre-
fecture earthquake and the 2016 Kumamoto earthquake 
(Annoura et  al. 2017; Araki et  al. 2017; Nakano et  al. 

(See figure on next page.)
Fig. 4  Spatiotemporal evolution of shallow tremors during each episode. a–f Circles in red and black dots represent shallow tremors and shallow 
VLFEs (Tonegawa et al. 2020), respectively. The episode duration is displayed in the upper right corner of each figure. Blue squares indicate OBS 
stations used for monitoring during each episode. Other contours and symbols are the same as those in Fig. 1. g Spatial distribution of activity 
before and after the May 30, 2015 Ogasawara Earthquake (Mw 7.8) during Episode 5. The left and right panels show the epicenter distributions 
before and after the Mw 7.8 earthquake, respectively. h Spatiotemporal plot of shallow tremors during Episode 5 projected on the W–E cross 
section shown in Fig. The star indicates the timing of the Ogasawara Earthquake (Mw 7.8) and the event colors correspond to those in g 
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2018). Prolonged activity related to an SSE compared to 
that of a deep slow earthquake suggests that the effects of 
stress perturbations caused by major earthquakes likely 
last longer in shallow regions than in the deep regions of 
a plate boundary. This may be due to the widely different 
temperature and pressure conditions in the shallow and 
deep portions of the plate boundary, as well as variations 
in water content and the permeability of the rocks that 
comprise the plate boundary.

Shallow tremor, VLFE, and long‑term SSE comparisons
Yamashita et  al. (2015) found that shallow tremors and 
VLFEs occurred simultaneously in 2013, although their 
observations were based on seafloor data for tremors and 
land data for the VLFEs. In this study, shallow tremors 
and VLFEs were monitored using identical instruments 
installed on the seafloor. Therefore, we observed that 
tremors and VLFEs occurred almost synchronously after 
2014.

Tonegawa et al. (2020) obtained the epicenters of shal-
low VLFEs by applying the envelope cross-correlation 
method to waveforms at frequencies from 0.1 to 0.15 Hz. 
A comparison of the locations of the shallow tremors and 
VLFEs during each episode is shown in Fig. 4. VLFEs can 
only be detected for relatively large events; thus, even if 
many small VLFEs occurred, they will be not located. 
Therefore, the VLFEs shown in Fig. 4 comprise a particu-
larly large event. Owing to differences in the frequency 
bands and source event sizes between the shallow trem-
ors and VLFEs, a direct correspondence is unexpected. 
However, their locations are consistent within an esti-
mated error range of a few to tens of km. This is sup-
ported by the frequency characteristics of the observed 
waveforms, as shown in Fig. 2.

During Episodes 1 and 5 (Fig.  4a, e), VLFEs occurred 
in areas with few shallow tremors, including the edge 
of the shallow tremor source region. Although seismic 

waves associated with different frequency bands than 
those of tremors and VLFEs are likely released through 
a slow earthquake source process on a large scale, closer 
examination suggests that the sources of the tremors and 
VLFEs differ slightly. This difference can be attributed to 
minor heterogeneities in the frictional properties along 
the shallow plate boundary. Where VLFEs are concen-
trated with little tremor, interplate coupling is considered 
to be relatively strong during inter-seismic periods.

GNSS-A observations captured long-term SSEs along 
the shallow boundaries of the Nankai Trough (Yokota 
and Ishikawa 2020). A long-term shallow SSE was 
reported in the Hyuga-nada region in 2015 and off Cape 
Ashizuri in 2016. These events coincide with the timing 
of Episode 5. However, the 2003 and 2010 activity can-
not be comparable directly because GNSS-A observa-
tion had not started yet. However, the differences in the 
extents of the long-term shallow SSE in the Hyuga-nada 
region likely impacted slow earthquake activity from the 
Hyuga-nada region to off Cape Ashizuri. Further seafloor 
seismological and geodetic observations are required 
to improve the source determination accuracy for both 
tremors and VLFEs, and for understanding the relation-
ships and interactions between shallow slow earthquakes.

Conclusions
In this study, we reported on seafloor observations used 
to investigate shallow tremor activity in the Hyuga-
nada region from 2014 to 2017. The frequency of shal-
low tremors was lower than that of deep tremors in the 
Nankai Trough. Six episodes of activity were observed 
and were associated with the following characteris-
tics: minor ambient tremor activity (Episodes 1, 2, and 
3), minor triggered tremor activity (Episodes 4 and 
6), and major ambient tremor activity associated with 
clear migration (Episode 5). Major activity occurred 
only once every two or more years, while minor activ-
ity occurred a few times annually. Source regions of the 
2013 and Episode 5 activity overlapped partially, but the 
latter activity expanded eastward. Along-strike migra-
tion rates of the 2013 (30–60  km/day) and Episode 5 
activity (a few km/day to 20  km/day) differed widely, 
with slower migration rates in Episode 5, although the 
ranges were similar to those reported for other regions. 
The difference in the migration rate likely reflects dif-
ferences in interplate coupling in the deeper portion. 
Monitoring shallow tremors could be useful for moni-
toring spatiotemporal changes in interplate coupling in 
the shallow part of the plate boundary. A comparison 
of shallow tremor and VLFE distributions indicates that 
their epicenters coincided, within the margin of error. 
However, further examination revealed that the shallow 
VLFE sources were in located areas with low tremor 
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fast

slow
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Fig. 5  Diagram of the relationship between interplate coupling and 
shallow tremor activity. When the boundary is creeping, shallow 
tremors can migrate along strike at a high rate. When the boundary is 
locked, tremors are less likely to migrate along strike due to the stress 
shadow effect
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epicenter densities and at the edges of these areas. This 
difference can be attributed to minor heterogeneities in 
frictional properties within the shallow part of the plate 
boundary. For a better understanding of the general and 
regional characteristics of shallow slow earthquakes 
and interplate coupling in the shallow part of the plate 
boundary, continuous seafloor monitoring and compar-
ison with different subduction zones is required.
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the left figure. Fig. S4. Spatiotemporal plot of shallow tremors during 
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